Acid and Basic compounds

A few definitions

- An acid compound is capable of releasing protons in solution

$$
\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{~A}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}
$$

- A basic compound is capable either of binding free protons or of releasing hydroxyl ions

$$
\begin{aligned}
& \mathrm{B}+\mathrm{H}_{3} \mathrm{O}^{+} \leftrightarrows \mathrm{BH}^{+}+\mathrm{H}_{2} \mathrm{O} \\
& \mathrm{~B}(\mathrm{OH}) \leftrightarrows \mathrm{B}^{+}+\mathrm{OH}^{-}
\end{aligned}
$$

Relative strength of acids and bases

- In aqueous solutions, we can calculate the strength of acid and basic compounds with respect to their propensity of either donating or accepting protons from water
- The value of the equilibrium constant will tell us how strong is a compound with respect to water
- Water has both characteristics of an acid and of a base: $2 \mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}$
- Its equilibrium constant at $25^{\circ} \mathrm{C}$ is

$$
\mathrm{Kw}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=10^{-14}
$$

Relative strength of acids and bases

- Given that $\mathrm{Kw}=10^{-14}$, and given that the stoichiometric coefficients of protons and hydroxyls are equal \rightarrow $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]=10^{-7} \mathrm{M}$
- Hence we can build a unit of measurements based on water's characteristics: the pH

$$
\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]
$$

- If the protons concentration in solution equals the hydroxyls concentration $\rightarrow \mathrm{pH}=7.0$
- If $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]>\left[\mathrm{OH}^{-}\right]>10^{-7} \mathrm{M} \rightarrow \mathrm{pH}<7.0$
- If $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]<\left[\mathrm{OH}^{-}\right]<10^{-7} \mathrm{M} \rightarrow \mathrm{pH}>7.0$

How can we calculate the pH value of a given solution?

- In case the solution contained a strong acid:

$$
\mathrm{AH} \rightarrow \mathrm{~A}^{-}+\mathrm{H}^{+} \quad \rightarrow \mathrm{C}_{\mathrm{a}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]
$$

$\rightarrow \mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log \mathrm{C}_{\mathbf{a}}$

- In case a solution contained a strong base:

$$
\mathrm{B}(\mathrm{OH}) \rightarrow \mathrm{B}^{+}+\mathrm{OH}^{-}
$$

$$
\rightarrow \mathrm{C}_{\mathrm{b}}=\left[\mathrm{OH}^{-}\right]
$$

$\rightarrow \mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]=-\log \mathrm{Cb} \quad \rightarrow \quad \mathrm{pH}=14-\mathrm{pOH}$

How can we calculate the pH value of a given solution?

- In case a solution contained a weak acid $\left(\mathrm{Ka}<10^{-4}\right)$
$\mathrm{AH}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{A}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \rightarrow \mathrm{Ka}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right] /[\mathrm{AH}]$
But $\left[\mathrm{A}^{-}\right]=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \rightarrow K_{a}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2}}{C_{a}}$
$\left[\mathbf{H}_{3} \mathrm{O}^{+}\right]=\sqrt{ } \mathrm{KaCa} \quad \rightarrow \quad \mathbf{p H}=-\log \left[\mathbf{H}_{3} \mathbf{O}^{+}\right]$
- In case a solution contained a weak base $\left(\mathrm{Kb}<10^{-4}\right)$: $\mathrm{B}(\mathrm{OH}) \leftrightarrows \mathrm{B}^{+}+\mathrm{OH}^{-} \quad \rightarrow \mathrm{Kb}=\left[\mathrm{OH}^{-}\right]\left[\mathrm{B}^{+}\right] /[\mathrm{B}(\mathrm{OH})]$
$\rightarrow\left[\mathrm{OH}^{-}\right]=\sqrt{ } \mathbf{K b C b} \quad \rightarrow \quad \mathrm{pH}=14-\mathrm{pOH}$

Exercise 1

- Calculate the pH of a solution 0.02 M of $\mathrm{Ba}(\mathrm{OH})_{2}$.

$\mathrm{Ba}(\mathrm{OH})_{2} \rightarrow \mathrm{Ba}^{2+}+2 \mathrm{OH}^{-}$

This is a strong di-basic base \rightarrow the actual concentration of hydroxyl has to be calculated in Normality
$[\mathrm{OH}-]=2 \mathrm{Ca}=2 \cdot 0.04=0.04 \mathrm{~N}$
$\mathrm{pOH}=-\log 0.04=1.4 \quad \rightarrow \mathrm{pH}=14-\mathrm{pOH}=14-1.4=12.6$

Exercise 2

- Calculate Ka of a weak acid whose solution 0.1 M has $\mathrm{pH}=4$.

