

Lessons in **Epigenetics**

Antonello Mai Università degli Studi di Roma La Sapienza

Nel mezzo del cammin di nostra vita mi ritrovai per una selva oscura ché la diritta via era smarrita.

> Nel mezzo del cammin di nostra vita mi ritrovai per una selva oscura ché la diritta via era smarrita,

NEL MEZZO DEL CAMMIN DI NOSTRA VITA MI RITROVAI PER UNA SELVA OSCURA CHÉ LA DIRITTA VIA ERA SMARRITA.

Genetics or Epigenetics?

Changes to the genome that do not affect DNA sequence may help to explain differences between genetically identical twins

The chromatin structure

Crystal structure of the nucleosome core

Luger, K. et al., Nature 1997, 389, 251-260.

Epigenetics (1997): the study of meiotically/mitotically heritable changes in gene expression that are not caused by alteration of the DNA sequence

Epigenetics: the story

- Epigenetics (1942): the interactions between genes and their products leading to the realisation of the phenotype
 C.H. Waddington, *Endeavour* 1942, *1*, 18-20
 - Epigenetics (1997): the study of meiotically/mitotically heritable changes in gene expression that are not caused by alteration of the DNA sequence

K. Luger et al., Nature 1997, 389, 251-260

3 major mechanisms in epigenetics:
1) DNA methylation

2) covalent modifications of histones with changes in the chromatin structure

3) siRNA, ncRNA

1964: Reversible acetylation of core

1996: Discovery of the first HAT³⁻⁵ and

1997: X-ray structure of the nucleosome⁷

1999: Discovery of NAD-dependent

2003: A link between histone methylation

2004: Discovery of the first histone

2006: Discovery of the histone demethylating enzyme JMJ¹¹

2012: Discovery of the first *reader* family: Bromodomain as a valuable target for cancer¹²

¹²Filippakopoulos, P. et al., Cell 2012, 149, 214-231

DNA Methyltransferase inhibitors (DNMTi)

DNMTi: Nucleoside analogues

Azacytidine

FDA approved 2004 (myelodysplasia) Phase I, II, III (bacmatological malignancias, HMs)

(haematological malignancies, HMs)

DHAC Phase I, II (ovarian cancer and lymphomas)

Phase I

Decitabine

FDA approved 2006 (myelodysplasia) Phase I, II, III (HMs, cervical, NSCLC)

Fig. 4. Schematic representation of the catalytic site of the DNMTs. The targeted cytidine is in blue, the SAM cofactor in red and the catalytic thiolate in green.

Mechanism-based inhibition of DNMTs by cytosine analogues

5-aza-deoxycytidine

irreversible covalent complex

NH₂ CH₃ F ON S-Enz

FdCyd adduct

Zebularine adduct ????? reversible!

DNMTi: Non-nucleoside analogues

Hydralazine hydrochloride

Phase I (cervical cancer)

Procainamide Preclinical

RG108 Preclinical

MG98

human DNMT1 antisense oligonucleotide, Phase I (advanced/metastatic solid tumors)

Effects of DNMTi on gene expression

Yoo, C. B. et al., Nat. Rev. Drug Discov. 2006, 5, 37-50.

DNMT Inhibition: Our Experience

1. – The Quinazoline Story

2. – SGI-1027 analogues with improved activity

From HKMT inhibitors to JMJ-C inhibitors

KIAA/JMJ-selective inhibitors

Upadhyay AK et al, J Mol Biol 2012, 416, 319-27

Quinazoline-based DNMT inhibitors

		% Innibition					
compd	R	hDNMT1	catalytic hDNMT3A			catalytic	
		100 µM	100 µM	33 µM	10 µM	3.3 μ Μ	
	[∼] N N _{CH3}	0					
	N N CH3	0					
3		0					
	N	0					
5		0					
6	_N_	0					
	∑″	47 ± 2					
8	`N S	0					
9	_N N	0					
10) 0					
		0					
		0					
13	Н сн	0					
	`м∕∽́й`сн	³ 0					
15	_N → N ^c +	⁵ 0					
BIX		35 + 8					

^aValues are means of at least three experiments. ^bCompounds were tested in a 10-dose IC₅₀ mode with 2-fold serial dilution starting at 400 μ M. For 4, 13 and 14 it was no possible to determine IC₅₀ values.

B Reactivation fold (fold-induction) of luciferase expression of the CMV-luc construct in KG-1 cells.^a

compound	fold-induction					
compound	0.5 µM	1 µM	5 μM 10 μM		25 µM	
1	1.0 ± 0.1	1.5 ± 0.0	1.3 ± 0.0	2.8 ± 0.1	12.5 ± 0.8	
7	0.9 ± 0.0	1.0 ± 0.0	2.1 ± 0.1	3.4 ± 0.1	0.6 ± 0.0^{b}	
10	0.9 ± 0.0	1.2 ± 0.1	2.5 ± 0.0	2.8 ± 0.0	0 ^{<i>b</i>}	
11	1.0 ± 0.1	1.0 ± 0.0	2.4 ± 0.1	4.1 ± 0.1	7.5 ± 0.6	
SGI-1027	1.1 ± 0.2	1.5 ± 0.5	17.1 ± 5.9	10.2 ± 7.6 ^b	0 ^{<i>b</i>}	

^aValues are means of at least two experiments. ^bDecrease in reactivation fold due to the toxicity of the compounds at high concentration.

