Colligative properties of the solutions

Colligative properties

- Physical chemical properties of solutions made by a solvent and non-volatile solutes
- They depend on the number of molecules in a given volume of solvent and not on the identity (e.g. size or mass) of the molecules
- Lowering of the vapour pressure (Raoult's law)
- Elevation of boiling point
- Depression of freezing point
- Osmotic pressure

Raoult's law

- The vapour pressure of an ideal solution is dependent on the vapour pressure of each chemical component and on their mole fraction
- The vapour pressure is the pressure of a gas in equilibrium with its own liquid phase
- When we add a solute to the liquid, the vapour pressure varies proportionally to the actual concentration of the solute

$$P_{\text{solution}} = P_0 x_0 + P_1 x_1 \qquad (a)$$

Where "0" refers to the solvent and "1" to the solute

Boiling point elevation and freezing point depression

 Both properties are proportional to the lowering of the vapour pressure of the solution

• Boiling Point_{solution} = Boiling Point_{solvent} + ΔT_{b} Where $\Delta T_{b} = m K_{b} i$

• Freezing Point_{solution} = freezing Point_{solvent} $-\Delta T_f$ Where $\Delta T_f = m K_f i$ K_b is the ebullioscopic constant; K_f is the cryoscopic constant; the concentration is expressed in molality

What is "i"?

• "*i*" is the van't Hoff factor $[1+\alpha(v-1)]$

- Where α is the dissociation constant and v is the total number of ions present in the solution
- *"i"* is a correction factor which accounts for the real concentration of solutes in solutions
- From its definition $\alpha = \frac{n_{dissociated}}{n_{total}}$, α is a dimensionless number and its value is $0 \le \alpha \le 1$

Osmotic pressure

- This is the pressure which needs to be applied to a solution to prevent the inward flow of water across a semipermeable membrane
- The phenomenon of osmotic pressure arises from the tendency of a pure solvent to move through a semipermeable membrane and into a solution containing a solute to which the membrane is impermeable.
- This process is of vital importance in biology as the cell's membrane is selective towards many of the solutes found in living organisms.

Osmotic pressure

- The laws governing the osmotic pressure of solution were formalized by van't Hoff, among others
- The osmotic pressure of a solution at constant temperature is directly proportional to its concentration
- The osmotic pressure of a solution is directly proportional to absolute temperature

```
    The osmotic pressure units are atm
```

```
\pi V = nRTi \rightarrow \pi = CRTi
```

Where:

C is the molar concentration of the solution,

R is the ideal gas constant,

T is the absolute temperature and

"*i*" is van't Hoff factor : $[1+\alpha(v-1)]$

Chemical nature of solutes

 Non volatile solutes can be divided into two main classes:

Electrolytes

Covalent compounds

ionic bonds
highly heteropolar covalent bonds
water breaks their bonds

- covalent bonds
- water dissolves them without breaking

 Calculate the osmotic pressure of a solution 0.1 M of urea at 25°C.

Urea is a covalent compound \rightarrow does not dissociate into water \rightarrow since α =0, then *i*=[1+ α (v-1)]=1

 π =CRTi = 0.1 · 0.082 · 298 · 1 = 2.44 atm

 Calculate the osmotic pressure of a solution 0.5 M of magnesium chloride (MgCl₂) at 25°C.

 $MgCl_{2} \rightarrow Mg^{2+} + 2Cl^{-} \qquad \text{electrolyte} = \text{salt}$ $\alpha = 1 \text{ and } \nu = 3 \qquad \rightarrow i = [1 + \alpha(\nu - 1)] = [1 + 1(3 - 1)] = 3$

 Π = CRTi = 0.5 · 0.082 · 298 · 3 = 36.65 atm

Calculate the osmotic pressure of a solution made by dissolving 1.5g of barium chloride (BaCl₂) in 400ml of water at 298K.

