
Handout: Di¤erence equations

Giovanni Di Bartolomeo

1 Powers and series

Recall that

a0 = 1 (1)

a1 =

(
0

sign(a) � 1
if jaj < 1
if jaj > 1

(2)

It is trivial to show that 11 = 1, whereas (�1)1 is not de�ned.

Recall that (geometric series)

Xn�1

i=0
ai = 1 + a+ a2 + a3 + ::+ an�1 =

1� an
1� a (3)

X1

i=0
ai =

(
1
1�a

sign(a) � 1
if jaj < 1
otherwise

(4)

Note that
Xn�1

i=0
ai =

Xn

i=1
ai�1.

2 Two dynamic equations

Capital accumulation law. Existing capital depreciates over time at a �xed rate �. The
capital stock in the beginning of next period is given by the non-depreciated part of current-

period capital, �Kt�1, plus contemporaneous investment, It. Note � 2 (0; 1).

Kt = �Kt�1 + It (5)

It�s a backward�looking equation. History matters:

� � � � � � (t� 1)BBBBB (t)BBBBB (t+ 1) � � � � � � I
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Past values a¤ect current values.

Asset pricing equation. The current price, At, is equal to the discounted value of

expected price, EtAt+1, plus the dividend, Dt. Note � 2 (0; 1).

At = � (EtAt+1 +Dt) (6)

It�s a forward�looking equation. Expectations matter:

� � � � � � (t� 1)CCCCC (t)CCCCC (t+ 1) � � � � � � I

Future values a¤ect current values.

Now, we look at the steady states. Imposing the steady state (i.e., for t �! 1, Kt =

Kt+1 = K, At = EtAt+1 = A, It = I, Dt = D), capital accumulation law and asset pricing

equation implies:

K = �K + I =) K =
I

1� � (7)

A = �A+ �D =) A =
�D

1� � (8)

If capital accumulation and asset pricing converge, they should converge to K and A.

2.1 Capital accumulation: Backward solution

Assume �xed investment It = I, at any t, it should be true that

Kt = �Kt�1 + I (9)

Note that Kt�1 = �Kt�2 + I, therefore

Kt = � (�Kt�2 + I) + I = �
2Kt�2 + (1 + �) I (10)

But Kt�2 = �Kt�3 + I, hence

Kt = �
2 (�Kt�3 + I) + (1 + �) I = �

3Kt�3 +
�
1 + � + �2

�
I (11)

Going back to K0 (t periods in the past), we get

Kt = �
tK0 +

�
1 + � + �2:::+ �t�1

�
I = �tK0 +

1� �t

1� � I (12)
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which converges to K = I (1� �)�1 as t �!1 when j�j < 1. Otherwise, it explodes.
Consider Kt = 0:5Kt�1 + 2, starting from K0, we can build

Starting from K0, Kt evolves according to

Kt = �Kt�1 + I =) K1 = �K0 + I (13)

It follows

K2 = �K1 + I = � (�K0 + I) + I = �
2K0 + (1 + �) I (14)

K3 = �K2 + I = �
3K0 +

�
1 + � + �2

�
I::: (15)

and at n

:::Kn = �
nK0 + I

Xn

i=1
�i�1 = �nK0 +

1� �n

1� � I::: (16)

Finally,

K1 = �
1K0 + I

X1

i=1
�i�1 (17)

If j�j < 1, then �1 = 0 and
X1

i=1
�i�1 = 1

1�� . It follows

K1 =
I

1� � = K (18)
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2.2 Asset pricing equation: Forward solution

Abstracting from expectations, the equation

At = � (EtAt+1 +D) (19)

can be written as

At+1 =
1

�
At +D (20)

The above equation should also hold at t, so

At =
1

�
At�1 +D (21)

Now try to solve it as before, we should note that � 2 (0; 1), therefore
����1�� > 1 and At

does not converge to the steady state, but it explodes!!!

Indeed, there are two ways to solve a linear-di¤erence equation: Iterating backward or

iterating forward. The backward-looking dynamics stem, e.g., from identities linking today�s

capital stock with last period�s capital stock and this period�s investment, i.e., Kt = (1 �
�)Kt�1 + It. The forward-looking dynamics stem from optimizing behavior: What agents

expect to happen tomorrow is very important for what they decide to do today.

Almost all economic transactions rely crucially on the fact that the economy is not a

�one-period game.�Economic decisions have an intertemporal element to them. A key issue in

macroeconomics is how people formulate expectations about the in the presence of uncertainty.

Modelling this idea requires an assumption about how people formulate expectations.