Rotili D et al, PloS One 2014, 9, e96941

PB Arimondo's lab

Burkitt's lymphoma RAJI cells

C Effect of selected quinazolines 1, 7, 10 and 11 on human lymphoma U-937 and RAJI cell viability at 48 h.ª

compd	IC_{50} (mean ± SD, µM)			
oompa -	U-937	RAJI		
1	16.6 ± 3.8	21.1 ± 2.5		
7	14.7 ± 3.8	18.7 ± 4.3		
10	18.8 ± 1.2	19.7 ± 1.4		
11	4.4 ± 1.4	3.4 ± 0.3		
SGI	1.7± 1.1	9.1 ± 0.8		

Quinazolines DNMT3A inhibitors: effects in cancer cells

M Diederich's lab

Rotili D et al, PloS One 2014, 9, e96941

^aData represent the mean (± SD) of at least three independent experiments.

SGI-1027: an Attractive Molecule

Valente S et al, J Med Chem 2014, 57, 701-13

SGI-1027 Regioisomers: *References:* Nanoscale HTS vs DNMT1 SAH = 0.28 µM sinefungin = 7.4

sinefungin = $7.4 \mu M$

SGI analogs: nanoscale HTS

(%) unibition (%)

nhibition (%)

60

Valente S et al, J Med Chem 2014, 57, 701-13

nhibition (%)

60

40

Inhibition (%)

80

60

X Cheng's lab

(%) uoitiqiuu 40 20

Selectivity towards PRMT1 and GLP

	IC ₅₀ , μΜ	DNMT1-selectivity
1 (SGI)	139	4.0
2	300	5.8
4	300	1.1
5	300	33.3
10	100	3.0
11	>1000	>14.7

	IC ₅₀ , μΜ	DNMT1-selectivity
1 (SGI)	65	1.9
2	600	11.5
4	400	1.5
5	100	11.1
10	100	3.0
11	500	7.3

Valente S et al, J Med Chem 2014, 57, 701-13

Compound 5: mechanism of action

Valente S et al, J Med Chem 2014, 57, 701-13

PB Arimondo's lab

Histiocytic lymphoma U-937 cells

Valente S *et al*, *J Med Chem* 2014, *57*, 701-13

M Diederich's lab

Burkitt's lymphoma RAJI cells

Valente S *et al*, *J Med Chem* 2014, *57*, 701-13

Breast cancer MDA-MB-231 cells

Valente S et al, J Med Chem 2014, 57, 701-13

Prostate cancer PC-3 cells

Valente S et al, J Med Chem 2014, 57, 701-13

Toxicity and Selectivity

Periferal Blood Mononuclear Cells

	IC ₅₀ , μM (fold selectivity)						
cpd	PBMCs	U-937	RAJI	PC-3	MDA- MB-231		
1	23.8 ± 8.4	1.7 ± 1.1	9.1 ±0.8	6.5 ± 0.6	4.8 ± 1.6		
(SGI)		(14)	(2.6)	(3.7)	(5)		
C	15.2 ± 2.0	2.7 ± 0.9	26.5 ± 3.4	29.8 ± 1.8	7.4 ± 3.0		
2		(5.6)	(0.6)	(0.5)	(2)		
5	57 / + 0 3	4.3 ± 1.7	8.8 ± 0.4	6.6 ± 2.9	9.7 ± 1.5		
3	J1.4 ± 9.5	(13.3)	(6.5)	(8.7)	(6)		

Valente S et al, J Med Chem 2014, 57, 701-13
Compd 5 in U-937 and RAJI Cells: Necrosis vs Apoptosis

Antiproliferative and Cytodifferentiating Effects in Medulloblastoma Stem Cells

Histone covalent modifications

Acetylation/ deacetylation

Histone methylation/ demethylation

ADP-ribosylation

Ubiquitylation

Phosphorylation

a Heterochromatin

b Euchromatin

Main Actors in Epigenetics

The histone code

Fischle, W. et al., Curr. Opin. Cell Biol. 2003, 15, 172-183.

A second cross-talk: DNA methylation and histone code

The attachment of the 5-methylcytosine binding proteins (MBDs) to a methylated promoter results in the recruitment of HDACs

A crowded network of signals...

EPIGENETICS

Epigenetic therapy: the case of HDACi

silenced genes can be reactivated by HDACi, re-establishing selected programs for cell cycle arrest, differentiation, & apoptosis

Classification of HDACs

HDAC	cls	interactions	cellular localiz	tissue expression
HDAC1	I	DNMT1, ATM, BRCA1, MECP2, MYOD, p53, pRb, NF-κB	nuclear	ubiquit.
HDAC2	T .	DNMT1, BRCA1, pRb, NF-κB, GATA2	nuclear	ubiquit.
HDAC3	I.	pRb, NF-кB	nucl/cytopls	ubiquit.
HDAC8	I.	a-SMA	nucl/cytopls	ubiquit.
HDAC11	IV	HDAC6	nuclear (?)	tissue specific (?)
HDAC4	lla	14-3-3, MEF2, calmodulin	shuttling n/c	heart, muscle, brain
HDAC5	lla	14-3-3, MEF2, calmodulin	shuttling n/c	heart, muscle, brain
HDAC6	llb	tubulin, PP1, dynactin, HDAC11	nucl/cytopls	heart,liver,kidney,pancreas
HDAC7	lla	14-3-3, MEF2, calmodulin	shuttling n/c	placenta,pancreas,muscle
HDAC9	lla	14-3-3, MEF2, calmodulin	shuttling n/c	heart, muscle, brain
HDAC10	llb	PP1, LcoR	nucl/cytopls	liver, spleen, kidney
SIRT1	Ш	p53, Ku70, PPARγ, PGC1-α, NF-κB, FOXO, H3K9, H4K16	nucleus	brain, skel muscle, heart, kidney
SIRT2		α-tubulin, H4K16	cytoplasm	brain, skeletal muscle
SIRT3		AceCS2	mithocondria	ND
SIRT4	Ш	glutamate dehydrogenase	mithocondria	ND
SIRT5	III	cytochrome c, CPS1	mithocondria	ND
SIRT6	III	DNA pol β	nucleus	ND
SIRT7	III	RNA polymerase I	nucleulus	ND

