Solutions in the liquid phase

A few definitions

A solution is a homogeneous mixture of 2 or more components in the same physical state.
One or more are in small concentration: solute(s)
One is the most abundant component: solvent

- We have already done exercises on the solutions in the gas phase : gaseous mixtures
- We are not going to do exercises in the solid phase: metallic alloys
- We are going to study extensively the solutions in the liquid phase, or better aqueous solutions:
- Gas compound(s) + liquid compound(s)
- Liquid + liquid
- Solid + liquid
where "liquid" is usually the solvent and, for our purposes, is $\mathrm{H}_{2} \mathrm{O}$

Classification of solutes in aqueous solutions

- Water is the solvent, it is polar: hence it can only dissolve polar molecules
- The polar solutes can be divided into 2 classes:
- Electrolytes (molecules bound by ionic bonds)
- Non-electrolytes (molecules bound by polar covalent bonds)
- Electrolytes in solution readily dissociate into solvated ions
- Non-electrolytes do not dissociate once dissolved

Properties of aqueous solutions

- The physico-chemical properties of solutions depend on the actual quantities of molecules included in them
- The quantitative composition of a given solution is called Concentration
- There are several unit of measurements of concentration: some are dependent on T, some are T-independent

Classification of concentration unit of measurements

T-independent

- Based on the ratio between masses or moles
- Weight \%
- Mole fraction
- Molality

T-dependent

- Based on the ratio between mass and volume
- Volume \%
- Molar concentration
- Normality

T-independent units of measurements

- Weight \%: indicates the ratio betweeen the mass of solute in 100 g of solution ($\% \mathrm{w}=\mathrm{g} / 100 \mathrm{~g}$)
- Mole fraction: ratio between moles of solute and moles of solution (same as for gas, $x_{1}=n_{1} / n_{\text {tot }}$)
- Molality: the amount (in mol) of solute divided by the mass of the solvent in Kg units $\left(m=\mathrm{n}_{\mathrm{i}} / \mathrm{m}_{\text {solvent }}\right)$

T-dependent units of measurements

- Volume \%: indicates the ratio betweeen the mass of solute in 100 ml of solution (\%v= g/100ml)
- Molar concentration: ratio between the amount (in moles) of solute and volume of solution in L units $\left(C_{1}=n_{1} / V_{\text {tot }}=M\right.$ =mol/L)
- Normality: ratio between equivalents of solute and volume of solution in L units; ratio between molar concentration and equivalence factor $\left(N=\right.$ eq. $\left._{\cdot} / V_{\text {tot }}=C_{1} / f_{\text {eq }}\right)$

Dilutions

- When we add a solvent to a given solution the number of moles of solutes remains unchanged
- Hence the product between the molar concentration and the volume is unchanged

$$
C_{1} V_{1}=C_{2} V_{2}
$$

Similarly, if we mix two solutions, the number of moles of solutes are simply the sum of what was present before mixing

$$
C_{3} *\left(V_{1}+V_{2}\right)=\left(C_{1} * V_{1}\right)+\left(C_{2} * V_{2}\right)
$$

Exercise 1

- In which volume do we need to dissolve 20 g of sodium hydrogen carbonate (baking soda, NaHCO_{3}) so that the solution is 0.5 M ?

Molar concentration is defined as: $\quad C_{i}=\frac{n_{i}}{V_{\text {tot }}}=\frac{g_{i}}{\left(M W_{i} * V_{\text {tot }}\right)}$

Hence we can obtain the Volume, by simply re-shuffling the above equation:

$$
V=\frac{g}{\left(M W * C_{i}\right)}=\frac{20}{(84 * 0.5)}=0.476 \mathrm{~L}=467 \mathrm{ml}
$$

Exercise 2

- Calculate the concentration in molality of a solution of sulphoric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right) 11 \%$ w.

Weight \% means that 11 g of acid are in 100 g of solution (acid +water) Hence the solvent content is:

$$
G_{\text {solvent }}=g_{\text {solution }}-g_{\text {solute }}=100-11=89 \mathrm{~g}=0.089 \mathrm{Kg}
$$

$$
m=\frac{n_{\text {solute }}}{K g_{\text {solvent }}}=\frac{g_{\text {solute }}}{\left(M W_{\text {solute }} * K g_{\text {solvent }}\right)}=\frac{11}{(98 * 0.089)}=1.26 \mathrm{~m}
$$

Exercise 3

- The density of Na^{+}in human plasma is $3.4 \mathrm{~g} / \mathrm{L}$. Which is the corresponding molar concentration?
$\mathrm{d}=\mathrm{g} / \mathrm{V}$, hence we can rearrange the definition of Molar concentration as such:

$$
C=\frac{n}{V}=\frac{g}{(M W * V)}=\frac{d}{M W}=\frac{3.4}{23}=0.148 \mathrm{M}
$$

Exercise 4

- Which is the molar concentration of a solution of ammonia $\left(\mathrm{NH}_{3}\right)$ such that 700 ml of this solution added to 300 ml of a solution 0.2 M will give a final ammonia solution 0.12 M ?

