PROGRESS TEST 2

1) Which of the following solutions has the highest boiling point?

-NaCl 0.1m

- -HCl 0.2m
- $-K_2SO_4 0.1m$
- -Glucose 0.2m

2) When does an osmotic equilibrium take place between two solutions separated by a semi-permeable membrane?

- -In case the two solutions have the same molar concentration
- -In case the two solutions have the same osmolar concentration
- -In case the two solutions have the same molality

-In case the two solutions have the same ionic strength

3) How does the solubility of a gas into a liquid vary?

- It is always the same for all the gases
- it depends on the pressure of the gas over the liquid
- it is independent of the solvent's nature
- it is independent of the pressure of the gas over the liquid

4) Given the reaction: N_2 +3 $H_2D_2NH_3$, how can this equilibrium be reached in a closed flask of 1L at 500°C?

- Only if there are stoichiometric amounts of N_2 , H_2 and NH_3

- In case there is only NH₃
- in case there is only $N_{\rm 2}$
- in case there is only H_2
- 5) On which parameter does Kc depend?
 - Pressure
 - Concentration of reagents
 - Temperature
 - None of the above
- 6) What is the molar concentration of a solution prepared by diluting with water 0.5ml of a commercial solution of ammonia (NH₃, 30%w, d=0.91g/ml) up to a volume of 250ml?
- 7) 0.743g of a covalent compound are dissolved in 150ml of water at 15°C. This solution has π =1.535atm, calculate the formula weight of the compound.
- 8) 1L of a solution of glucose (FW=180) exerts π =2.7atm. Once 3g of NaCl (FW=58) are added to this solution, the osmotic pressure doubles. How many grams of glucose were in the first solution?
- 9) 2mol of PCl₅ are heated in a volume of 2L. At equilibrium, 40% of PCl₅ has dissociated in PCl₃ and Cl₂. Calculate Kc. PCl₅ <->PCl₃ + Cl₂
- 10) 3 mol of SO₂ and 1.5 mol of O₂ are mixed in an empty cylinder of 2L at 1350K. When the reaction $2SO_2+O_2 D 2SO_3$ reaches the equilibrium, there are 0.9 mol of O₂. Calculate Kc.