Colligative properties of the solutions

Colligative properties

- Physical chemical properties of solutions made by a solvent and non-volatile solutes
- They depend on the number of molecules in a given volume of solvent and not on the identity (e.g. size or mass) of the molecules
- Lowering of the vapour pressure (Raoult's law)
- Elevation of boiling point
- Depression of freezing point
- Osmotic pressure

Raoult's law

- The vapour pressure of an ideal solution is dependent on the vapour pressure of each chemical component and on their mole fraction
- The vapour pressure is the pressure of a gas in equilibrium with its own liquid phase
- When we add a solute to the liquid, the vapour pressure varies proportionally to the actual concentration of the solute

$$
\begin{equation*}
\mathrm{P}_{\text {solution }}=\mathrm{P}_{0} x_{0}+\mathrm{P}_{1} x_{1} \tag{a}
\end{equation*}
$$

- Where " 0 " refers to the solvent and " 1 " to the solute

Raoult's law

$$
\mathrm{P}_{\text {solution }}=\mathrm{P}_{0} x_{0}+\mathrm{P}_{1} x_{1}
$$

- Whenever the solute is non volatile $\rightarrow P_{1}=0$

$$
\begin{equation*}
\mathrm{P}_{\text {solution }}=\mathrm{P}_{0} x_{0} \tag{b}
\end{equation*}
$$

- Therefore $\mathrm{P}_{\text {solution }}<\mathrm{P}_{0}$ of the pure solvent
- Since $x 0+x 1=1$, let's rearrange equation (b) as follows:
$\mathrm{P}_{\text {solution }}=\mathrm{P}_{0}\left(1-x_{1}\right)=\mathrm{P}_{0}-\mathrm{P}_{0} x_{1}$
$\mathrm{P}_{0}-\mathrm{P}_{\text {solution }}=\Delta \mathrm{P}=\mathrm{P}_{0} x_{1}$
- Hence the decrease of the solvent vapour pressure $(\Delta \mathrm{P})$ is proportional to the mole fraction of the solute $\left(x_{1}\right)$

Boiling point elevation and freezing point depression

Both properties are proportional to the lowering of the vapour pressure of the solution

- Boiling Point ${ }_{\text {solution }}=$ Boiling Point solvent $+\Delta T_{b}$

Where $\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{m} \mathrm{K}_{\mathrm{b}} i$

- Freezing Point $_{\text {solution }}=$ freezing Point ${ }_{\text {solvent }}-\Delta T_{f}$

Where $\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{m} \mathrm{K}_{\mathrm{f}} i$
K_{b} is the ebullioscopic constant; K_{f} is the cryoscopic constant; the concentration is expressed in molality

What is " i "?

- " i " is the van't Hoff factor $\quad[\mathbf{1}+\boldsymbol{\alpha}(\mathbf{v} \mathbf{- 1})]$
- Where $\boldsymbol{\alpha}$ is the dissociation constant and \boldsymbol{v} is the total number of ions present in the solution
* " i " is a correction factor which accounts for the real concentration of solutes in solutions
- From its definition $\alpha=\frac{n_{\text {disocoiuted }}}{n_{\text {otoul }}} \quad, \alpha$ is a dimensionless number and its value is $0 \leq \alpha \leq 1$

Osmotic pressure

- This is the pressure which needs to be applied to a solution to prevent the inward flow of water across a semipermeable membrane
- The phenomenon of osmotic pressure arises from the tendency of a pure solvent to move through a semipermeable membrane and into a solution containing a solute to which the membrane is impermeable.
- This process is of vital importance in biology as the cell's membrane is selective towards many of the solutes found in living organisms.