Class I/II HDACi: clinical trial status

class	compd	[range]	HDAC specificity	clinical trials
short-chain fatty acids	H ₃ C O ⁻ Na ⁺ sodium butyrate	mM	class I, Ila	Phase I, II (colorectal)
	H ₃ C CH ₃ valproic acid	mM	class I, Ila	Phase I, II (AML, leukemias)
	$H_{3}C \xrightarrow{O} H_{3}C \xrightarrow{O} H_{3}C \xrightarrow{O} H_{3}C \xrightarrow{O} H_{3}C \xrightarrow{O} H_{3}C$ AN-9	μM	NA	Phase I, II

class	compd	[range]	HDAC specificity	clinical trials
hydroxamates	H ₃ C _N CH ₃ CH ₃ CH ₃ trichostatin A (TSA)	nM	class I, II	preclinical
	ыberoylanilide hydroxamic acid (SAHA, vorinostat)	μM	class I, II	FDA approved (oct 2006) for CTCL. Phase I, II, III
	РХD101 (belinostat)	μM	class I,II	FDA approved (Jul 2014) for PTCL. Phase I, II, III
	HO N LAQ824	nM	class I, II	Phase I
	Н СН ₃ LBH589 (panobinostat)	nM	class I, II	FDA approved (Feb 2015) for Mult. Myeloma. Phase I, II, III

class	compd	[range]	HDAC specificity	clinical trials
hydroxamates	givinostat	μM	class I, II	Phase I/II. Orphan drug (arthritis, polycytaemia)
	о oxamflatin	μM	NA	preclinical
	ксriptaid	μM	NA	preclinical
	H ₃ C _N СH ₃ SK7041	nM	HDAC1,2	NA
	С КТО68	nM	HDAC1,2	NA
	HOH ₂ C	μM	class IIb	NA

class	compd	[range]	HDAC specificity	clinical trials
cyclic tetrapeptides	trapoxin	nM	class I, Ila	preclinical
	H ₃ C H ₁ H ₃ C H	nM	HDAC1,3 not 8	preclinical
	CHAP1	nM	class I	preclinical
	FK-228 (romidepsin)	nM	class I	FDA approved (nov 2009) for CTCL. Phase I, II, III

class	compd	[range]	HDAC specificity	clinical trials
benzamides	MS275 (entinostat)	μM	HDAC1,2,3 marginally 8	Phase I, II (solid tumors and Iymphoma)
	$H_{3}C + N + NH_{2}$ $O + N + NH_{2}$ $O + N + C$ $O + C$ O	μM	NA	Phase I, II, III (solid tumors)
	MGCD101 (mocetinostat)	nM	HDAC1,2, marginally 3	Phase I, II (solid tumors and Iymphoma)
	Chidamide	μM	HDAC1,2,3 marginally 8	Approved in China (2014) for PTCL

Pharmacophore model for class I/II/IV HDACi

Mai, A. et al., Med. Res. Rev. 2005, 25, 261-309.

Hydroxamates: mechanism of action

Finnin, M.S. et al., Nature 1999, 401, 188-193.

Substrates and effects of HDAC inhibition

Cellular effects of HDACi

HDACi-induced biological effects

HDAC and **Cancer**

Mechanism-based utility of HDACi: combination treatment

Glaser, K.B. Biochem. Pharmacol. 2007, 74, 659-671.

HDACi: opened questions

- Which is the role of different HDAC enzymes in different diseases (not only cancer) ?
- Is class/subunit specificity an advantage or will pan-inhibitors be more successful ?
- ✤ Is the future of HDACi in combination therapies ?

Sirtuins as potential therapeutic targets

- Sensors of cell metabolic state (NAD+, nicotinamide levels)
- Mediate caloric restriction (CR) health/survival beneficial effects also in mammals
- Delay aging and prolong lifespan in non-mammalian species
- In humans regulate: cell survival under stress
 - neuro/cardioprotection
 - metabolism (\uparrow insulin secretion, \downarrow adipogenesis, etc.)

Sirtuins' activators \prec

Age-related diseases

(diabetes, neurodegeneration, heart failure, etc...)

Metabolic disorders (obesity, atherosclerosis, etc...)

