Progress test 1

Multiple choice questions

1) Sodium:

- is an alkaline metal OK
- is a halogen
- has no lone pairs
- has 1 lone electron shared in covalent bonds

2) Nitrogen:

- belongs to the $3^{\text {rd }}$ group
- has a bit of electronegativity
- has 3 lone electrons OK
- can make 3 coordination bonds

Multiple choice questions

3) A certain atom A is bound to Cl : how strong is its ionic nature?

- It is always not ionic
- it is stronger whenever A's electronegativity is strong
- it is stronger whenever A's electronegativity is small OK
- it is independent of A's electronegativity

4) Two equal volume cylinders are filled up with two different ideal gases at the same T : what happens?

- P is higher for the gas with higher FW
- the ratio $\mathrm{P}_{\text {gas } 1} / \mathrm{P}_{\text {gas } 2}$ cannot be calculated, it must be measured
- the two gases have the same P
- the ratio $\mathrm{P}_{\text {gas }} / \mathrm{P}_{\text {gas } 2}$ depends on the ratio between their FW OK

Multiple choice questions

5) The mole fraction of a gaseous mixture:

- is equal to $\% \mathrm{v}$, up to a factor of 100 OK
- is equal to $\% \mathrm{w}$, up to a factor of 100
- is the ratio between the mass in g of the gas and the total mass of the mixture
- is independent of the partial pressure

$$
\% \mathrm{v}=1 \mathrm{ml} / 100 \mathrm{ml} \quad \text { so } \quad x_{1}=\mathrm{n}_{1} / \mathrm{n}_{\mathrm{tot}}
$$

In a mixture the molar volume is defined:

$$
\mathrm{V}_{1}=\mathrm{V}_{\text {tot }} x_{1} \quad \text { hence } \quad x_{1}=\mathrm{V}_{1} / \mathrm{V}_{\text {tot }}
$$

Exercise 6

- 0.93 g of a certain gas fill up a volume of 250 ml at 700 mmHg and $27^{\circ} \mathrm{C}$. Calculate the FW

$$
\mathrm{FW}=\frac{g R T}{P V}=\frac{0.93 \times 0.082 \times 300}{0.921 \times 0.25}=99.356
$$

Exercise 7

- A mixture of 50 g of O_{2} and 50 g of CO is filling in a box at 600 mmHg . Which is the partial pressure of each gas in atm?

$$
\begin{array}{ll}
\mathrm{n}_{\mathrm{O} 2}=50 / 32=1.56 ; & \mathrm{n}_{\mathrm{CO}}=50 / 28=1.79 \\
\mathrm{n}_{\text {tot }}=1.56+1.79=3.35 & \\
\mathrm{x}_{\mathrm{O} 2}=1.56 / 3.35=0.466 ; & \mathrm{x}_{\mathrm{CO}}=1-0.466=0.534 \\
\mathrm{P}_{\mathrm{CO}}=\mathrm{P}_{\mathrm{tot}} \mathrm{x}_{\mathrm{CO}}=0.789 \cdot 0.534=0.421 \mathrm{~atm} \\
\mathrm{P}_{\mathrm{O} 2}=\mathrm{P}_{\mathrm{tot}}-\mathrm{P}_{\mathrm{CO}}=0.789-0.421=0.368 \mathrm{~atm}
\end{array}
$$

Exercise 8

- A solution of Nitric acid is concentrated 0.2 M . Calculate the molar concentration of the solution obtained after diluting 100 ml of this first solution with water up to a final volume of 500 ml .

$$
C_{2}=\frac{C_{1} V_{1}}{V_{2}}=\frac{0.2 \times 0.1}{0.5}=0.04 \mathrm{M}
$$

Exercise 9

- 100 ml of HCl 0.5 N are mixed with 150 ml of HCl 0.1 N . Calculate the normality of the resultant solution.

$$
C_{f n}=\frac{C_{1} V_{1}+C_{2} V_{2}}{V_{1}+V_{2}}=\frac{(0.5 \times 0.1)+(0.1 \times 0.15)}{0.25}=0.26 \mathrm{~N}
$$

Exercise 10

- Calculate the molar concentration of a solution 3 molal of ammonia, whose density is $0.98 \mathrm{~g} / \mathrm{ml}$.

Molality $=\mathrm{mol}_{\text {solute }} / 1 \mathrm{Kg}$ solvent \Rightarrow a 3 m solution has 3 mol of NH_{3} in 1 Kg of water

How many grams are contained in $3 \mathrm{~mol} ? n \cdot \mathrm{FW}=3 \cdot 17=51 \mathrm{~g}$
Hence the weight of the solution is: $\mathrm{g}_{\mathrm{NH} 3}+\mathrm{g}_{\mathrm{H} 2 \mathrm{O}}=51+1000=1051 \mathrm{~g}$

The density is needed to convert mass into volume, using a proportion

$$
980 \mathrm{~g}: 1 l=1051 \mathrm{~g}: \mathrm{V} l \quad \Rightarrow \mathrm{~V}=1051 / 980=1.072 l
$$

$$
\mathrm{M}=\mathrm{n} / \mathrm{V}=3 / 1.072=2.798 \mathrm{M} \cong 2.8 \mathrm{M}
$$