Osmotic pressure

- The laws governing the osmotic pressure of solution were formalized by van't Hoff, among others
- The osmotic pressure of a solution at constant temperature is directly proportional to its concentration
- The osmotic pressure of a solution is directly proportional to absolute temperature
- The osmotic pressure units are atm

$$
\pi \mathrm{V}=\mathrm{nRT} i \rightarrow \quad \pi=\mathrm{CRT} i
$$

Where:
C is the molar concentration of the solution,
\mathbf{R} is the ideal gas constant,
T is the absolute temperature and
" i " is van't Hoff factor: : $1+\alpha(v-1)]$

Chemical nature of solutes

- Non volatile solutes can be divided into two main classes:

Electrolytes

- ionic bonds
- highly heteropolar covalent bonds
- water breaks their bonds

Covalent compounds

- covalent bonds
- water dissolves them
without breaking

Exercise 1

- Calculate the osmotic pressure of a solution 0.1 M of urea at $25^{\circ} \mathrm{C}$.

Urea is a covalent compound \rightarrow does not dissociate into water \rightarrow since $\alpha=0$, then $i=[1+\alpha(v-1)]=1$

$$
\pi=\mathrm{CRTi}=0.1^{\cdot} 0.082 \cdot 298 \cdot 1=2.44 \mathrm{~atm}
$$

Exercise 2

Calculate the osmotic pressure of a solution 0.5 M of magnesium chloride $\left(\mathrm{MgCl}_{2}\right)$ at $25^{\circ} \mathrm{C}$.

$$
\begin{aligned}
& \mathrm{MgCl}_{2} \rightarrow \mathrm{Mg}^{2+}+2 \mathrm{Cl}^{-} \quad \text { electrolyte }=\text { salt } \\
& \alpha=1 \text { and } v=3 \rightarrow i=[1+\alpha(v-1)]=[1+1(3-1)]=3 \\
& \Pi=\mathrm{CRTi}=0.5 \cdot 0.082 \cdot 298 \cdot 3=36.65 \mathrm{~atm}
\end{aligned}
$$

Exercise 3

- Calculate the osmotic pressure of a solution made by dissolving 1.5 g of barium chloride $\left(\mathrm{BaCl}_{2}\right)$ in 400 ml of water at 298 K .

$$
\mathrm{BaCl}_{2} \rightarrow \mathrm{Ba}^{2+}+2 \mathrm{Cl}^{-} \quad \alpha=1 ; v=3
$$

$$
\begin{aligned}
& \pi=\text { CRTi }=(\mathrm{g} / \mathrm{FW} \cdot \mathrm{~V}) \mathrm{RT}[1+\mathrm{a}(\mathrm{v}-1)]= \\
& =(1.5 / 208 \cdot 0.4) \cdot 0.082 \cdot 298 \cdot 3=1.32 \mathrm{~atm}
\end{aligned}
$$

Exercise 4

- The osmotic pressure of CaCl_{2} is 5 atm at $32^{\circ} \mathrm{C}$. Calculate the molar concentration and the osmolar concentration.
$\mathrm{CaCl}_{2} \rightarrow \mathrm{Ca}^{2+}+2 \mathrm{Cl}^{-}$

$$
\alpha=1 ; v=3 \quad \rightarrow i=3
$$

$$
\pi=C R T i \quad \rightarrow C=\pi / R T i=5 / 0.082 \cdot 305 \cdot 3=0.067 \mathrm{M}
$$

$\mathrm{Ci}=\pi / \mathrm{RT}=5 / 0.082 \cdot 305=0.2 \mathrm{osM} \rightarrow$ this is the real concentration felt by the solution

Exercise 5

Calculate the osmotic pressure at $27^{\circ} \mathrm{C}$ of a solution made by sodium sulfate $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right) 0.5 \mathrm{M}$ and glycerol 1.5 M
$\mathrm{Na}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{Na}^{+}+\mathrm{SO}_{4}^{2-} \quad$ hence $\alpha=1$ and $v=3$
$\mathrm{C}_{3} \mathrm{H}_{5}(\mathrm{OH})_{3} \quad$ covalent organic compound, $\alpha=0$

$$
\mathrm{C}_{\mathrm{tot}}=\mathrm{C}_{\mathrm{Na} 2 \mathrm{sO4}} \cdot i+\mathrm{C}_{\text {glycerol }}=0.5 \cdot 3+1.5=3.0 \text { osM }
$$