- **Upregulated** in some tumor types (SIRT1/3/7)
- Tumor suppressor proteins (p53, etc.) inactivation, oncoprotein (BCL6) activation
- Anti-apoptotic (E2F1, FOXO3a, Ku70, etc.), anti-differentiation (BCL6) activities
- Cell cycle progression, chromosomal stability, DNA repair (SIRT1/2/6)
- Skeletal muscle differentiation block (SIRT1)
- Tat-dependent HIV-1 transcription promotion (SIRT1)

Mechanism for the Sirtuin-Catalysed Deacylation Reaction

Sirtuins: Not Only Deacetylases

Sirtuins and Metabolic Diseases

Dissecting the Biological Roles of Sirtuins

Sirtuin Modulators

Sirtuin Activating Compounds (STACs)

Sauve AA *et al*, *Mol Cell* **2005**, 17, 595-601 Baur JA *et al*, *Nature* **2006**, 444, 337-342 Milne JC *et al*, *Nature* **2007**, 450, 712-716 Nayagam VM *et al*, *J Biomol Screening* **2006**, 11, 959-967 Mai A *et al*, *J Med Chem* **2009**, 52, 5496-5504

HDAC inhibitors: our experience

selective

cinnamyl anilides	
s: sub-uM/nM range	

IC₅₀s: sub-μM/nM range differentiation: >80% (U937 cells)

0

Med Chem 2005

Minucci S *et al,* PCT Int. Appl. 2006, WO 2006037761 Mai A *et al*, PCT Int. Appl. 2007, WO 2007113249 *J Med Chem* 2010

IC ₅₀ , μΜ					
HCT116	A549	K562			
0.26	0.59	0.18			
0.07	0.32	0.05			
0.21	0.60	0.13			
0.07	0.22	0.04			
0.43	1.28	0.37			
0.56	1.35	0.54			
0.32	1.51	0.33			
	HCT116 0.26 0.07 0.21 0.07 0.43 0.43 0.56 0.32	ILINIHCT116A5490.260.590.070.320.210.600.070.220.431.280.561.350.321.51			

DAC60

In vivo efficacy in papilloma induced mouse model

Pharmacophore model for HDACi

Miller TA et al, *J Med Chem* 2003, *46*, 5097-116 Mai A *et al*, *Med Res Rev* 2005, *25*, 261-309 Mai A, *Expert Opin Ther Targets* 2007, *11*, 835-51 Paris et al, *J Med Chem* 2008, *51*, 1024-40 IC₅₀s = low nM range apoptosis: >80% (U937 cells) differentiation: >40% (U937 cells)

Bioorg Med Chem Lett 2005, 2007, 2008 J Med Chem 2006 FEMS Yeast Res 2007

SIRT inhibitors: our experience

sirtinol analogues X = CONH, NHCO, SO₂NH, SO₂CH₂, SCH₂

IC₅₀s = low μM range apoptosis: >70% (U937 cells) differentiation: >50% (U937 cells)

Grozinger CM *et al, J Biol Chem* 2001, *276*, 38837-43

Mai A *et al, J Med Chem* 2005, *48*, 7789-95 Sinclair DA and Mai A, PCT (2007) WO-2007084162 Fraga MF *et al, Oncogene* 2009, *28*, 781-791

MOLT-4 Antiproliferative Assays

M. Fraga's lab

	CC ₅₀ , μΜ			
compd	CRC CSCs		GBM CSCs	
	CRO	1.1	30P	30PT
2b	6.7 ± 1.2	$\textbf{9.7}\pm\textbf{3.1}$	41.0 ± 5.2	$\textbf{36.5} \pm \textbf{2.5}$
4b	14.5 ± 1.2	20.0 ± 2.8	15.5 ± 1.9	15.6 ± 3.6
5b	ND ^c	23.4 ± 0.6	35.0 ± 1.9	ND
6a	$\textbf{15.7} \pm \textbf{1.0}$	19.5 ± 0.7	17.4 ± 1.7	$\textbf{15.3} \pm \textbf{3.1}$
6c	ND	34.0 ± 2.2	30.2 ± 1.8	ND
EX-527	20% inhibition ^b	no inhibition ^b	10% inhibition ^b	20% inhibition ^b
AGK-2	50% inhibition ^b	50% inhibition ^b	$\textbf{12.5} \pm \textbf{0.5}$	9.6 ± 1.0

^{*a*}Values are means of three experiments. ^{*b*}At 50 μM. ^{*c*}ND, not detected.

Benzooxadeazaflavins (BDF4s)

	CC ₅₀ , μΜ			
compd	CRC CSCs		GBM CSCs	
	CRO	1.1	30P	30PT
1	$\textbf{7.0} \pm \textbf{0.6}$	$\textbf{5.5} \pm \textbf{0.7}$	$\textbf{4.9} \pm \textbf{0.2}$	$\textbf{3.9}\pm\textbf{0.7}$
2a	$\textbf{75.4} \pm \textbf{11.9}$	$\textbf{33.5} \pm \textbf{10.7}$	34.2 ± 4.6	$\textbf{33.4} \pm \textbf{2.8}$
2b	$\textbf{23.6} \pm \textbf{2.6}$	14.9 ± 2.1	15 ± 1.7	15.6 ± 6.0
2d	9.6 ± 0.5	8.5 ± 0.4	6.6 ± 1.2	5.0 ± 3.8
EX-527	20% ^a	NI ^{a,b}	10% ^a	20% ^a
AGK-2	50% ^a	50% ^a	12.5 ± 0.5	9.6 ± 1.0

^aInhibition at 50 µM; ^bNI, no inhibition

1,4-Dihydropyridines (DHPs)

mouse C2C12 myoblasts, 16 h

Compound 1c

С

Wild Type

Mutant

250

Promoter activity (% vs ctr) 00 00 00 00 00

0

0

*

12.5

25

50

100

.

