Reactions at equilibrium – part I

Law of the mass action

- The law of mass action is a mathematical model that explains and predicts behaviours of solutions in dynamic equilibrium
- ♦ When in a closed system, with P and T constant, a reaction occurs → the rates at which products are formed and reagents consumed are equal
- ◆ This is a chemical dynamic equilibrium → the reactions are reversible and the concentrations of the reactants and products do not change with time

 $aA+bB \leftrightarrows cC+dD$

$aA+bB \leftrightarrows cC+dD$

- For each dynamic equilibrium reaction we can calculate an equilibrium constant from the ratio between the single reactions rate constants
- This ratio can also be expressed in terms of concentration

$$K_e = \frac{[C]^c [D]^d}{[A]^a [B]^b}$$

Reagents and products can be in the same physical state → homogeneous reaction N_{2(g)} + 3H_{2(g)} ≒ 2NH_{3(g)}
 or in different states → heterogeneous reaction CaCO_{3(s)} ≒ CaO_(s) + CO_{2(g)}

 $K_e = \frac{[C]^c [D]^d}{[A]^a [B]^b}$

♦ What does K measure? The direction of the equilibrium
♦ K > 1 → the reaction is in favour of the products
♦ K = 1 → the reagents and products concentrations are the same
♦ K < 1 → the reaction is in favour of the reagents

 The constant of a reaction written in one way, is the mathematical reciprocal of the same reaction written in the opposite way

 \checkmark $K_e = \frac{1}{K'}$

 $2HI \leftrightarrows H_2 + I_2$

 $K'_{e} = \frac{[H_2][I_2]}{[HI]^2}$

 $H_2 + I_2 \leftrightarrows 2HI$

 $K_e = \frac{[HI]^2}{[H_2][I_2]}$

What does it happen if we change the concentrations of reagents and/or products?

- Given a chemical reaction at equilibrium with T constant, every external intervention, which perturbs the equilibrium, will be counteracted by the system (*Le Chatelier principle*)
- If a dynamic equilibrium is disturbed by changing the conditions, the position of equilibrium moves to reverse the change.
 - Case A: increase of products concentration → the reaction moves towards the reagents (leftwards)
 - Case B: increase of reagents concentration → the reaction moves towards the products (rightwards)

$$CO_{2} + H_{2} \longrightarrow H_{2}O + CO$$
$$K_{c} = \frac{[H_{2}O][CO]}{[CO_{2}][H_{2}]}$$

Equilibrium reactions in the gas phase

 In case of a reaction in the gas phase, the partial pressures of reagents and products can be used instead of their molar concentrations

$$K_p = \frac{P_C^c P_D^d}{P_A^a P_B^b}$$

• It is easy to convert Kp into Kc and viceversa, using the ideal gas law: $P_i V = n_i RT \rightarrow P_i = [J]RT$

 $K_{p} = \frac{P_{C}^{c} P_{D}^{d}}{P_{A}^{a} P_{B}^{b}} = \frac{[C]^{c} (RT)^{c} [D]^{d} (RT)^{d}}{[A]^{a} (RT)^{a} [B]^{b} (RT)^{b}} = \frac{[C]^{c} [D]^{d} (RT)^{c+d}}{[A]^{a} [B]^{b} (RT)^{a+b}} = K_{c} (RT)^{(c+d-a-b)}$

• In case (c+d-a-b)=0, then $K_{n}=K_{n}$

How do we calculate the concentrations at equilibrium?

The following homogeneous reaction in the gas phase: $N_2 + 3H_2 \leftrightarrows 2NH_3$ is started by inserting 0.01 mol of N_2 and 0.01 mol of H_2 in an insulated box of 1L. At equilibrium 10⁻³ mol of NH₃ are formed. Which is the value of K ?

no. moles	N ₂	H ₂	NH ₃
At start	0.01	0.01	0
Consumed/ produced	-X	-3x	+2x
At equilibrium			10 ⁻³

- The stoichiometric coefficient (aka stoichiometric number) of any given component gives the number of molecules which participate in the reaction as written
- In this case -x moles of N_2 are consumed, -3x moles of H_2 are consumed and +2x moles of NH_3 are produced

How do we calculate the concentrations at equilibrium?

- How do we fill in the table? We calculate the algebraic sum of each column
- How do we calculate *x*?

