Reaction at equilibrium - part II

Dissociation reactions at equilibirum

- In dissociation reactions of the type $\mathrm{A} \leftrightarrows \mathrm{B}+\mathrm{C}$ it is possible to calculate the equilibrium constant in terms of $\%$ dissociation, expressed as the ratio α between the dissociated mol and the total no.mol
- In case at the beginning the molar concentration of A was (n / V)

$$
[\mathrm{A}]=\mathrm{n} / \mathrm{V}
$$

- At equilibrium the molar concentration of B and C will be:

$$
[\mathrm{B}]=\mathrm{n} \alpha / \mathrm{V} ; \quad[\mathrm{C}]=\mathrm{n} \alpha / \mathrm{V}
$$

- Hence tha molar concentration of A at equilibrium will be:

$$
[\mathrm{A}]=(\mathrm{n}-\mathrm{n} \alpha) / \mathrm{V}=[\mathrm{n}(1-\alpha)] / \mathrm{V}
$$

- Thereby the equilibrium constant of the reaction can be expressed in terms of the initial concentration of A and of the dissociation coefficient α

$$
K=\frac{[B][C]}{[A]}=\frac{\left(n \frac{\alpha}{V}\right)\left(n \frac{\alpha}{V}\right)}{n \frac{(1-\alpha)}{V}}=\frac{n \alpha^{2}}{V(1-\alpha)}=C \frac{\alpha^{2}}{(1-\alpha)}
$$

Exercise 1

8 g of PCl_{5} are introduced in a cylinder of 0.5 L at $250^{\circ} \mathrm{C}$. The value of the equilibrium constant of the reaction in the gas phase:

$$
\mathrm{PCl}_{5} \leftrightarrows \mathrm{PCl}_{3}+\mathrm{Cl}_{2}
$$

is 0.041 M . Calculate the concentration of the three species at equilibrium.

Let's calculate the molar concentration of PCl_{5} at the beginning:
$\left[\mathrm{PCl}_{5}\right]_{\text {start }}=\mathrm{g} /(\mathrm{V} \cdot \mathrm{FW})=8 /(0.5 \cdot 208)=7.7 \cdot 10^{-2} \mathrm{M}$
\rightarrow no. Moles $=\mathrm{g} / \mathrm{FW}=0.038 \mathrm{~mol}$

moles	PCl_{5}	PCl_{3}	Cl_{2}
At equilibrium	$0.038(1-\alpha)$	0.038α	0.038α

$$
K_{c}=\frac{C \alpha^{2}}{(1-\alpha)}=\frac{0.077 \alpha^{2}}{1-\alpha}=0.041 \mathrm{M}
$$

$0.077 \alpha^{2}+0.041 \alpha-0.041=0$

$\alpha=\left\{-0.041 \pm \sqrt{ }(0.041)^{2}+4(0.077)(0.041)\right\} / 2 \cdot 0.077$
$\alpha=\left\{-0.041 \pm \sqrt{1.68 \cdot 10^{-3}+12.6 \cdot 10^{-3}}\right\} / 0.154$
$\alpha=(-0.041 \pm \sqrt{ } 0.014) / 0.154=(-0.041 \pm 0.118) / 0.154$
$\alpha_{1}=0.502 \quad \alpha_{2}=-1.03$
$\left[\mathrm{PCl}_{5}\right]=\mathrm{C}(1-\alpha)=0.077 \cdot 0.498=0.038 \mathrm{M}$
$\left[\mathrm{PCl}_{3}\right]=\left[\mathrm{Cl}_{2}\right]=\mathrm{C} \alpha=0.077 \cdot 0.502=0.039 \mathrm{M}$

Heterogeneous equilibria

- A given equilibrium is heterogeneous when its components belong to different states of the matter
- In case the equilibrium is between compounds in the gas and solid phases, the equilibrium constant expressed in terms of partial pressure K_{p} only contains the quantities of the components in the gas phase
- This is because solid and liquid phases display a constant pressure at any given temperature, hence their value is included directly in K

Ex.: $\quad \mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{s})} \leftrightarrows \mathrm{NH}_{3(\mathrm{~g})}+\mathrm{HCl}_{(\mathrm{g})} \quad \rightarrow \quad \mathrm{K}_{\mathrm{p}}=\mathrm{P}_{\mathrm{NH} 3} \cdot \mathrm{P}_{\mathrm{HCl}}$