E. De Fabiani's lab

0.78

Mai, A. et al., J Med Chem 2009, 52, 5496-5504

SIRT activators

SirT1 activity (HaCat cells)

Normal and Pathological Wound Healing

% NO release (HaCat cells, 1h)

C. Gaetano's lab

SirT1 Activation Promotes Skin Repair

Sirtinol

COOEt

3a

3a

Valente S et al, J Med Chem 2016, 59, 1471

HATs and cancer: a potential role

НАТ	family	target	involvement in cancer
GCN5	GCN5/PCAF	H2B, H4, cMyc	Critical regulator of cell cycle and cMyc
PCAF	GCN5/PCAF	H3, H4, cMyc, p53, MyoD, E2F	Critical regulator of cell cycle, p53, E2F, and cMyc
CBP, p300	p300/CBP	H2A, H2B, H3, H4, pRb, E2F, p53, c-Myb, MyoD, AR, FoxO	Translocation: MOZ/MORF/MLL- p300/CBP fusions <i>Mutation</i> : biallelic mutation p300 epithelial cancer <i>Inactivation:</i> heamatological malignancy
TIP60	MYST	H2A, H3, H4, cMyc, AR	Association with AR in prostate cancer
MOZ	MYST	H3, H4	Fusions with p300/CBP and TIF2
MORF	MYST	H3, H4	Fusions with p300/CBP
ACTR	SRC	H3, H4	Upregulation in breast cancer correlates with resistance to tamoxifen

HAT inhibitors

Balasubramanyam, K. *et al.*, *J. Biol. Chem.* **2003**, *278*, 19134-19140. Balasubramanyam, K. *et al.*, *J. Biol. Chem.* **2004**, *279*, 33716-33726. Balasubramanyam, K. *et al.*, *J. Biol. Chem.* **2004**, *279*, 51163-51171.

Histone Methyltransferases

Methylation vs Demethylation

HMTs and Cancer

НМТ	Target	Involvement in Cancer
MLL	Н3К4	Tumor promotion Translocation, amplification, tandem duplication >50 different MLL fusions
EZH2	H3K27	Tumor promotion. Cell cycle defects Overexpression in breast, prostate, gastric, bladder, endometrial cancer, CRC, HCC, lymphoma, melanoma
SMYD3	Н3К4	Tumor promotion. Cell cycle defects Overexpression in breast cancer, CRC, HCC
hDOT1L	H3K79	Tumor promotion. Transcription regulation Leukemogenesis in association with AF10 fusion proteins
SUV39H1	H3K9; HP1, pRb, E2F, HDAC	Tumor promotion. Cell cycle defects Overexpression in colon cancer. B cell lymphoma in KO mice
RIZ1	H3K9; pRb	Tumor suppression Mutated/downregulated in liver, breast and gastric cancer
PRMT1	H4R3; STAT1	Acts with p300 in activation of NR transcription; increases the response to IFN
PRMT4/ CARM1	H3R2; H3R17; H3R26	Cooperates with p300 in activation of NR transcription
PRMT5	H2A, H4, cyclin E	Negatively regulates proliferation

PRMT inhibitors

HKMT inhibitors

EZH2 - Enhancer of Zeste Homolog 2

Gain-of-function mutations

DLBCL: Diffuse large B-cell lymphoma; FL: Follicular lymphoma; MDS: Myelodysplastic syndrome.

Tan Jin-Zhi et al. Acad Pharm Sin 2014, 35, 161-174 McCabe MT., Creasy C.L. Epigenomics 2014, 6, 341-351 Yap, D. B. et al. Blood 2011, 117, 2451-2459 Bowen, X. et al. *Experim Hematol* 2015, 43, 698-712

Catalytic Inhibitors of EZH2

HMT inhibitors: our experience Epigenetic Multiple Ligands (*Epi*-MLs)

PRMT inhibition: 60-80% at 50 μ M HKMT inhibition: 60-80% at 25 μ M HAT inhibition: 70-100% at 50 μ M SIRT inhibition: 60-100% at 25 μ M

OH

HAT inhibitor

Mai A *et al, ChemMedChem* 2007, *2*, 987-991

Mai A et al, J Med Chem 2008, 51, 2279-90

U937 cells, 30h

Mai A et al, J Med Chem 2008, 51, 2279-90

CARM1-selective inhibitors

Cheng D et al, J Med Chem 2011, 54, 4928-32

Against a panel of HKMTs...

