Reactions at equilibrium - part I

Law of the mass action

- The law of mass action is a mathematical model that explains and predicts behaviours of solutions in dynamic equilibrium
- When in a closed system, with P and T constant, a reaction occurs \rightarrow the rates at which products are formed and reagents consumed are equal
- This is a chemical dynamic equilibrium \rightarrow the reactions are reversible and the concentrations of the reactants and products do not change with time

$$
\mathrm{aA}+\mathrm{bB} \leftrightarrows \mathrm{cC}+\mathrm{dD}
$$

$\mathrm{aA}+\mathrm{bB} \leftrightarrows \mathrm{cC}+\mathrm{dD}$

- For each dynamic equilibrium reaction we can calculate an equilibrium constant from the ratio between the single reactions rate constants
- This ratio can also be expressed in terms of concentration

$$
K_{e}=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}
$$

- Reagents and products can be in the same physical state \rightarrow homogeneous reaction

$$
\mathrm{N}_{2_{(\mathrm{g})}}+3 \mathrm{H}_{2_{(\mathrm{g})}} \leftrightarrows 2 \mathrm{NH}_{3_{(\mathrm{g})}}
$$

or in different states \rightarrow heterogeneous reaction

$$
\mathrm{CaCO}_{3_{(\mathrm{s})}} \leftrightarrows \mathrm{CaO}_{(\mathrm{s})}+\mathrm{CO}_{2_{(\mathrm{s})}}
$$

$$
K_{e}=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}
$$

- What does K measure? The direction of the equilibrium
- $K>1 \rightarrow$ the reaction is in favour of the products
- $K=1 \rightarrow$ the reagents and products concentrations are the same
$\bullet K<1 \rightarrow$ the reaction is in favour of the reagents
- The constant of a reaction written in one way, is the mathematical reciprocal of the same reaction written in the opposite way

$$
\begin{array}{lll}
\mathrm{H}_{2}+\mathrm{I}_{2} \leftrightarrows 2 \mathrm{HI} & 2 \mathrm{HI} \leftrightarrows \mathrm{H}_{2}+\mathrm{I}_{2} \\
K_{e}=\frac{[H I]^{2}}{\left[H_{2}\right]\left[I_{2}\right]} & \Delta K_{e}=\frac{1}{K_{e}^{\prime}} & K_{e}^{\prime}=\frac{\left[H_{2}\right]\left[I_{2}\right]}{[H I]^{2}}
\end{array}
$$

What does it happen if we change the concentrations of reagents and/or products?

- Given a chemical reaction at equilibrium with T constant, every external intervention, which perturbs the equilibrium, will be counteracted by the system (Le Chatelier principle)
- If a dynamic equilibrium is disturbed by changing the conditions, the position of equilibrium moves to reverse the change.
- Case A: increase of products concentration \rightarrow the reaction moves towards the reagents (leftwards)
- Case B: increase of reagents concentration \rightarrow the reaction moves towards the products (rightwards)

$$
\begin{gathered}
\mathrm{CO}_{2}+\mathrm{H}_{2} \rightleftarrows \mathrm{H}_{2} \mathrm{O}+\mathrm{CO} \\
K_{c}=\frac{\left[\mathrm{H}_{2} \mathrm{O}\right][\mathrm{CO}]}{\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2}\right]}
\end{gathered}
$$

Equilibrium reactions in the gas phase

- In case of a reaction in the gas phase, the partial pressures of reagents and products can be used instead of their molar concentrations

$$
K_{p}=\frac{P_{C}^{c} P_{D}^{d}}{P_{A}^{a} P_{B}^{b}}
$$

- It is easy to convert Kp into Kc and viceversa, using the ideal gas law: $\mathrm{P}_{\mathrm{j}} \mathrm{V}=\mathrm{n}_{\mathrm{j}} \mathrm{RT} \quad \rightarrow \mathrm{P}_{\mathrm{j}}=[\mathrm{J}] \mathrm{RT}$

$$
K_{p}=\frac{P_{C}^{c} P_{D}^{d}}{P_{A}^{a} P_{B}^{b}}=\frac{[C]^{c}(R T)^{c}[D]^{d}(R T)^{d}}{[A]^{a}(R T)^{a}[B]^{b}(R T)^{b}}=\frac{[C]^{c}[D]^{d}(R T)^{c+d}}{[A]^{a}[B]^{b}(R T)^{a+b}}=K_{c}(R T)^{(c+d-a-b)}
$$