The DSGE approach relies on the idea that people have so-called rational expectations,

introduced by Robert Lucas and Thomas Sargent in the 1970s. Rational Expectations usually

means:

� Agents use publicly available information in an e¢ cient manner. Thus, they do not make
systematic mistakes when formulating expectations.

� Agents understand the structure of the model economy and base their expectations of
variables on this knowledge.

Moreover, it is not rational for them to expect to have a di¤erent expectation next period

for the expectations on yt+2 than the one that I have today, i.e.,

Et (Et+1yt+2) = Etyt+2
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This is known as the Law of Iterated Expectations (LIE). The point is that, today (Mon-
day), my prediction about the wether Wednesday is the same prediction about the prediction

I will do Tuesday. Probably, my prediction Tuesday will be di¤erent because I will have more

information, but today I have not more information!

REs is clearly a strong assumption. The structure of the economy is complex and in truth

nobody truly knows how everything works. But one reason for using REs as a baseline assump-

tion is that once one has speci�ed a particular model of the economy, any other assumption

about expectations means that people are making systematic errors, which is inconsistent with

rationality. Still, behavioral economists have now found lots of examples of deviations from

rationality in people�s economic behavior. But REs requires one to be explicit about the full

limitations of people�s knowledge and exactly what kind of mistakes they make. And while REs

is a clear baseline, once one moves away from it there are lots of essentially ad hoc potential

alternatives. Like all models, REs models need to be assessed on the basis of their ability to

�t the data.

Consider again the equationAt = �EtAt+1+�Dt. Note thatAt+1 = �Et+1At+2+�Et+1Dt+2,

therefore

At = �Et [�Et+1At+2 + �Et+1Dt+1] + �Dt =

= �2EtAt+2 + �
2EtDt+1 + �Dt (22)

where we used: EtEt+1Xt = EtXt (LIE).

But At+2 = �Et+2At+3 + �Dt+2, taking the expectations and using LIE, we obtain

At = �3Et [Et+2At+3 + Et+2Dt+2] + �
2EtDt+1 + �Dt =

= �3EtAt+3 + �
3EtDt+2 + �

2EtDt+1 + �Dt (23)

Iterating until n, we get

At = �nEtAt+n + �
nEtDt+n�1 + �

n�1EtDt+n�2 + :::+ �Dt

= �nEtAt+n +
Xn

i=1
�iEtDt+i�1 (24)

Assuming that the expectations converge to the steady state value (EtA1 = A), we obtain

that

lim
n�!1

�nEt(At+n � A) = 0 (25)

when j�j < 1; otherwise it explodes.
The limit amounts to a statement that At can�t grow too fast.
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Then for j�j < 1, we have
At =

X1

i=0
�i+1EtDt+i (26)

Asset prices should equal a discounted present-value sum of expected future dividends (dividend-

discount model.)

It can be also check that if Dt+i�1 is constant, Dt = D, then

A1 = A = �D (1� �)�1 (27)

3 Linear di¤erence equation systems

3.1 A simple system

Consider the following linear system:"
Kt

EtAt+1

#
=

"
� 0

0 ��1

#"
Kt�1

At

#
+

"
I

D

#
+

"
"It

"Dt

#
(28)

where "It and "
D
t are two white noise shocks that can temporary deviate the system from the

steady state but do not a¤ect its stability.

De�ning Xt+1 = [Kt; At+1]
0, Y = [I;D]0, Et = ["It ; "

D
t ]
0, in a more compact form, it becomes

EtXt+1 = AXt + Y + Et (29)

Stability? The system summarizes the same equations studied before. Therefore, it requires

j�j < 1 and j�j < 1 =)
����1�� > 1. Note that � and ��1 are the eigenvectors of A.

3.2 The general case

Any DSGE is a linear dynamic model that can be written in a generalized state-space form:

�EtXt+1 = �Xt + �Vt+1 (30)

where Xt is a vector of stationary variables and Vt is a vector of structural shocks. �, �, and

� are coe¢ cient matrices.

Models of this form (generalised linear rational expectations models) can be solved relatively

easily by computer. Many techniques available to solve this class of models. We use Blanchard-

Kahn.
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By taking the inverse matrix of �, we transform the state-space form as follows (reduced

state-space form):

EtXt+1 = 	Xt + �Vt+1

where 	 = ��1� and � = ��1�.

The model can be partitioned as:

Xt =

"
x1t

x2t

#
(31)

where x1t are the backward-looking predetermined variables, x2t are the forward-looking control

variables.