$$
\pi=C_{\text {tot }} R T=3.0 \cdot 0.082 \cdot 300=73.8 \mathrm{~atm}
$$

Exercise 6

The blood osmotic pressure is 7.65 atm at $37^{\circ} \mathrm{C}$. Calculate how many grams of glycerol can be dissolved in 0.5 L of water to obtain a solution isotonic with blood.
$\mathrm{T}=37+273=310 \mathrm{~K}$
Glycerol is a covalent compound, hence $i=1$
$\mathrm{C}=\pi / \mathrm{RT}=7.65 / 0.082 \cdot 310=0.3 \mathrm{M}$
$\mathrm{C}=\mathrm{n} / \mathrm{V}=\mathrm{g} / \mathrm{PM} \cdot \mathrm{V} \quad \Rightarrow \mathrm{g}=\mathrm{C} \cdot \mathrm{FW} \cdot \mathrm{V}=0.3 \cdot 92 \cdot 0.5=13.8 \mathrm{~g}$

Exercise 7

- Calculate the formula weight of a covalent compound, whose solution at $2 \% \mathrm{w} / \mathrm{v}$ has an osmotic pressure of 3 atm at $25^{\circ} \mathrm{C}$.
$\mathrm{T}=25+273=298 \mathrm{~K}$
$\mathrm{C}=\pi / \mathrm{RT}=3 / 0.082 \cdot 298=0.123 \mathrm{M}$
$\mathrm{C}=\mathrm{n} / \mathrm{V}=\mathrm{g} / \mathrm{FW} \cdot \mathrm{V}$
Hence FW $=\mathrm{g} / \mathrm{C} \cdot \mathrm{V}=2 / 0.123 \cdot 0.1=162.6 \mathrm{Da}$

Exercise 8

- The blood osmotic pressure is 7.65 atm at $37^{\circ} \mathrm{C}$. How many grams of glucose are dissolved in 250 ml of water ready to be injected intravenously?

Glucose is a covalent compound $\rightarrow i=1$ the formula is $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$, hence $\mathrm{FW}=180$
$\mathrm{T}=37+273=310 \mathrm{~K}$
$\mathrm{C}=\pi / \mathrm{RT}=7.65 / 0.082 \cdot 310=0.3 \mathrm{M}$
$\mathrm{C}=\mathrm{n} / \mathrm{V}=\mathrm{g} / \mathrm{FW} \cdot \mathrm{V}$
$\mathrm{g}=\mathrm{C} \cdot \mathrm{FW} \cdot \mathrm{V}=0.3 \cdot 180.16 \cdot 0.25=13.51 \mathrm{~g}$

Exercise 9

How many grams of sodium chloride are necessary to have 1 L of a solution with osmotic pressure of 126.29atm at $27^{\circ} \mathrm{C}$?

$$
\begin{aligned}
& \mathrm{NaCl} \rightarrow \mathrm{Na}^{+}+\mathrm{Cl}^{-} \quad \text { hence } \alpha=1, \mathrm{v}=2 \\
& i=[1+\alpha(\mathrm{v}-1)]=2 \\
& \pi=\mathrm{CRT} i=\mathrm{gRT} i / \mathrm{FW} \cdot \mathrm{~V} \\
& g=\frac{F W \pi V}{R T i}=\frac{58.44 \times 126.29 \times 1}{0.082 \times 300 \times 2}=\frac{7380.39}{49.2}=150 \mathrm{~g}
\end{aligned}
$$

Exercise 10

- Calculate the formula weight of a covalent compound, whose solution made by 300 g in 1 L has an osmotic pressure of 25.85 atm at $0^{\circ} \mathrm{C}$.

$$
\begin{gathered}
\pi=\mathrm{CRT} i \quad \Rightarrow \pi=\frac{g R T}{F W V} \\
F W=\frac{g R T}{\pi V}=\frac{300 \times 0.082 \times 273}{25.85 \times 1}=\frac{6715.8}{25.85}=259.79
\end{gathered}
$$