- In case $(c+d-a-b)=0$, then $K_{p}=K_{c}$

How do we calculate the concentrations at equilibrium?

- The following homogeneous reaction in the gas phase: $\mathrm{N}_{2}+3 \mathrm{H}_{2} \leftrightarrows 2 \mathrm{NH}_{3}$ is started by inserting 0.01 mol of N_{2} and $0.01 \mathrm{~mol}^{\text {of }} \mathrm{H}_{2}$ in an insulated box of 1 L . At equilibrium $10^{-3} \mathrm{~mol}$ of NH_{3} are formed. Which is the value of K_{c} ?

no. moles	N_{2}	H_{2}	NH_{3}
At start	0.01	0.01	0
Consumed/ produced	$-x$	$-3 x$	$+2 x$
At equilibrium			10^{-3}

- The stoichiometric coefficient (aka stoichiometric number) of any given component gives the number of molecules which participate in the reaction as written
- In this case $\boldsymbol{- x}$ moles of N_{2} are consumed, $-\mathbf{3 x}$ moles of H_{2} are consumed and $+2 x$ moles of NH_{3} are produced

How do we calculate the concentrations at equilibrium?

- How do we fill in the table? We calculate the algebraic sum of each column
- How do we calculate x ?

We choose the appropriate column

no. moles	N_{2}	H_{2}	NH_{3}
At start	0.01	0.01	0
Consumed/ produced	$-x$	$-3 x$	$+2 x$
At equilibrium	$0.01-x$	$0.01-3 x$	$0+2 x=10^{-3}$

- In this case \boldsymbol{x} can be calculated from the column of NH_{3} :
$2 \mathrm{x}=10^{-3} \rightarrow \mathrm{x}=5 \cdot 10^{-4} \mathrm{~mol}$
- Hence we can calculate all the remaining terms
$\mathrm{N}_{2}=0.01-5 \cdot 10^{-4}=9.5 \cdot 10^{-3} \mathrm{~mol}$
$\mathrm{H}_{2}=0.01-\left(3 \cdot 5 \cdot 10^{-4}\right)=8.5 \cdot 10^{-3} \mathrm{~mol}$

How do we calculate the concentrations at equilibrium?

no. moles	N_{2}	H_{2}	NH_{3}
At start	0.01	0.01	0
Consumed/ produced	$-x$	$-3 x$	$+2 x$
At equilibrium	$9.5 \cdot 10^{-3}$	$8.5 \cdot 10^{-3}$	10^{-3}

Now that the table is complete, we can calculate the concentrations of reagents and products at equilibrium and also the equilibrium constant
$\left[\mathrm{N}_{2}\right]=\mathrm{n} / \mathrm{V}=0.0095 / 1=9.5 \cdot 10^{-3} \mathrm{M}$
$\left[\mathrm{H}_{2}\right]=\mathrm{n} / \mathrm{V}=0.0085 / 1=8.5 \cdot 10^{-3} \mathrm{M}$
$\left[\mathrm{NH}_{3}\right]=\mathrm{n} / \mathrm{V}=0.001 / 1=1.0 \cdot 10^{-3} \mathrm{M}$
$K_{e}=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[N_{2}\right]\left[H_{2}\right]^{3}}=\frac{\left(10^{-3}\right)^{2} M^{2}}{\left(9.5 \times 10^{-3}\right) M \times\left(8.5 \times 10^{-3}\right)^{3} M^{3}}=\frac{10^{-6}}{9.5 \times 10^{-3} \times 6.14 \times 10^{-7}}=\frac{1}{5.83 \times 10^{-3}}=171.53 \mathrm{M}^{-2}$

Exercise 1

Calculate the equilibrium constant of the reaction $\mathrm{N}_{2}+3 \mathrm{H}_{2} \leftrightarrows 2 \mathrm{NH}_{3}$. This has been started by inserting 9 mol of H_{2} and 6 mol of N_{2} in a cylinder of 3L. At equilibrium there were 4 mol of NH_{3}.