A generic weak acid will dissociate with the following equilbrium: $\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{A}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$

$$
K_{a}=\frac{\left[A^{-}\right]\left[H_{3} O^{+}\right]}{[H A]} \quad K_{a}=\frac{\left[H_{3} O^{+}\right]^{2}}{C_{a}}
$$

To convert pH into $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$we need the inverse formula of log: $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{pH}}$

$$
K_{a}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2}}{C_{a}}=\frac{\left(10^{-4}\right)^{2}}{0.1}=10^{-7} \mathrm{M}
$$

Exercise 3

- Calculate the pH of a solution of ammonia when there are $10^{-4} \mathrm{~mol}$ in $100 \mathrm{ml}\left(\mathrm{Kb}=1.8 \cdot 10^{-5} \mathrm{M}\right)$

$$
\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \quad \leftrightarrows \quad \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}
$$

In a weak base $[\mathrm{OH}-]=K_{b} C_{b}$
$\mathrm{Cb}=\left[\mathrm{NH}_{3}\right]=10^{-4} / 0.1=10^{-3} \mathrm{M}$
$[\mathrm{OH}-]=\sqrt{ } \mathrm{Kb} \cdot \mathrm{Cb}=\sqrt{ } 1.8 \cdot 10^{-5} \cdot 10^{-3}=1.34 \cdot 10^{-4} \mathrm{M}$
$\mathrm{pOH}=-\log 1.34 \cdot 10^{-4}=3.87 \quad \rightarrow \mathrm{pH}=14-3.87=10.13$

pH indicators: halochromic detectors of protons

$$
\mathrm{RH}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{R}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}
$$

colour1 colour2

$$
K=\frac{\left[H_{3} O^{+}\right]\left[R^{-}\right]}{[R H]} \quad \rightarrow \quad\left[H_{3} O^{+}\right]=K \frac{[R H]}{\left[R^{-}\right]} \quad \rightarrow \quad p H=p K+\log \frac{\left[R^{-}\right]}{[R H]}
$$

- In case the indicator is inside an acidic solution:
- Proton concentration increases
- The equilibrium moves leftwards
- Colour 1 is abundant
- In case the indicator is inside a basic solution:
- Proton concentration dicreases
- The equilibrium moves rightwards
- Colour 2 is abundant
- In case $[\mathrm{R}-]=[\mathrm{RH}] \rightarrow$ transition point \rightarrow the colour is intermediate between 1 and 2

Exercise 4

- A pH indicator RH with $\mathrm{K}_{\text {ind }}=10^{-6} \mathrm{M}$, is red when indissociated and yellow once dissociated. Which is the colour when it is added to a solution 0.1 M of ethanoic acid? $\left(\mathrm{Ka}=1.8 \cdot 10^{-5} \mathrm{M}\right)$

$$
\mathrm{RH}+\mathrm{H}_{2} \mathrm{O} \quad \leftrightarrows \quad \mathrm{R}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}
$$

$$
K_{\text {ind }}=\frac{\left[R^{-}\right]\left[H_{3} O^{+}\right]}{[R H]}
$$

The pH of the solution is:
$\mathrm{pH}=-\log \sqrt{ } \mathrm{KaCa}=-\log \sqrt{ } 1.8 \cdot 10^{-5} \cdot 0.1=-\log 1.34 \cdot 10^{-3}=2.87$
$\frac{[R H]}{\left[R^{-}\right]}=\frac{\left[H_{3} O^{+}\right]}{K_{\text {ind }}}=\frac{1.3410^{-3}}{10^{-6}}=1340 \quad \rightarrow$ the solution is RED
As a general rule:
$\mathrm{pH}<$ pKind \rightarrow colour of the indissociated species
$\mathrm{pH}>$ pKind \rightarrow colour of the dissocialted species

Exercise 5

A 0.1 M solution of a weak monoprotic acid has the same pH of a solution 10-4 of HCl . Calculate the dissociation coefficient of the weak acid.

$$
\begin{array}{ll}
\mathrm{AH}+\mathrm{H}_{2} \mathrm{O} & \mathrm{~A}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \\
\mathrm{n}(1-\alpha) & \mathrm{n} \alpha \quad \mathrm{n} \alpha
\end{array}
$$

$\mathrm{pH}_{\mathrm{ac} .}=\mathrm{pH}_{\text {. } \mathrm{HcI}}=4$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{\text {ac. }}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{\text {sol. } \mathrm{HCl}}=10^{-4} \mathrm{M}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\mathrm{Ca} \cdot \alpha \rightarrow \alpha=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] / \mathrm{Ca}=10^{-4} / 0.1=10^{-3}$

Basic / acidic Hydrolysis

- Salts are strong electrolytes, completely dissociated into ions once in water
- The dissociated ions maintain the chemical behaviour of their precursor
- Hence if they were issued from either weak acids or weak bases they tend to set up an equilibrium at the expenses of water
- We define hydrolysis the chemical reaction during which molecules of water (H 2 O) are split into protons and hydroxide anions

The behaviour of salts formed by a strong acid reacting with a strong base

$-\mathrm{NaCl} \rightarrow \mathrm{Na}++\mathrm{Cl}-$

We can think of sodium chloride as originated from the neutralization reaction:

$$
\mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}
$$

In water, the solid compound is completely dissociated into ions, which are stable in their configuration \rightarrow they do not react with water
$\rightarrow \mathrm{pH}=7$