This is the case where we are mixing two solutions to obtain a third solution

$$
C_{3} *\left(V_{1}+V_{2}\right)=\left(C_{1} * V_{1}\right)+\left(C_{2} * V_{2}\right)
$$

$$
C_{1}=\frac{\left[C_{3} *\left(V_{1}+V_{2}\right)-\left(C_{2} * V_{2}\right)\right]}{V_{1}}=\frac{[(0.12 * 1)-(0.2 * 0.3)]}{0.7}=8.5710^{-2} \mathrm{M}
$$

Henry's law: solution of gas and liquid

- The mass of a given gas which can be dissolved into a liquid at a fixed T is proportional to the pressure of the gas onto the liquid

$$
\mathrm{c}=\mathrm{k} P_{\mathrm{i}}
$$

$\mathrm{c}=$ concentration of the gas in the solution
$k=$ solubility coefficient of the gas
$P_{i}=$ pressure of the gas over the liquid

- In case the liquid is in equilibrium with a gaseous mixture, the partial pressures law is valid: hence the solubility of each gaseous component is proportional to its partial pressure and is independent of the nature of the mixture

Exercise 5

- The mole fraction of N_{2} in a gasoues mixture is 0.8 . This mixture has a pressure of 3 atm over a liquid underneath. How many ml of N_{2} are going to dissolve in the liquid phase, given that $\mathrm{k}_{\mathrm{N} 2}=18.2 \mathrm{ml} / \mathrm{atm}$?

We can apply Henry's law, but we need to calculate the partial pressure of N_{2} first:

$$
\begin{aligned}
& P_{\mathrm{N} 2}=x_{\mathrm{N} 2} P_{\text {tot }}=0.8^{*} 3=2.4 \mathrm{~atm} \\
& \mathrm{c}=\mathrm{kP} \mathrm{P}_{\mathrm{i}}=18.2^{*} 2.4=43.68 \mathrm{ml}
\end{aligned}
$$

Exercise 6

- At $25^{\circ} \mathrm{C}$ and $1 \mathrm{~atm}, 1.63^{*} 10^{-2} \mathrm{~g}$ of dioxygen are dissolved in 400 ml of water. Calculate how much dioxygen will dissolve at 0.3 atm.

We can use a proportion, given that the only changed variable is the pressure:
$0.0163 \mathrm{~g}: 1 \mathrm{~atm}=\mathrm{xg}: 0.3 \mathrm{~atm} \rightarrow \mathrm{x}=0.0163 * 0.3=4.8910^{-3} \mathrm{~g}$

Normality

- We have just above defined normality as the ratio between molar concentration C and the equivalence factor f_{c}.
- There are three common areas where normality is used as a measure of reactive species in solution:
- In acid-base chemistry, normality is used to express the concentration of protons $(\mathrm{H}+$) or hydroxide ions ($\mathrm{OH}-)$ in a solution. Each solute can produce one or more equivalents of reactive species when dissolved.
- In redox reactions, the equivalence factor describes the number of electrons that an oxidizing or reducing agent can accept or donate.
- In precipitation reactions, the equivalence factor measures the number of ions which will precipitate in a given reaction.

Normality - continued

- $1 / f_{c}$ is an integer number representing:
- Number of H^{+}released by an acid
- Number of OH^{-}released by a base
- Number of exchanged in a redox reaction
- Number of ions dissociated from an ionic compound

$$
\begin{array}{rr}
\text { Ex.: } \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{H}^{+}+\mathrm{SO}_{4}^{2-} & 1 / f_{c}=2 \\
& \mathrm{NaOH} \rightarrow \mathrm{Na}^{+}+\mathrm{OH}^{-}
\end{array}
$$

Exercise 1

- Calculate the normality and the molar concentration of a solution of sulphuric acid obtained by dissolving 49 g of acid in 1L of water.
$\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{H}^{+}+\mathrm{SO}_{4}^{2-}$ is a diprotic acid $\rightarrow 1 / f_{c}=2$

$$
C=\frac{g}{(F W * V)}=\frac{49}{(98 * 1)}=0.5 \mathrm{M}
$$

$$
N=\frac{C}{f_{c}}=0.5 * 2=1 \mathrm{~N}
$$

Exercise 2

- Calculate the normality and the molar concentration of a solution of caustic soda (NaOH) obtained by dissolving 40 g of base in 1 L of water.
$\mathrm{NaOH} \rightarrow \mathrm{Na}^{+}+\mathrm{OH}^{-}$is a monobasic base $\rightarrow 1 / f_{c}=1$

$$
\begin{aligned}
& C=\frac{g}{(F W * V)}=\frac{40}{(40 * 1)}=1 M \\
& N=\frac{C}{f_{c}}=1 * 1=1 N
\end{aligned}
$$

Exercise 3

- 11.72 g of sulphuric acid are dissolved in 2L of water. Calculate the normality and the molar concentration of the soIution.
$\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{H}^{+}+\mathrm{SO}_{4}^{2-}$ is a diprotic acid $\rightarrow 1 / f=2$

$$
C=\frac{g}{(F W * V)}=\frac{11.72}{(98 * 2)}=5.9810^{-2} \mathrm{M}
$$

$$
N=\frac{C}{f_{c}}=5.9810^{-2} * 2=0.12 \mathrm{~N}
$$

Exercise 4

- How many grams of KOH are needed to neutralize 100 ml of HCl 0.8 N ?