No. moles	H_{2}	$\mathrm{~N}_{2}$	NH_{3}
At start	9	6	0
consumed/produced	$-3 x$	$-x$	$+2 x$
At equilibrium			4

$$
0+2 x=4 \rightarrow x=2
$$

Exercise 1

Calculate the equilibrium constant of the reaction $\mathrm{N}_{2}+3 \mathrm{H}_{2} \leftrightarrows 2 \mathrm{NH}_{3}$. This has been started by inserting 9 mol of H_{2} and 6 mol of N_{2} in a cylinder of 3L. At equilibrium there were 4 mol of NH_{3}.

No. moles	H_{2}	$\mathrm{~N}_{2}$	NH_{3}
At start	9	6	0
consumed/produced	$-3 x$	$-x$	$+2 x$
At equilibrium	3	4	4

Now we can calculate the concentrations of the components at equilibrium $\left[\mathrm{H}_{2}\right]=\mathrm{n} / \mathrm{V}=3 / 3=1 \mathrm{M}$
$\left[\mathrm{N}_{2}\right]=\mathrm{n} / \mathrm{V}=4 / 3=1.33 \mathrm{M}$
$\left[\mathrm{NH}_{3}\right]=\mathrm{n} / \mathrm{V}=4 / 3=1.33 \mathrm{M}$

$$
K_{e}=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}=\frac{(1.33)^{2} M^{2}}{(1.33) M \times(1)^{3} M^{3}}=1.33 M^{-2}
$$

Exercise 2

- At room temperature, the equilbrium constant of the reaction: α-glucose $\leftrightarrows \beta$-glucose in water is 1.8 . How many grams of β-glucose are in equilibrium with 100 g of α-glucose in 1L?

$$
\begin{array}{ll}
\mathrm{K}_{\mathrm{c}}=[\beta] /[\alpha] \quad & \rightarrow \quad[\beta]=\mathrm{K}_{\mathrm{c}} \cdot[\alpha]=1.8 \cdot(100 / 180)=1 \mathrm{M} \\
\mathrm{M}=\mathrm{g} / \mathrm{FW} \cdot \mathrm{~V} \quad \rightarrow \quad \mathrm{~g}=\mathrm{M} \cdot \mathrm{FW} \cdot \mathrm{~V}=1 \cdot 180 \cdot 1=180 \mathrm{~g}
\end{array}
$$

Exercise 3

- 2 mol of CH_{4} and 1 mol of $\mathrm{H}_{2} \mathrm{~S}$ in the gas phase are filling in a box at $727^{\circ} \mathrm{C}$. At equilibrium there are 0.4 mol of H_{2} and the total pressure is 0.2 atm . Calculate the volume of the box.
$\mathrm{CH}_{4}+2 \mathrm{H}_{2} \mathrm{~S} \leftrightarrows \mathrm{CS}_{2}+4 \mathrm{H}_{2}$

moles	CH_{4}	$\mathrm{H}_{2} \mathrm{~S}$	CS_{2}	H_{2}
At start	2	1	0	0
consumed/produced	$-x$	$-2 x$	$+x$	$+4 x$
At equilibrium				0.4