$$BaCl_{2} \rightarrow Ba^{2+} + 2Cl^{-} \qquad \alpha = 1; \nu = 3$$

 π = CRTi = (g/FW ·V)RT[1+a(v-1)] = = (1.5/208 ·0.4)·0.082·298·3 = 1.32 atm

The osmotic pressure of CaCl₂ is 5 atm at 32°C. Calculate the molar concentration and the osmolar concentration.

$$CaCl_{2} \rightarrow Ca^{2+} + 2Cl^{-} \qquad \alpha = 1; \nu = 3 \rightarrow i = 3$$

 $\pi = CRTi$ $\rightarrow C = \pi / RTi = 5 / 0.082 \cdot 305 \cdot 3 = 0.067 M$

Ci = π / RT = 5 / 0.082·305 = 0.2 osM \rightarrow this is the real concentration felt by the solution

Calculate the osmotic pressure at 27°C of a solution made by sodium sulfate (Na $_{2}SO_{4}$) 0.5M and glycerol 1.5M

 $\begin{aligned} \text{Na}_{_2}\text{SO}_{_4} &\rightarrow 2\text{Na}^+ + \text{SO}_{_4}^{^{2-}} & \text{hence } \alpha = 1 \text{ and } \nu = 3 \\ \text{C}_{_3}\text{H}_{_5}(\text{OH})_{_3} & \text{covalent organic compound, } \alpha = 0 \end{aligned}$

 $C_{tot} = C_{Na2SO4} \cdot i + C_{glycerol} = 0.5 \cdot 3 + 1.5 = 3.0 \text{ osM}$

$$\pi = C_{tot}RT = 3.0.0.082.300 = 73.8 atm$$

The blood osmotic pressure is 7.65 atm at 37°C. Calculate how many grams of glycerol can be dissolved in 0.5L of water to obtain a solution isotonic with blood.

T= 37+273 = 310K Glycerol is a covalent compound, hence *i*=1

 $C = \pi / RT = 7.65 / 0.082 \cdot 310 = 0.3M$

 $C = n/V = g/PM \cdot V \implies g = C \cdot FW \cdot V = 0.3 \cdot 92 \cdot 0.5 = 13.8g$

 Calculate the formula weight of a covalent compound, whose solution at 2%w/v has an osmotic pressure of 3 atm at 25°C.

T = 25 + 273 = 298K

 $C = \pi/RT = 3/0.082 \cdot 298 = 0.123 M$

 $C = n/V = g/FW \cdot V$

Hence FW = $g/C \cdot V = 2/0.123 \cdot 0.1 = 162.6$ Da

The blood osmotic pressure is 7.65 atm at 37°C. How many grams of glucose are dissolved in 250ml of water ready to be injected intravenously?

Glucose is a covalent compound \rightarrow i=1 the formula is C₆H₁₂O₆, hence FW=180

T = 37 + 273 = 310K

 $C = \pi/RT = 7.65/0.082 \cdot 310 = 0.3M$

 $C = n/V = g/FW \cdot V$

 $g=C \cdot FW \cdot V = 0.3 \cdot 180.16 \cdot 0.25 = 13.51g$

How many grams of sodium chloride are necessary to have 1L of a solution with osmotic pressure of 126.29atm at 27°C?

NaCl \rightarrow Na⁺ + Cl⁻ hence α =1, ν =2 *i*=[1+ $\alpha(\nu$ -1)] = 2

 π = CRT*i* = gRT*i* / FW· V

 $g = \frac{FW \,\pi \,V}{RTi} = \frac{58.44 \,\text{x} 126.29 \,\text{x} 1}{0.082 \,\text{x} 300 \,\text{x} 2} = \frac{7380.39}{49.2} = 150 \,\text{g}$

 Calculate the formula weight of a covalent compound, whose solution made by 300g in 1 L has an osmotic pressure of 25.85 atm at 0°C.

$$\pi = CRTi \implies \pi = \frac{gRT}{FWV}$$

$$FW = \frac{gRT}{\pi V} = \frac{300 \times 0.082 \times 273}{25.85 \times 1} = \frac{6715.8}{25.85} = 259.79$$