Heterogeneous equilibria

- The same happens for Kc, since usually the solid is in large excess with respect to the components in the gas phase
$\mathrm{Ex}: \mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{s})} \leftrightarrows \mathrm{NH}_{3(\mathrm{~g})}+\mathrm{HCl}_{(\mathrm{g})} \quad \rightarrow \quad \mathrm{Kc}=\left[\mathrm{NH}_{3}\right][\mathrm{HCl}]$
$\mathrm{CaCO}_{3(\mathrm{~s})} \leftrightarrows \mathrm{CaO}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})} \quad \rightarrow \mathrm{Kc}=\left[\mathrm{CO}_{2}\right] \quad \rightarrow \mathrm{Kp}=\mathrm{P}_{\mathrm{CO} 2}$

Exercise 2

- 0.1 mol of CO and 0.05 mol of $\mathrm{H}_{2} \mathrm{O}$ are filling in a box of 5 L at $680^{\circ} \mathrm{C}$. The constant of the gaseous equilibrium $\mathrm{CO}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{CO}_{2}+\mathrm{H}_{2}$ is 1.9. Calculate the concentration of the 4 species at equilibrium.

$$
\begin{aligned}
& K=\frac{\left(\frac{x}{5}\right)\left(\frac{x}{5}\right)}{\left[\frac{(0.1-x)}{5}\right]\left[\frac{(0.05-x)}{5}\right]}=1.9 \\
& x=\frac{0.285 \pm \sqrt{0.0812-0.0342}}{1.8} \\
& x^{2}=1.9\left(0.005-0.15 \mathrm{x}+x^{2}\right) \\
& 0.9 x^{2}-0.285 x+0.0095=0 \\
& x_{1}=0.038 \\
& x_{2}=0.287 \\
& {[\mathrm{CO}]=(0.1-0.038) / 5=1.24 \cdot 10^{-2} \mathrm{M}} \\
& {\left[\mathrm{H}_{2} \mathrm{O}\right]=(0.05-0.038) / 5=2.4 \cdot 10^{-3} \mathrm{M}} \\
& {\left[\mathrm{CO}_{2}\right]=[\mathrm{H} 2]=0.038 / 5=7.6 \cdot 10^{-3} \mathrm{M}}
\end{aligned}
$$

Exercise 3

- In a box of 3L there are 9 mol of H_{2} and 9 mol of O_{2}. The homogeneous equilibrium in the gas phase $2 \mathrm{H}_{2}+\mathrm{O}_{2} \leftrightarrows 2 \mathrm{H}_{2} \mathrm{O}$ is reached when 3 mol of $\mathrm{H}_{2} \mathrm{O}$ are formed. Calculate Kc.
$\left.\begin{array}{l|c|c|c}\hline \text { no. moles } & \mathrm{H}_{2} & \mathrm{O}_{2} & \mathrm{H}_{2} \mathrm{O} \\ \hline \text { At start } & 9 & 9 & 0 \\ \hline \text { Pace of the reaction } & -2 x & -x & +2 x \\ \text { At equilibrium } & & & 3\end{array}\right)$

$$
0+2 x=3 \quad \rightarrow x=1.5
$$

$\left[\mathrm{H}_{2}\right]=(9-2 \mathrm{x}) / 3=2 \mathrm{M}$
$\left[\mathrm{O}_{2}\right]=(9-\mathrm{x}) / 3=2.5 \mathrm{M}$
$\left[\mathrm{H}_{2} \mathrm{O}\right]=3 / 3=1 \mathrm{M}$

$$
K c=\frac{\left[H_{2} O\right]^{2}}{\left[H_{2}\right]^{2}\left[O_{2}\right]}=\frac{1^{2}}{(2)^{2}(2.5)}=\frac{1}{4 \cdot 2.5}=0.1 \mathrm{M}^{-1}
$$

Exercise 4

- $\mathrm{Kc}=1.56 \cdot 10^{-2}$ for the reaction $2 \mathrm{HI} \leftrightarrows \mathrm{H}_{2}+\mathrm{I}_{2}$ at 793 K . The reaction is started by inserting 0.5 mol of I_{2} and 1 mol of H_{2} in a box of 10 L . Calculate the number of moles of the three species at equilibrium.