We choose the appropriate column

no. moles	N ₂	H ₂	NH ₃
At start	0.01	0.01	0
Consumed/ produced	-X	-3x	+2x
At equilibrium	0.01-x	0.01-3x	0+2x=10 ⁻³

• In this case x can be calculated from the column of NH_3 :

$$2x=10^{-3} \rightarrow x=5 \cdot 10^{-4} \text{ mol}$$

• Hence we can calculate all the remaining terms
 $N_2 = 0.01 - 5 \cdot 10^{-4} = 9.5 \cdot 10^{-3} \text{ mol}$
 $H_2 = 0.01 - (3 \cdot 5 \cdot 10^{-4}) = 8.5 \cdot 10^{-3} \text{ mol}$

How do we calculate the concentrations at equilibrium?

no. moles	N ₂	H ₂	NH ₃
At start	0.01	0.01	0
Consumed/ produced	-X	-3x	+2x
At equilibrium	9.5·10 ⁻³	8.5·10 ⁻³	10 ⁻³

Now that the table is complete, we can calculate the concentrations of reagents and products at equilibrium and also the equilibrium constant

 $[N_2] = n/V = 0.0095/1 = 9.5 \cdot 10^{-3}M$ $[H_2] = n/V = 0.0085/1 = 8.5 \cdot 10^{-3}M$ $[NH_3] = n/V = 0.001/1 = 1.0 \cdot 10^{-3}M$

 $K_{e} = \frac{[NH_{3}]^{2}}{[N_{2}][H_{2}]^{3}} = \frac{(10^{-3})^{2}M^{2}}{(9.5 \times 10^{-3})M \times (8.5 \times 10^{-3})^{3}M^{3}} = \frac{10^{-6}}{9.5 \times 10^{-3} \times 6.14 \times 10^{-7}} = \frac{1}{5.83 \times 10^{-3}} = 171.53M^{-2}$

Calculate the equilibrium constant of the reaction $N_2 + 3H_2 \leftrightarrows 2NH_3$. This has been started by inserting 9 mol of H_2 and 6 mol of N_2 in a cylinder of 3L. At equilibrium there were 4 mol of NH_2 .

No. moles	H ₂	N_2	NH ₃
At start	9	6	0
consumed/produced	-3x	-X	+2x
At equilibrium			4

 $0+2x = 4 \rightarrow x=2$

Calculate the equilibrium constant of the reaction $N_2 + 3H_2 \leftrightarrows 2NH_3$. This has been started by inserting 9 mol of H_2 and 6 mol of N_2 in a cylinder of 3L. At equilibrium there were 4 mol of NH_2 .

No. moles	H ₂	N ₂	NH ₃
At start	9	6	0
consumed/produced	-3x	-X	+2x
At equilibrium	3	4	4

Now we can calculate the concentrations of the components at equilibrium $[H_2]=n/V = 3/3 = 1M$ $[N_2]=n/V = 4/3 = 1.33M$ $[NH_3]=n/V = 4/3 = 1.33M$ $W = [NH_3]^2 = (1.33)^2 M^2$

$$K_e = \frac{[N H_3]}{[N_2][H_2]^3} = \frac{(1.33)^7 M}{(1.33)M \times (1)^3 M^3} = 1.33M^7$$

At room temperature, the equilbrium constant of the reaction: α -glucose $\Rightarrow \beta$ -glucose in water is 1.8. How many grams of β -glucose are in equilibrium with 100g of α -glucose in 1L? [FW_{glucose} = 180]

 $\mathsf{K}_{\mathsf{c}} = [\beta]/[\alpha] \longrightarrow [\beta] = \mathsf{K}_{\mathsf{c}} \cdot [\alpha] = 1.8 \cdot (100/180) = 1\mathsf{M}$

 $M=g/FW\cdot V \rightarrow g=M\cdot FW\cdot V=1\cdot 180\cdot 1=180g$

• 2 mol of CH_4 and 1 mol of H_2S in the gas phase are filling in a box at 727°C. At equilibrium there are 0.4 mol of H_2 and the total pressure is 0.2 atm. Calculate the volume of the box. $CH_4+2H_2S \leftrightarrows CS_2+4H_2$

moles	CH_4	H_2S	CS ₂	H ₂
At start	2	1	0	0
consumed/produced	-X	-2x	+X	+4x
At equilibrium				0.4
			1	

 $0+4x = 0.4 \rightarrow x=0.1$

◆ 2 mol of CH₄ and 1 mol of H₂S in the gas phase are filling in a box at 727°C. At equilibrium there are 0.4 mol of H₂ and the total pressure is 0.2 atm. Calculate the volume of the box. CH₄+2H₂S \leftrightarrows CS₂+4H₂

moles	CH ₄	H ₂ S	CS ₂	H ₂
At start	2	1	0	0
consumed/produced	-X	-2x	+χ	+4x
At equilibrium	1.9	0.8	0.1	0.4