The behaviour of salts formed by a weak acid reacting with a strong base

Es.: $\mathrm{CH}_{3} \mathrm{COONa} \rightarrow \mathrm{Na}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-}$
$\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{OH}^{\square} \underset{\sim}{\square} \rightarrow 7 \rightarrow$ basic hydrolysis

- The acetate anion set up an equilibrium with water, by perturbing this latter's equilibrium
- This new equilibrium is called eq. of hydrolysis a constant can be calculated: $K_{i}=\frac{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}$
- In solution there is also water's proper equilibrium:

$$
\mathrm{Kw}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right] \quad \rightarrow\left[\mathrm{OH}^{-}\right]=\mathrm{Kw} /\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]
$$

$$
K_{i}=\frac{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}
$$

We can substitute OH^{-}in the above formula to obtain:

$$
K_{i}=\frac{\left[\mathrm{CH}_{3} \mathrm{COOH}\right] K_{w}}{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]} \quad K_{i}=\frac{K_{w}}{K_{a}}
$$

We can also calculate the pH of this salt, starting from Ki:
$\mathrm{Ki}=\frac{\left[\mathrm{CH}_{3} \mathrm{COOH}\right] \cdot[\mathrm{OH}]}{\left[\mathrm{CH}_{3} \mathrm{COO}\right]}=\frac{[\mathrm{OH}]^{2}}{\mathrm{Cs}}$
$\mathrm{pOH}=-\log \sqrt{ }(\mathrm{Kw} \cdot \mathrm{Cs}) / \mathrm{Ka}$

The behaviour of salts formed by a weak base reacting with a strong acid

$$
\mathrm{NH}_{4} \mathrm{Cl} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{Cl}^{-}
$$

$$
\mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+} \longrightarrow \mathrm{pH}<7
$$

- Even in this case we can calculate a Ki and rearrange it by taking into account water's equilibrium:

$$
K_{i}=\frac{\left[\mathrm{NH}_{3}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{NH}_{4}^{+}\right]} \quad K_{i}=\frac{K_{w}}{K_{b}}
$$

- We can also calculate the pH :

$$
K_{i}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2}}{C_{s}} \quad \rightarrow\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\sqrt{ } \mathrm{Kw} \cdot \mathrm{Cs} / \mathrm{Kb}
$$

Exercise 1

- Calculate the concentration of HCN and the pH of a solution 0.2 M of $\mathrm{KCN}\left(\mathrm{Ka}=4 \cdot 10^{-10} \mathrm{M}\right)$
$\mathrm{KCN} \rightarrow \mathrm{K}^{+}+\mathrm{CN}^{-} \quad$ (salt made by weak acid + strong base)
$\mathrm{CN}^{-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{HCN}+\mathrm{OH}^{-}$
$[\mathrm{OH}-]=\sqrt{ }(\mathrm{Kw} \cdot \mathrm{Cs}) / \mathrm{Ka}=\sqrt{ }\left(10^{-14} \cdot 0.2 / 4 \cdot 10^{-10}\right)=2.2 \cdot 10^{-3} \mathrm{M}$ $[\mathrm{HCN}]=\left[\mathrm{OH}^{-}\right]=2.2 \cdot 10^{-3} \mathrm{M}$
$\mathrm{POH}=2.65 \rightarrow \mathrm{pH}=14-\mathrm{pOH}=11.35$

Exercise 2

An aqueous solution of ammonium chloride has $\mathrm{pH}=5$. Calculate the molar concentration of the salt, given that $\mathrm{Kb}=1.8 \cdot 10^{-5} \mathrm{M}$.
$\mathrm{NH}_{4} \mathrm{Cl} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{Cl}^{-} \quad$ (salt coming from a strong acid and a weak base)
$\mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{pH}}=10^{-5} \mathrm{M}=\sqrt{ }(\mathrm{Kw} \cdot \mathrm{Cs}) / \mathrm{Kb}$
$\rightarrow \mathrm{Cs}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \cdot \mathrm{Kb} / \mathrm{Kw}=\left(10^{-5}\right)^{2} \cdot 1.8 \cdot 10^{-5} / 10^{-14}=0.18 \mathrm{M}$

Exercise 3

- Calculate the pH of a $5 \cdot 10^{-3} \mathrm{M}$ solution of potassium methanoate $\left(\mathrm{Ka}=2 \cdot 10^{-4} \mathrm{M}\right)$
$\mathrm{CH}_{3} \mathrm{COOK} \rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{K}^{+}$

$\mathrm{CH}_{3} \mathrm{COO}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{OH}^{-}$

$[\mathrm{OH}-]=\sqrt{ } \mathrm{Kw} \cdot \mathrm{Cs} / \mathrm{Ka}=\sqrt{ }\left(10^{-14} \cdot 5 \cdot 10^{-3} / 2 \cdot 10^{-4}\right)=4.47 \cdot 10^{-7}$
$\mathrm{pH}=14-\mathrm{pOH}=14-6.35=7.65$