no.moles	HI	H_{2}	I_{2}
start	0	1	0.5
during	$+2 x$	$-x$	$-x$
end	$2 x$	$1-x$	$0.5-x$

$$
\begin{array}{ll}
K c=\frac{\left[H_{2}\right]\left[I_{2}\right]}{[H I]^{2}}=\frac{(1-x)(0.5-x)}{2 \mathrm{x}^{2}}=1.56 \cdot 10^{-2} & \mathrm{x}=0.47 \\
0.5-1.5 \mathrm{x}+\mathrm{x}^{2}=4 \mathrm{x}^{2} \cdot 1.56 \cdot 10^{-2} & \mathrm{x} 2=1.12 \\
0.938 \mathrm{x}^{2}-1.5 \mathrm{x}+0.5=0 & \mathrm{Mol} \text { of } \mathrm{HI}=2 \cdot 0.47=0.94 \mathrm{~mol} \\
x=\frac{1.5 \pm \sqrt{2.25-1.876}}{1.876} & \text { Mol of } \mathrm{H}_{2}=1-0.47=0.53 \mathrm{~mol} \\
& \text { Mol of } \mathrm{I}_{2}=0.5-0.47=0.03 \mathrm{~mol}
\end{array}
$$

Exercise 5

Some N_{2} is filling in a box of 4.12 L at 500 K and 1 atm . Lateron 0.5 mol of CO and 0.5 mol of $\mathrm{N}_{2} \mathrm{O}$ are inserted. At this temperature the following reaction is taking place: $\mathrm{CO}+\mathrm{N}_{2} \mathrm{O} \leftrightarrows \mathrm{CO}_{2}+\mathrm{N}_{2}$, with $\mathrm{Kc}=1.5 \cdot 10^{-2}$. Calculate the composition of the gaseous mixture at equilibrium.

Initial quantity of $\mathrm{N}_{2}: \quad \mathrm{n}=\mathrm{PV} / \mathrm{RT}=(1 \cdot 4.12) /(0.082 \cdot 500)=0.1 \mathrm{~mol}$

	CO		$\mathrm{N}_{2} \mathrm{O}$	CO_{2}	$\mathrm{~N}_{2}$
start	0.5	0.5	0	0.1	
Cons./prod.	$-x$	$-x$	$+x$	$+x$	
equilibrium	$05-x$	$0.5-x$	x	$0.1+x$	

$K c=\frac{\left[\mathrm{CO}_{2}\right]\left[\mathrm{N}_{2}\right]}{[\mathrm{CO}]\left[\mathrm{N}_{2} \mathrm{O}\right]}=\frac{x(0.1+x)}{(0.5-x)(0.5-x)}=1.5 \cdot 10^{-2}$

$$
x^{2}+0.1 \mathrm{x}=0.015\left(0.25-x+x^{2}\right)
$$

$$
\begin{aligned}
& 0.985 \mathrm{x}^{2}+0.115 \mathrm{x}-0.00375=0 \\
& x=\frac{-0.115 \pm \sqrt{0.013+0.015}}{1.97} \\
& \mathrm{x} 1=0.026 \\
& \mathrm{x} 2=-0.09 \\
& \mathrm{CO}=\mathrm{N}_{2} \mathrm{O}=0.5-\mathrm{x}=0.474 \mathrm{~mol} \\
& \mathrm{CO}_{2}=\mathrm{x}=0.026 \mathrm{~mol} \\
& \mathrm{~N}_{2}=0.1+\mathrm{x}=0.126 \mathrm{~mol}
\end{aligned}
$$

Exercise 6

- A box of 5L is filled in with 103 g of a mixture made by equal volumes of $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ and Cl_{2}. At equilibrium the following values are measured: $\mathrm{T}=300 \mathrm{~K}$ and $\mathrm{P}=5.33 \mathrm{~atm}$. Calculate Kc for the following dissociation reaction: $\mathrm{SO}_{2} \mathrm{Cl}_{2} \leftrightarrows \mathrm{SO}_{2}+\mathrm{Cl}_{2}$