$0+4 x=0.4 \rightarrow x=0.1$

Exercise 3

- 2 mol of CH_{4} and 1 mol of $\mathrm{H}_{2} \mathrm{~S}$ in the gas phase are filling in a box at $727^{\circ} \mathrm{C}$. At equilibrium there are 0.4 mol of H_{2} and the total pressure is 0.2 atm . Calculate the volume of the box.
$\mathrm{CH}_{4}+2 \mathrm{H}_{2} \mathrm{~S} \leftrightarrows \mathrm{CS}_{2}+4 \mathrm{H}_{2}$

moles	CH_{4}	$\mathrm{H}_{2} \mathrm{~S}$	CS_{2}	H_{2}
At start	2	1	0	0
consumed/produced	-x	-2 x	+x	+4 x
At equilibrium	1.9	0.8	0.1	0.4

In order to calculate the volume, we need to calculate the total no. mol at equilibrium:
$\mathrm{N}_{\text {tot }}=1.9+0.8+0.1+0.4=3.2 \mathrm{~mol}$
$\mathrm{V}=\mathrm{n}_{\text {tot }} \mathrm{RT} / \mathrm{V}=(3.2 \cdot 0.082 \cdot 1000) / 0.2=1312 \mathrm{~L}$

Exercise 4

The equilibrium constant at 793 K of the reaction: $2 \mathrm{HF} \leftrightarrows \mathrm{H}_{2}+\mathrm{F}_{2}$ is $1.56 \cdot 10^{-2}$. The reaction is started by adding $0.5 \mathrm{~mol} \mathrm{~F}_{2}$ and $1 \mathrm{~mol}^{\text {of }} \mathrm{H}_{2}$ to an isothermal box of 10 L . Calculate the molar concentration of the three species at equilibrium.

mol	HF	H_{2}	$\mathrm{~F}_{2}$
At start	0	1	0.5
consumed/produced	2 x	-x	-x
At equilibrium	2 x	$1-\mathrm{x}$	$0.5-\mathrm{x}$

$K_{c}=\frac{(1-x)(0.5-x)}{(2 x)^{2}}=1.56 \times 10^{-2}$
$0.5-x-0.5 x+x^{2}=6.24 \times 10^{-2} x^{2}$
$0.938 x^{2}-1.5 x+0.5=0$

It is worth recalling that the solution of a generic second grade equation: $a x^{2}+b x+c=0$
is: $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

$$
\begin{aligned}
& x=\frac{1.5 \pm \sqrt{2.25-1.876}}{1.876} \\
& x_{1}=0.474 \quad x_{2}=1.12
\end{aligned}
$$

Why do we choose x_{1} and not x_{2} ?
Both values are mathematical correct, BUT in our case x represents the no of moles \rightarrow it must be both a positive number and it must give a positive number after all the calculations

$$
\begin{aligned}
& \mathrm{HF}=2 \cdot 0.474=0.948 \mathrm{~mol} \\
& \mathrm{H}_{2}=1-\mathrm{x}=0.52 \mathrm{~mol} \\
& \mathrm{~F}_{2}=0.5-\mathrm{x}=0.026 \mathrm{~mol}
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow[\mathrm{HF}]=0.948 / 10=9.48 \cdot 10^{-2} \mathrm{M} \\
& \rightarrow\left[\mathrm{H}_{2}\right]=0.526 / 10=5.26 \cdot 10^{-2} \mathrm{M} \\
& \rightarrow\left[\mathrm{~F}_{2}\right]=0.026 / 10=2.6 \cdot 10^{-3} \mathrm{M}
\end{aligned}
$$

Exercise 5

- In a box of $0.5 \mathrm{~L}, 8 \mathrm{~g}$ of PCl_{5} are introduced at $250^{\circ} \mathrm{C}$. The constant of the reaction in the gaseous phase: $\mathrm{PCl}_{5} \leftrightarrows \mathrm{PCl}_{3}+\mathrm{Cl}_{2}$ is 0.041 M . Calculate the concentration of the three species at equilibrium.

$$
\left[\mathrm{FW}_{\mathrm{PC} 15}=208\right]
$$

PCl_{5} at the beginning $=\mathrm{g} / \mathrm{FW}=8 / 208=0.038 \mathrm{~mol}$

	moli	PCl_{5}	PCl_{3}	Cl_{2}
start	0.038	0	0	
consumed/produced	-x	+x	+x	
equilibrium	$0.038-\mathrm{x}$	x	x	