The partitioned state-space form is:"
x1t+1

Etx2t+1

#
=	

"
x1t

x2t

#
+ �Vt+1 (32)

By using the Jordan decomposition, matrix 	 can be expressed as:

	 = ��1J� (33)

where J is a diagonal matrix consisting whose diagonal elements are the eigenvalues of 	. The

eigenvalues are ordered in increasing absolute value in moving from left to right.

J =

"
J1 0

0 J2

#
(34)

where the eigenvalues in J1 lie inside the unit circle (stable roots) and those in J2 lie outside

the unit circle (unstable roots).

� is the matrix of the eigenvectors and is partitioned as

� =

"
�11 �12

�21 �22

#
(35)

If the number of explosive eigenvalues is equal to the number of nonpredetermined variables,

the system is stable and a unique solution exists (determinacy).

Formally, "
x1t+1

Etx2t+1

#
= ��1J�

"
x1t

x2t

#
+ �Vt+1 (36)
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Premultiply the system by �, we get" ex1t+1
Etex2t+1

#
= J

" ex1tex2t
#
+�Vt+1 (37)

where 8><>:
" ex1t+1
Etex2t+1

#
= �

"
x1t+1

Etx2t+1

#
� = ��

(38)

This transformation de-couples the system =) nonpredetermined variables depend on the

explosive eigenvalues of 	, contained in J2.

Proposition 1 (Blanchard-Kahn conditions) The solution of the rational expectations model
is unique if the number of unstable eigenvalues of the system is exactly equal to the number of

forward-looking (control) variables.

Matrix J must contain a number of eigenvalues greater than 1 in magnitude equal to the

number of forward-looking variables. The system is determined and has saddle-path stability,

i.e., we have a unique stationary solution.

Other cases: If the number of explosive eigenvalues is smaller (greater) than the number of

forward variables the system is undetermined (has no solutions). Undetermined system means

that there are in�nite solutions.

Remark 2 (A useful property) The # of eigenvalues greater than one in magnitude (un-

stable roots) in J is the same of the # of eigenvalues smaller than one in magnitude (stable

roots) in J�1.

It is useful as it is often easier to check the stable roots.

4 An example: A simple instrumental rule

Let us consider the following model:8><>:
(1) eyt = Eteyt+1 � 1

�
(it � Et�t+1 � rnt )

(2) �t = �Et�t+1 + keyt
(3) it = ���t + �yeyt (39)

where the natural real interest rate evolves according to rnt = �rr
n
t�1 + "

r
t with "

r
t v N(0; 1).

Note: (1) IS curve; (2) New Keynesian Phillips Curve (NKPC); and (3) Taylor rule.
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Plugging the Taylor rule and the NKPC into the IS yields( eyt = Eteyt+1 � 1
�

�
�� (�Et�t+1 + keyt) + �yeyt � Et�t+1 � rnt �

�t = �Et�t+1 + keyt (40)

( eyt + �y
�
eyt + ��k

�
eyt = Eteyt+1 + 1

�
(1� ���)Et�t+1 + 1

�
rnt

�t = �Et�t+1 + keyt( eyt = 1
�+�y+��k

[�Eteyt+1 + (1� ���)Et�t+1 + rnt ]
�t = �Et�t+1 +

k
�+�y+��k

[�Eteyt+1 + (1� ���)Et�t+1 + rnt ] (41)

We now write the model in matrix form (note expectations are on the r.h.s.):" eyt
�t

#
= 


"
� (1� ���)
�k k + �(� + �y)

#"
Eteyt+1
Et�t+1

#
+

"
1

k

#
rnt (42)

where 
 = 1
�+�y+��k

.

In state-space form, we can write:

Xt = 	EtXt+1 + �Vt (43)

where Xt =

" eyt
�t

#
, Vt = rnt , 	 = 


"
� (1� ���)
�k k + �(� + �y)

#
, and � =

"
1

k

#
.

The characteristic polynomial of 	 is given by

p (�) = �2 + a1�+ a0 (44)

where a0 =
��

�+�y+��k
and a1 = �

k+�+��+��y
�+�y+��k

.

We have two nonpredetermined variables Eteyt+1 and Et�t+1, so we need two explosive
eigenvalues in 	�1.

Both the eigenvalues of 	 lie inside the unit circle if and only if the following condition

holds (
ja0j < 1
ja1j < 1 + a0

(45)

� Condition ja0j < 1 implies �y+��k > � (1� �)�, which is always satis�ed for 0 < � < 1.

� Condition ja1j < 1 + a0 implies:

�� +
(1� �)
k

�y > 1 (46)
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