Recalling Avogadro's law: equal volumes of different gases contain the same number of moles $\rightarrow \mathrm{n}_{\text {SO2C12 }}=\mathrm{n}_{\mathrm{Cl} 2}$
$\mathrm{n}=\mathrm{g} / \mathrm{FW} \rightarrow \frac{x}{135}=\frac{103-x}{70.9}$
$70.9 x=13905-135 x$
$205.9 \mathrm{x}=13905$
$\mathrm{x}=67.5 \mathrm{~g}$ of $\mathrm{SO}_{2} \mathrm{Cl}_{2} \rightarrow \quad \mathrm{n}_{\mathrm{SO2C12}}=\mathrm{n}_{\mathrm{Cl} 2}=0.5 \mathrm{~mol}$

no.mol	$\mathrm{SO}_{2} \mathrm{Cl}_{2}$	SO_{2}	Cl_{2}
start	0.5	0	0.5
Cons/prod	$-x$	$+x$	$+x$
equilibrium	$0.5-x$	x	$0.5+x$

We can calculate the total no. of moles from the ideal gas law:

$$
n=\frac{P V}{R T}=\frac{5.33 \cdot 5}{0.082 \cdot 300}=1.08 \mathrm{~mol}
$$

The total number of moles correspond to the sum over the last row:
$(0.5-x)+x+(0.5+x)=1.08$
$1+\mathrm{x}=1.08 \quad \rightarrow \mathrm{x}=0.08 \mathrm{~mol}$

$$
K c=\frac{\left[\mathrm{SO}_{2}\right]\left[\mathrm{Cl}_{2}\right]}{\left[\mathrm{SO}_{2} \mathrm{Cl}_{2}\right]}=\frac{\left(\frac{0.08}{5}\right) \cdot\left(\frac{0.58}{5}\right)}{\left(\frac{0.42}{5}\right)}=2.2 \cdot 10^{-2} \mathrm{M}
$$

Exercise 7

- Calculate the dissociation coefficient α of the reaction $2 \mathrm{HI} \leftrightarrows \mathrm{H}_{2}+\mathrm{I}_{2}$, when 2 mol of HI are placed in a cylinder of 1 L at $450^{\circ} \mathrm{C}$. It is known that Kc for the equilibrium of association at the same T is 50 .

$$
\mathrm{Kd}=1 / \mathrm{Ka}=1 / 50=0.02
$$

HI	H_{2}	I_{2}
$\mathrm{n}(1-\alpha)$	na	na

$$
\begin{aligned}
& K d=\frac{\frac{n \alpha}{V} \cdot \frac{n \alpha}{V}}{\left[\frac{2 \mathrm{n}(1-\alpha)}{V}\right]^{2}}=\frac{n^{2} \alpha^{2}}{4 \mathrm{n}^{2}(1-\alpha)^{2}}=\frac{\alpha^{2}}{4(1-\alpha)^{2}}=0.02 \\
& \alpha^{2}=0.08\left(1-2 \alpha+\alpha^{2}\right) \\
& 0.92 \alpha^{2}+0.16 \alpha-0.08=0 \quad \rightarrow \alpha=0.21
\end{aligned}
$$

Exercise 8

At $100^{\circ} \mathrm{C}$ the following association reaction occurs with $\mathrm{Kc}=0.068$: $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}(\mathrm{s}) \leftrightarrows \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$. Should 0.2 mol of H_{2} and 1 mol of S be heated at $100^{\circ} \mathrm{C}$ in a sealed flask of 1 L , which value of $\mathrm{P}_{\mathrm{H}_{2} \mathrm{~S}}$ will be measured at equilibrium?

This is a heterogeneous equilibrium between solid and gas phases:

no.mol	H_{2}	$\mathrm{H}_{2} \mathrm{~S}$
start	0.2	0
Consumed/produced	$-x$	$+x$
equilibrium	$0.2-x$	x

$K=\frac{\left[\mathrm{H}_{2} \mathrm{~S}\right]}{\left[\mathrm{H}_{2}\right]}=\frac{x / 1}{(0.2-x) / 1}=\frac{x}{0.2-x}=0.068$

$$
x=0.0136-0.068 \mathrm{x}
$$

$$
P_{H 2 S}=\frac{n R T}{V}=\frac{0.0127 \cdot 0.082 \cdot 373}{1}=0.388 \mathrm{~atm}
$$

$$
x=\frac{0.0136}{1.068}=1.27 \cdot 10^{-2} \mathrm{~mol}
$$