$K_{c}=\frac{\frac{x}{V} \times \frac{x}{V}}{\frac{0.038-x}{V}}=\frac{x^{2}}{V(0.038-x)}=0.041 \mathrm{M}$
$\mathrm{x}^{2}=0.041 \cdot 0.5(0.038-\mathrm{x})=0.0205(0.038-\mathrm{x})$
$\mathrm{x}^{2}=7.79 \cdot 10^{-4}-0.0205 \mathrm{x}$
$x^{2}+0.0205 x-7.79 \cdot 10^{-4}=0$

$$
\begin{aligned}
& x=\frac{0.0205 \pm \sqrt{4.2 \times 10^{-4}+31.16 \times 10^{-4}}}{2}=\frac{-0.205 \pm 0.0595}{2} \\
& x_{1}=0.0195 \quad x_{2}=-0.04
\end{aligned}
$$

$\left[\mathrm{PCl}_{3}\right]=\left[\mathrm{Cl}_{2}\right]=\mathrm{x} / \mathrm{V}=0.0195 / 0.5=0.039 \mathrm{M}$
$\left[\mathrm{PCl}_{5}\right]=(0.038-\mathrm{x}) / \mathrm{V}=(0.038-0.0195) / 0.5=0.038 \mathrm{M}$

Exercise 6

- 4 mol of A and 8 mol of B are introduced in a box of 1 L . The equilibrium is attained when there are 4 mol of C in the box. Calculate Kc for the equilibrium: $\mathrm{A}+3 \mathrm{~B} \leftrightarrows 2 \mathrm{C}$

no. mol	A	B	C
start	4	8	0
Consumed/produced	$-x$	$-3 x$	$+2 x$
equilibrium			4

A: $4-\mathrm{x} \rightarrow 4-2=2 \mathrm{~mol}$
B: $8-3 \mathrm{x} \rightarrow 8-6=2 \mathrm{~mol}$

$$
K_{c}=\frac{[C]^{2}}{[A][B]^{3}}=\frac{4^{2}}{2 \times 2^{3}}=1 M^{-2}
$$

Exercise 7

- In a box of 2 L at high T , there are 4 g of PCl_{5}. At equilibrium there are 0.8 g of PCl_{3}. Calculate how many grams of Cl_{2} are needed to obtain 0.5 g of PCl_{3}.

$$
\mathrm{PCl}_{5} \leftrightarrows \mathrm{PCl}_{3}+\mathrm{Cl}_{2}
$$

Starting quantity of $\mathrm{PCl}_{5}=4 / 208=1.92 \cdot 10^{-2} \mathrm{~mol}$
equilibrium quantity of $\mathrm{PCl}_{3}=0.8 / 138=5.8 \cdot 10^{-3} \mathrm{~mol}$

mol	PCl_{5}	PCl_{3}	Cl_{2}
start	$1.92 \cdot 10^{-2}$	0	0
consumed/produced	$-x$	$+x$	$+x$
equilibrium			$5.8 \cdot 10^{-3}$

$\left[\mathrm{PCl}_{5}\right]_{\mathrm{eq}}=1.92 \cdot 10^{-2}-\mathrm{x}=1.34 \cdot 10^{-2} / 2=6.7 \cdot 10^{-3} \mathrm{M}$
$\left[\mathrm{PCl}_{3}\right]_{\mathrm{eq}}=+\mathrm{x}=5.8 \cdot 10^{-3} / 2=2.9 \cdot 10^{-3} \mathrm{M}$
$\left[\mathrm{Cl}_{2}\right]_{\mathrm{eq}}=+\mathrm{x}=5.8 \cdot 10^{-3} / 2=2.9 \cdot 10^{-3} \mathrm{M}$

$$
K_{c}=\frac{\left(2.910^{-3}\right)^{2}}{6.710^{-3}}=1.2510^{-3} \mathrm{M}
$$