	IC ₅₀ , μΜ			
compa	PR-SET7	G9a	SET7/9	
4	9.0	>250	>250	
5	3.3	>250	>250	
6	38.8	>250	>250	
7	>250	>250	>250	
8	>250	>250	>250	
9	10.2	>250	>250	
10	2.6	>250	164.4	

compd	EZH2, IC ₅₀ μΜ
4	74.9
5	8.7% @ 75 μM
9	313.8
10	6.2% @ 75 μM
SAH	66.8

Palacios D *et al*, *Stem Cell Stem* **2010** Valente S *et al*, *Biochimie*, **2012**

Pyrazole-based EZH2 Inhibitors: SAR Study

MC3629: Antiproliferative Activity (MTT) in Cancer Cells

Tafani's lab

MC3629: Autophagy Induction

SK-N-BE, 4 days

Tafani's lab

MC3629: Target Modulation

Tafani's lab

MC3629: Antiproliferative Activity (MTT & PCNA) in mMB10 Cancer Stem Cells

Ferretti's lab

Effects of MC3629 on PARP Cleavage and Clonogenic Activity in mMB10 Cancer Stem Cells

PARP-c

PARP cleavage

istituto italiano di tecnologia

MC3629

Ferretti's lab

Effect of MC3629 in the DAOY MB-SHH Mouse Model

Pyrrole-based EZH2 Inhibitors

Pyrrole-based Series: SAR Studies

Pyrrole-based Series: Antiproliferative Activities in Leukemias

Altucci's lab

Altucci's lab

Pyrrole-based Series: Antiproliferative Activity in Breast Cancer

Legend 1= ctr 2= gsk126 20 µM 3= mc3707 4= mc3777 5= mc3740 6= mc3784 7= mc3758 8= mc3861 9= mc3871 10= mc3872 11= mc3887

HN

Altucci's lab

12= mc3859

Pyrrole-based Series: Antiproliferative Activity in Kelly Neuroblastoma Cells

Pyrrole-based Series: Antiproliferative Activity in SH-SY5Y Neuroblastoma Cells

Histone Demethylases

- Promoters, active genes
- Heterochromatin, repressed genes
- Enhancer
- Elongation

Lysine Specific Histone Demethylase 1 (LSD1) and -2 (LSD2)

Shi Y et al. Cell 2004, *119*, 941-53. Karytinos A et al. J Biol Chem. 2009, *284*, 17775-82.

LSD1 Inhibitors

Huang Y, et al. Proc. Natl. Acad. Sci. 2007, 104, 8023-8028.

Kahl P, et al. Cancer Res. 2006,66,11341-11347.

Tranylcipromine derivatives

tranylcipromine

LSD1 inhibitors

	∕́.″NH₂		NH ₂		NH ₂		7.'					
(<i>R</i> ,S)-(-)	-PCPA	(<i>S,R</i>)-(+)-I	РСРА	(<i>R</i> , <i>R</i>)-(-)-	PCPA	(<i>S,S</i>)-(+)-P	CI					
			Κ _i , μΜ									
	CO	npa	LSD1	LSD2	MAO-A	MAO-B						
	(±)-t	PCPA	271	186	19	16						
	(+)-t	PCPA	284	137	ND	4.4						
	(-)-tF	PCPA	168	127	ND	89						
	(+)-c	PCPA	364	131	ND	39						
	(-)-C	PCPA	506	68	ND	50						
	(+)-Br	-tPCPA	58	66	ND	0.4						
	(-)-Br-	-tPCPA	28	82	ND	2.3						
	(+)-Br-	-cPCPA	23	61	ND	0.7						
	(-)-Br-	cPCPA	44	21	ND	1.9						

Binda C et al, J. Am. Chem. Soc. 2010, 132, 6827-33

Binda C et al, J. Am. Chem. Soc. 2010, 132, 6827-33

Binda C. et al., J. Am. Chem. Soc. 2010, 132, 6827-6833.

MAOB + 14e

G9a and LSD1

Polypharmacology Approach

For the treatment of multifactorial disease, modulation of multiple targets may result in a synergistic effect.

A single molecule with dual activity may have a superior pharmacokinetic and safety profile compared to multiple molecules administered in combination.

Anighoro A. et al., J. Med. Chem. 2014, 57, 7874

Rational Project

The binding of LSD1 with the substrate is based on electrostatic interactions due to the presence of negatively charged residues into the active site. We selected quinazoline based derivatives, previously discovered as G9a/GLP inhibitors, equipped with positively charged substituents.

SAR for G9a Inhibition

Preliminary SAR for LSD1 Inhibition

Speranzini V et al, Sci Adv 2016, 2, e1601017

MC3774: Binding Modes

X. Cheng, Emory University School of Medicine, Atlanta, USA

A. Mattevi, University of Pavia

MC3767: Binding Mode

Biological data of MC3774 in MV4-11 cell line

LSD1 and G9a Enzymatic Assays: Effect of C2-substitution (1)

MC3774: Kd vs LSD1 = 0.24 \pm 0.05

LSD1 and G9a Enzymatic Assays: Effect of C2-substitution (2)

LSD1 and G9a Enzymatic Assays: C4-substitution (1)

Cpd	R ₂	Kd LSD1 (µM)	IC ₅₀ G9a (µМ)
MC4059		0.07 ± 0.006	56.7
MC4060	HN	0.25 ± 0.03	9.13
MC4027	HN	1.49 ± 0.16	4.90
MC3997	HN N Boc	0.08 ± 0.01	52.9
MC4004	HN	1.56 ± 0.14	5.69
MC4103	HN	0.08 ± 0.01	3.73
MC4118		0.11 ± 0.02	14.1
MC4129	HN	0.23 ± 0.03	ND

MC3774: Kd vs LSD1 = 0.24 \pm 0.05

LSD1 and G9a Enzymatic Assays: C4-substitution (2)

MC3774: Kd vs LSD1 = 0.24 \pm 0.05

LSD1 and G9a Enzymatic Assays: C7-substitution

MC3774: Kd vs LSD1 = 0.24 \pm 0.05

Antiproliferative Effect in Leukemia Cells (1)