In order to calculate the volume, we need to calculate the total no. mol at equilibrium: $N_{tot} = 1.9 + 0.8 + 0.1 + 0.4 = 3.2 \text{ mol}$

 $V = n_{tot} RT / V = (3.2 \cdot 0.082 \cdot 1000) / 0.2 = 1312 L$

The equilibrium constant at 793K of the reaction: $2HF \leftrightarrows H_2 + F_2$ is $1.56 \cdot 10^{-2}$. The reaction is started by adding 0.5mol F_2 and 1mol of H_2 to an isothermal box of 10 L. Calculate the molar concentration of the three species at equilibrium.

mol	HF	H_2	F ₂
At start	0	1	0.5
consumed/produced	2x	-X	-X
At equilibrium	2x	1-x	0.5-x

$$K_{c} = \frac{(1 - x)(0.5 - x)}{(2x)^{2}} = 1.56 \times 10^{-2}$$

0.5 - x - 0.5x + x² = 6.24 × 10⁻² x²
0.938x² - 1.5x + 0.5 = 0

It is worth recalling that the solution of a generic second grade equation: $ax^{2}+bx+c=0$ is: $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$

$$x = \frac{1.5 \pm \sqrt{2.25 - 1.876}}{1.876}$$

$$x_1 = 0.474$$

$$x_2 = 1.12$$

Why do we choose x_1 and not x_2 ?

Both values are mathematical correct, BUT in our case x represents the no of moles \rightarrow it must be both a positive number and it must give a positive number after all the calculations

 $\begin{aligned} HF &= 2 \cdot 0.474 = 0.948 \text{ mol} & \rightarrow [HF] &= 0.948/10 = 9.48 \cdot 10^{-2} \text{M} \\ H_2 &= 1 \text{-}x = 0.52 \text{ mol} & \rightarrow [H_2] &= 0.526/10 = 5.26 \cdot 10^{-2} \text{M} \\ F_2 &= 0.5 \text{-}x = 0.026 \text{ mol} & \rightarrow [F_2] &= 0.026/10 = 2.6 \cdot 10^{-3} \text{M} \end{aligned}$

In a box of 0.5L, 8g of PCl₅ are introduced at 250°C. The constant of the reaction in the gaseous phase: PCl₅ \leftrightarrows PCl₃ +Cl₂ is 0.041 M. Calculate the concentration of the three species at equilibrium. [FW_{PCl5}=208]

PCl_s at the beginning = g/FW = 8/208 = 0.038 mol

	moli	PCI ₅	PCI ₃	Cl ₂
	start	0.038	0	0
	consumed/produced	-X	+χ	+χ
r r	equilibrium	0.038-x	Х	X
$K_c = \frac{\frac{x}{V} \times \frac{x}{V}}{\frac{0.038 - x}{V}} = \frac{1}{V(0)}$	$\frac{x^2}{0.038 - x)} = 0.041M$			
V $x^2 = 0.041 \cdot 0.5(0.038)$	$(\mathbf{v}) = 0.0205(0.038 \mathbf{v})$			
$x^{2} = 0.041 \cdot 0.5(0.038 - x) = 0.0205(0.038 - x)$ $x^{2} = 7.79 \cdot 10^{-4} - 0.0205x$				
$x^2 + 0.0205x - 7.79 \cdot 1$	0-4=0			

$$x = \frac{0.0205 \pm \sqrt{4.2 \times 10^{-4} + 31.16 \times 10^{-4}}}{2} = \frac{-0.205 \pm 0.0595}{2}$$
$$x_1 = 0.0195$$
$$x_2 = -0.04$$

 $[PCl_3] = [Cl_2] = x/V = 0.0195/0.5 = 0.039M$

 $[PCl_5] = (0.038 - x)/V = (0.038 - 0.0195)/0.5 = 0.038M$

 4 mol of A and 8 mol of B are introduced in a box of 1L. The equilibrium is attained when there are 4 mol of C in the box. Calculate Kc for the equilibrium: A + 3B ≒ 2C

no. mol	А	В	С
start	4	8	0
Consumed/produced	-X	-3x	+2x
equilibrium			4

C: $0+2x=4 \rightarrow x=2mol$ A: $4-x \rightarrow 4-2=2mol$ B: $8-3x \rightarrow 8-6=2mol$

$$K_c = \frac{[C]^2}{[A][B]^3} = \frac{4^2}{2 \times 2^3} = 1M^{-2}$$

• In a box of 2L at high T, there are 4g of PCl₅. At equilibrium there are $0.8g \text{ of PCl}_3$. Calculate how many grams of Cl₂ are needed to obtain 0.5g of PCl₃. PCl₅ \Rightarrow PCl₃ + Cl₂