After adding Cl_{2}, the quantity of PCl_{3} becomes: $0.5 / 138=3.64 \cdot 10^{-3} \mathrm{~mol}$
The new starting condition is the previous equilibrium point:

mol	PCl_{5}	PCl_{3}	Cl_{2}
start	$1.34 \cdot 10^{-2}$	$5.8 \cdot 10^{-3}$	$5.8 \cdot 10^{-3}+\mathrm{y}$
consumed/produced	$+x$	$-x$	$-x$
equilibrium		$3.64 \cdot 10^{-3}$	

This time we can calculate the new \boldsymbol{x} from the second column

$$
\rightarrow \quad 5.8 \cdot 10^{-3}-\mathrm{x}=3.64 \cdot 10^{-3} \quad \rightarrow \quad \mathrm{x}=2.16 \cdot 10^{-3} \mathrm{~mol}
$$

$$
\left[\mathrm{PCl}_{3}\right]=3.64 \cdot 10^{-3} / 2=1.82 \cdot 10^{-3} \mathrm{M}
$$

$$
\left[\mathrm{PCl}_{5}\right]=\left(1.34 \cdot 10^{-2}+\mathrm{x}\right) / 2=7.78 \cdot 10^{-3} \mathrm{M}
$$

$$
\left[\mathrm{Cl}_{2}\right]=\left(5.8 \cdot 10^{-3}+\mathrm{y}-\mathrm{x}\right) / 2=\left(5.8 \cdot 10^{-3}-2.16 \cdot 10^{-3}+\mathrm{y}\right) / 2=
$$

$$
=\left(3.64 \cdot 10^{-3}+\mathrm{y}\right) / 2=\left(1.82 \cdot 10^{-3}+\mathrm{y} / 2\right) \mathrm{M}
$$

$$
\begin{aligned}
& K_{c}=1.2510^{-3}=\frac{1.82 \cdot 10^{-3} \cdot\left(1.82 \cdot 10^{-3}+y / 2\right)}{7.7810^{-3}} \\
& 9.72 \cdot 10^{-6}=3.18 \cdot 10^{-6}+8.75 \cdot 10^{-4} y \\
& 6.54 \cdot 10^{-6}=8.75 \cdot 10^{-4} y
\end{aligned}
$$

$\mathrm{y}=7.47 \cdot 10^{-3} \mathrm{~mol}$ of Cl_{2} need to be added, which correspond to a mass of:

$$
\mathrm{g}=\mathrm{n} \cdot \mathrm{PM}=7.47 \cdot 10^{-3} \cdot 70.8=0.53 \mathrm{~g}
$$

Exercise 8

- 1 mol of H_{2} and 1 mol of I_{2} are inserted in a box of 1L. In these conditions $\mathrm{Kc}=50$. Calculate the concentration of the three species for the equilibrium reaction $\mathrm{H}_{2}+\mathrm{I}_{2} \leftrightarrows 2 \mathrm{HI}$

Mol	H_{2}	I_{2}	HI
start	1	1	0
consumed/produced	$-x$	$-x$	$+2 x$
equilibrium	$1-x$	$1-x$	$2 x$

$K_{c}=\frac{[H I]^{2}}{\left[H_{2}\right]\left[I_{2}\right]}=\frac{(2 x)^{2}}{(1-x)(1-x)}=50$

$$
x_{1}=1.39
$$

$$
4 x^{2}=50\left(1-2 x+x^{2}\right)
$$

$$
x_{2}=0.77
$$

$$
46 x^{2}-100 x+50=0
$$

$$
\left[\mathrm{H}_{2}\right]=1-0.77=0.23 \mathrm{M}
$$

$x=\frac{100 \pm \sqrt{10000-9200}}{92}$

$$
\left[I_{2}\right]=1-0.77=0.23 \mathrm{M}
$$

$$
[\mathrm{HI}]=2 \cdot 0.77=1.54 \mathrm{M}
$$