Antiproliferative Effect in Leukemia Cells (2)

THP-1 cells, 1 µM

Antiproliferative Effect in Leukemia Cells (3)

THP-1 cells, 0.2 μM

■ 24 H ■ 48 H ■ 72 H

MC4114 K_d LSD1=0.08 IC₅₀ G9a = 1.25 μM

Conclusions

Compounds that Showed LSD1 Selective Inhibitory Activity

Compounds that Showed LSD1/G9a Dual Inhibitory Activity

Jumonji = Cruciforme

Wild-Type

Jumonji-Mutant

The Jumonji Family

			H3K4		H3K9		H3K27		H3K36		6	H4K20		0			
			me1	me2	me3	me1	me2	me3	me1	me2	me3	me1	me2	me3	me1	me2	me3
KDM1A	LSD1	AOF2															
KDM1B	LSD2	AOF1															
KDM2A	FBXL11	JHDM1A															
KDM2B	FBXL10	JHDM1B															
PHF2		JHDM1E															
PHF8		JHDM1F															
KDM3A	JMJD1A	JHDM2A															
KDM3B	JMJD1B	JHDM2B															
	JMJD1C	JHDM2C															
KDM4A	JMJD2A	JHDM3A															
KDM4B	JMJD2B	JHDM38															
KDM4C	JMJD2C	JHDM3C															
KDM4D	JMJD2D	JHDM3D															
KDM4E	JMJD2E																
KDM5A	JARID1A	RBBP2															
KDM5B	JARID1B	PLU-1															
KDM5C	JARID1C	SMCX															
KDM5D	JARID1D	SMCY															
KDM6A	UTX																
KDM6B	JMJD3																
KDM6C	UTY																
KDM7A		JHDMID															
KDM8	JMJD5																

effective substrate replicated in vitro using histone tail peptide not replicated in vitro with histone tail peptide, only detected in cells binds this residue, may provoke a switch in substrate specificity effective substrate replicated in vitro only when using intact nucleosomes weak substrate affinity replicated in vitro using histone tail peptide

Catalytic mechanism of Jumonji enzymes

JmjC Inhibitors

A TCA Cycle Intermediates and 2OG Mimetics

B Hydroxamic Acids and Daminozide

HN

C Pyridine Derivatives

N; NH

50

E Zinc ion extruders

disulfiram

ebselen
Pan-KDM inhibitors

Figure 1. Structures of pan-demethylase inhibitors 1-6 described here and single-family target inhibitors 7-9.

	IC ₅₀ , µM										
compd	LSD1 (KDM1)	MAO-A	MAO-B	FBXL11 (KDM 2/7)	JMJD1A (KDM3)	JMJD2C (KDM4)	JMJD2E (KDM4)	JARID1C (KDM5)	JMJD3 (KDM6)	FIH	PHD2
1	2.2	35.4	47.0	0.22	0.14	0.07	0.42	0.19	2.7	>100	278
2	<1	<1	43.3	12.2	37	2.7	16	8.5	76		
3	<1	8.9	81.0	7.8	31	1.2	3.9	26	27	25	8.5
4	<1			12	12	4.5	5.5	35	18		
5	1.6			8.2	9.7	3.1	3.5	21	14		
6	1.0			12	9.1	2.5	5.1	37	16		
7	2.1	4.5	2.5	>100	>100	>100	>100	>100	>100		
8	>100			4.8	1.1	3.5	5.0	0.03	11.2		
9	ND^{b}			15	0.17	0.6	0.3	25	0.14		

Table 1. Inhibition of Lysine-Specific Demethylase 1, Monoamine Oxidases, Jumonji C, and Other 2-Oxoglutarate-Dependent Enzymes by Pan-Demethylase Inhibitors $1-6^{a}$

^{*a*}The KDM subfamily of each demethylase enzyme is shown in parentheses. Family-specific target inhibitors 7–9 were used as reference compounds. Inhibition assays were performed in duplicate. The errors in determinations of IC_{50} are within ±10% of their values. ^{*b*}ND, not detectable. Compound 9 interferes with the peroxidase used in the coupled enzymatic assay and the inhibition could not be reliably measured.

_OH · HCI ÓH 7 R = H9 8a R = CH₃

HCI · HCI ÓН 3 2

HCT116 cells, 48h

3

7

8

7 + 8

2

0 +

CTR

Epi-drugs in non-cancer diseases

HDACi in C. albicans infection

HDACi in HIV-1 infection

HDACi in *P. falciparum* infection

Epi-drugs in neurodegenerative diseases

HDACi in C. albicans infection

Effect on trailing growth in *C. albicans* strains

Effect on fluconazole-induced resistance in *C. albicans*

Mai A *et al, Bioorg Med Chem Lett* 2007, *17*, 1221-5 Simonetti G *et al, FEMS Yeast Res* 2007, *7*, 1371-80

Simonetti G et al, FEMS Yeast Res 2007, 7, 1371-80

MC1716 MC1637

MC1641

Inhibition of *C. albicans* (ATCC 10231 strain) adhesion to human cultured pneumocytes (A459 cells).

MC1714

Simonetti G et al, FEMS Yeast Res 2007, 7, 1371-80

MC1637

neg ctr

HDACi in HIV-1 infection

Savarino A et al, Retrovirology 2009, 6:52.