Starting quantity of $PCl_5 = 4/208 = 1.92 \cdot 10^{-2}$ mol equilibrium quantity of $PCl_3 = 0.8/138 = 5.8 \cdot 10^{-3}$ mol

mol	PCI ₅	PCI ₃	Cl ₂
start	1.92 ·10 ⁻²	0	0
consumed/produced	-X	+χ	+χ
equilibrium			5.8 ·10 ⁻³

 $[PCl_{5}]_{eq} = 1.92 \cdot 10^{-2} - x = 1.34 \cdot 10^{-2}/2 = 6.7 \cdot 10^{-3} M$ $[PCl_{3}]_{eq} = +x = 5.8 \cdot 10^{-3}/2 = 2.9 \cdot 10^{-3} M$ $[Cl_{2}]_{eq} = +x = 5.8 \cdot 10^{-3}/2 = 2.9 \cdot 10^{-3} M$

$$K_{c} = \frac{(2.9 \, 10^{-3})^{2}}{6.7 \, 10^{-3}} = 1.25 \, 10^{-3} M$$

After adding Cl₂, the quantity of PCl₃ becomes: $0.5/138 = 3.64 \cdot 10^{-3}$ mol The new starting condition is the previous equilibrium point:

mol	PCI ₅	PCI ₃	Cl ₂
start	1.34 ·10 ⁻²	5.8 ·10 ⁻³	5.8 ·10⁻³+y
consumed/produced	+x	-X	-X
equilibrium		3.64.10-3	

This time we can calculate the new *x* from the second column $\rightarrow 5.8 \cdot 10^{-3} - x = 3.64 \cdot 10^{-3} \rightarrow x = 2.16 \cdot 10^{-3} \text{ mol}$

 $[PCl_3] = 3.64 \cdot 10^{-3} / 2 = 1.82 \cdot 10^{-3} M$ $[PCl_5] = (1.34 \cdot 10^{-2} + x)/2 = 7.78 \cdot 10^{-3} M$ $[Cl_2] = (5.8 \cdot 10^{-3} + y - x)/2 = (5.8 \cdot 10^{-3} - 2.16 \cdot 10^{-3} + y)/2 =$ $= (3.64 \cdot 10^{-3} + y)/2 = (1.82 \cdot 10^{-3} + y/2) M$

$$K_{c} = 1.25 \, 10^{-3} = \frac{1.82 \cdot 10^{-3} \cdot (1.82 \cdot 10^{-3} + y/2)}{7.78 \, 10^{-3}}$$

$$9.72 \cdot 10^{-6} = 3.18 \cdot 10^{-6} + 8.75 \cdot 10^{-4} y$$

$$6.54 \cdot 10^{-6} = 8.75 \cdot 10^{-4} y$$

 $y = 7.47 \cdot 10^{-3}$ mol of Cl₂ need to be added, which correspond to a mass of:

 $g = n \cdot PM = 7.47 \cdot 10^{-3} \cdot 70.8 = 0.53g$

1 mol of H₂ and 1 mol of I₂ are inserted in a box of 1L. In these conditions Kc=50. Calculate the concentration of the three species for the equilibrium reaction H₂+I₂ \leftrightarrows 2HI

Mol	H ₂	I ₂	HI
start	1	1	0
consumed/produced	-X	-X	+2x
equilibrium	1-x	1-x	2x

$$K_{c} = \frac{[HI]^{2}}{[H_{2}][I_{2}]} = \frac{(2x)^{2}}{(1-x)(1-x)} = 50$$

$$x_{1} = 1.39$$

$$x_{2} = 0.77$$

$$4x^{2} = 50(1-2x+x^{2})$$

$$46x^{2} - 100x + 50 = 0$$

$$x = \frac{100 \pm \sqrt{10000 - 9200}}{92}$$

$$[H_{2}] = 1-0.77 = 0.23M$$

$$[I_{2}] = 1-0.77 = 0.23M$$

$$[HI] = 2 \cdot 0.77 = 1.54M$$