Neutralization is a chemical reaction where an acid and a base react completely to form a salt.
This is possible if, and only if
Effective concentration of acid = Effective concentration of base
$\mathbf{N}_{\text {acid }}=\mathbf{N}_{\text {base }}$
$\left[\mathrm{H}^{+}\right]=\mathrm{NV}=0.8^{*} 0.1=0.08 \mathrm{~mol}$ equivalent $\left[\mathrm{OH}^{-}\right]=\left[\mathrm{H}^{+}\right]=0.08$
$g=\left[\mathrm{OH}^{-}\right]^{*} \mathrm{FW}=0.08^{*} 56.1=4.49 \mathrm{~g}$

Exercise 5

- How many grams of $\mathrm{Ba}(\mathrm{OH})_{2}$ are needed to prepare 100 ml of 1 N solution?

$$
N=\frac{C}{f_{c}}=\frac{n_{e q}}{V}=\frac{n}{\left(f_{c} * V\right)}=\frac{g}{\left(F W * f_{c} * V\right)}
$$

$1 / f_{\mathrm{c}}=2$ because $\mathrm{Ba}(\mathrm{OH})_{2}$ is a bibasic base

$$
g=N * F W * f_{c} * V=1 * 171.3 *(1 / 2) * 0.1=8.56 g
$$

Exercise 6

- 12 g of NaOH are able to neutralize 400 ml of HCl . Which is the normality of HCl ?

$$
\begin{aligned}
& N_{\mathrm{NaOH}}=\frac{C}{f_{c}}=\frac{n}{\left(f_{c} * V\right)}=\frac{g}{\left(F W * f_{c} * V\right)}=\frac{12}{(40 * 1 * 0.4)}=0.75 \mathrm{~N} \\
& \mathrm{~N}_{\mathrm{NaOH}}=\mathrm{N}_{\mathrm{HCl}}=0.75 \mathrm{~N}
\end{aligned}
$$

Exercise 7

- 50 ml of a solution of ammonia $\left(\mathrm{NH}_{3}\right) 26 \%$ w are added to 0.5 L of water. Which is the final molar concentration, given that the solution's density is $1.2 \mathrm{~g} / \mathrm{ml}$?

First, we need to convert \%w to molar concentration, then to dilute the solution.

Hence we need to convert the mass of the solution into a corresponding volume:
26% weans 26 g of NH3 in 100 g of solution $d=g / V \rightarrow V=g / d=100 / 1.2=83.33 \mathrm{ml}$

$$
\begin{aligned}
& C_{1}=\frac{n}{V}=\frac{g}{(F W * V)}=\frac{26 * 1000}{(17 * 83.33)}=18.35 \mathrm{M} \\
& \mathrm{C}_{1} \mathrm{~V}_{1}=\mathrm{C}_{2} \mathrm{~V}_{2} \quad C_{2}=\frac{\left(C_{1} * V_{1}\right)}{V_{2}}=\frac{(18.35 * 0.05)}{0.55}=1.67 \mathrm{M}
\end{aligned}
$$

Exercise 8

- During a kidney's checkup, the urine of 1 h is collected. The measured content of inulin (a kidney marker) is 75 mg . In the plasma inulin was $1 \mathrm{mg} \% \mathrm{v}$. Calculate the volume of plasma filtrated by the kidneys in 1 min.

$$
\begin{aligned}
& \text { [inulin] }_{\text {plasma }}=1 \mathrm{mg} \% \mathrm{v}=1 \mathrm{mg} / 100 \mathrm{ml}=0.01 \mathrm{mg} / \mathrm{ml} \\
& \text { [inulin] }_{\text {urine }}=75 \mathrm{mg} / 1 \mathrm{~h}=75 \mathrm{mg} / 60 \mathrm{~min}=1.25 \mathrm{mg} / \mathrm{min}
\end{aligned}
$$

From the ratio we can obtain V/min:
$\frac{[\text { inulin }]_{\text {plasma }}}{[\text { inulin }]_{\text {urine }}}=\frac{1.25 \mathrm{mg} / \mathrm{min}}{(0.01 \mathrm{mg} / \mathrm{ml})}=125 \mathrm{ml} / \mathrm{min}$