	EC	₅₀₀ , μΜ	CC ₅₀ ,	CC ₅₀ , μΜ		
compd	U1	ACH-2	U1	ACH-2		
MS-275	0.53	0.10	>1	0.25		
SAHA	0.55	0.65	>1	0.99		
MC2113	0.57	0.31	>1	0.80		
MC2211	0.54	0.80	>1	1.19		

Savarino A et al, Retrovirology 2009, 6:52.

HDACi in P. falciparum infection

- $\begin{array}{cccc} & \textbf{7} & (R = BzO, R_1 = 4-biPh) \\ \textbf{8} & (R = 4-Br-Ph, R_1 = 4-biPh) \\ \textbf{9} & (R = Ph-CH=CH, R_1 = 8-quinolinyl) \\ \textbf{11} & (R = PhCH=CH, R_1 = Bz) \\ \textbf{12} & (R = 2-indolyl, R_1 = Bz) \\ \textbf{13} & (R = 4-NMe_2-Ph, R_1 = 8-quinolinyl) \end{array}$
 - **14** (R = 2-indolyl, $R_1 = 8$ -quinolinyl)

2-aminosuberic acid (AS)-based compounds

Compound	<i>Ρ. falcipa</i> μΙ	<i>rum</i> IC ₅₀ , M	mammalian	selectivity index ^{a)}			
Compound	CQ-	CQ-		CQ-	CQ-		
	sensitive	resistant	iC ₅₀ , μινι	sensitive	resistant		
AS-based (7)	0.029 ^{b)}	0.105 ^{c)}	2.2 ^{d)}	76	21		
AS-based (8)	0.022 ^{b)}	0.041 ^{c)}	0.19 ^{d)}	9	5		
AS-based (9)	0.015 ^{b)}	0.039 ^{c)}	1.24 ^{d)}	83	32		
AS-based (11)	0.034 ^{b)}	0.102 ^{c)}	4 ^{d)}	118	39		
AS-based (12)	0.034 ^{b)}	0.063 ^{c)}	1.26 ^{d)}	37	20		
AS-based (13)	0.019 ^{b)}	0.071 ^{c)}	0.57 ^{d)}	30	8		
AS-based (14)	0.013 ^{b)}	0.033 ^{c)}	0.337 ^{d)}	26	10		
^{a)} Calculated as IC ₅₀ of mammalian cells/IC ₅₀ of <i>P. falciparum</i> ratio. ^{b)} 3D7 strain. ^{c)} Dd2 strain. ^{d)} NFF cell line.							

Andrews KT et al, Antimicrob Agents Chemother 2008, 52, 1454-1461.

WR compounds

WR301801 (R = H) WR308298 (R = N(Me)CH₂CH₂OH) WR308291 (R = OCH₃)

	P. falciparu	<i>m</i> IC ₅₀ , μM	mammalian	selectivity index ^{a)}			
compound	CQ-	CQ-	cell activity	CQ-	CQ- resistant		
	sensitive	resistant	IC ₅₀ , μΜ	sensitive			
10c	0.017 ^{b)}	0.032 ^{c)}	0.8 ^{d)}	47	25		
WR301801	0.0008 ^{b)}	0.0016 ^{c)}	0.6 ^{e)}	750	375		
WR308298	0.0008 ^{b)}	0.001 ^{c)}	0.54 ^{e)}	675	540		
WR308291	0.0009 ^{b)}	0.0012 ^{c)}	3.2 ^{e)}	3556	2667		
^{a)} Calculated as IC ₅₀ of mammalian cells/IC ₅₀ of <i>P. falciparum</i> ratio. ^{b)} D6 strain. ^{c)} W2 strain. ^{d)} SU 86.86 strain. ^{e)} RAW strain.							

Chen Y *et al, J Med Chem* 2008, *51,* 3437-3448. Dow GS *et al, Antimicrob Agents Chemother* 2008, *52,* 3467-3477.

HDACi in neurodegenerative diseases

1. Huntington Disease

50 0

4

8

10

Age in weeks

12

R6/2

Q48 transgenic flies SAHA = $2 \mu M$ NaB = 100 mM

Steffan JS et al, Nature 2001, 413, 739-743.

Transgenic R6/2 mice RotaRod latency assay

Hockly E et al, PNAS USA 2003, 100, 2041-2046.

Wong JC *et al, JACS* 2003, *125*, 5586-7. Mai A *et al, Bioorg Med Chem Lett* 2008, *18*, 2530-5.

2. Friedreich's ataxia

HDAC inhibition (IC₅₀, HeLa extract): 14 to >500 μ M Fold change in *FXN* mRNA: 1.4 to 3.1

Herman D et al, Nat Chem Biol 2006, 2, 551-558.

Chou CJ *et al, J Biol Chem* 2008, 283, 35402-9. Xu C *et al, Chem Biol* 2009, 16, 980-9.

HDAC inhibition IC₅₀, μM after 3h incubation: 0.15 (HDAC1); 0.76 (HDAC2); 0.37 (HDAC3); 5.0 (HDAC8); >180 (HDAC4,5,7)

Fold change in *FXN* mRNA: 2 (after 24 h) >5 (1-2 h after removal)

3. Parkinson Disease

IC₅₀s: >50 μ M (SIRT1); 3.5 μ M (SIRT2); >50 μ M (SIRT3)

Outeiro TF et al, Science 2007, 317, 516-519