Lecture 2
Solution in the gas phase

A solution in the gas phase is defined when two or more gases are mixed together

In a gaseous mixture we can define the following physical quantities:

- Total no. of moles: $\mathrm{n}_{\mathrm{tot}}=\mathrm{n}_{1}+\mathrm{n}_{2}+\mathrm{n}_{3}+\ldots+\mathrm{n}_{\mathrm{i}}=\Sigma_{1}^{i} n_{i}$
- Mole fraction: $\quad x_{i}=\frac{n_{i}}{n_{\text {tot }}}$
then $x_{1}+x_{2}+x_{3}+\ldots+x_{i}=1$
$0<x i \leq 1$
- Partial Volume: $\mathrm{V}_{\mathrm{i}}=x_{\mathrm{i}} \mathrm{V}_{\text {tot }}$
e.g. the volume the gas would occupy should it be alone, keeping P and T constant
- Partial Pressure: $\mathrm{P}_{\mathrm{i}}=x_{\mathrm{i}} P_{\text {tot }}$
e.g. the fraction of pressure due to gas i

The combined gas law $P V=n R T$ is still valid

- This law does not care about the type of molecules, provided that they are ideal
- At a given Temperature and in a given Volume the total Pressure is determined only by the number of compounds not by their nature
- Hence $\rightarrow \mathrm{P}_{\text {tot }} \mathrm{V}_{\text {tot }}=\mathrm{n}_{\text {tot }} \mathrm{RT}$
-Where $P_{\text {tot }}=\Sigma_{1}^{i} P_{i}$ and $V_{\text {tot }}=\Sigma_{1}^{i} V_{i}$
- This is true whenever there is a solution, namely when the gases do not react with each other

Absolute and relative density of either a gas or a gaseous

 mixture/solution- Absolute density: in general density is defined as the ratio between mass and volume of a given compound; for a gas we can also use the combined gas law to rearrange the formula

$$
d=\frac{g}{V}=\frac{P * M W}{R T}
$$

- Relative density of one gas with respect to a second one ($\mathrm{P}, \mathrm{T}, \mathrm{V}$ constant): this is the ratio between the densities of the two components, which indeed is equal to the ratio of their MW

$$
d_{r}=\frac{d_{1}}{d_{2}}=\frac{M W_{1}}{M W_{2}}
$$

Absolute and relative density of either a gas or a gaseous mixture/solution

- Density of a gaseous mixture: by combining the previous two definitions and what we have learned about the properties of a gaseous solution, we can derive the following formula, in which P_{j} is the partial pressure and MW_{j} is the molecula rweight of the j -th component

$$
d_{m i x}=\frac{\left\{\Sigma_{1}^{n} P_{j} M W_{j}\right\}}{R T}=\frac{\left\{P_{1} M W_{1}+P_{2} M W_{2}+\ldots+P_{n} M W_{n}\right\}}{R T}
$$

Exercise 1

- A sample of air is made by 0.054 mol of O_{2} and 0.203 mol of other gases (mostly N_{2}). Calculate the partial pressure of O_{2} in the air, given that $\mathrm{P}=1 \mathrm{~atm}$.

$$
P_{\mathrm{O} 2}=\mathrm{x}_{\mathrm{O} 2} P_{\mathrm{tot}}
$$

Before applying this formula, we need to calculate dioxygen mole fraction:

$$
\begin{aligned}
& x_{O_{2}}=\frac{n_{O_{2}}}{n_{\text {tot }}}=\frac{0.054}{0.054+0.203}=0.21 \\
& \mathrm{P}_{\mathrm{O} 2}=\mathrm{x}_{\mathrm{o} 2} \mathrm{P}_{\mathrm{tot}}=0.21 \times 1 \mathrm{~atm}=0.21 \mathrm{~atm}
\end{aligned}
$$

Excercise 2

- Calculate the density of a gaseous solution made by methane and molecular nitrogen at $27^{\circ} \mathrm{C}$, given that $\mathrm{P}_{\mathrm{CH} 4}=$ 0.08 atm and $\mathrm{P}_{\mathrm{N} 2}=0.1 \mathrm{~atm}$.

Let's apply the formula: $\quad d_{m i x}=\frac{\left\{\Sigma_{1}^{n} P_{j} M W_{j}\right\}}{R T}$
$\mathrm{T}=273+27=300 \mathrm{~K}$
MW1 $=12+4=16 \mathrm{Da}$
MW2 $=14+14=28 \mathrm{Da}$

$$
d_{\text {mix }}=\frac{(16 \times 0.08)+(28 \times 0.1)}{0.082 \times 300}=0.166 \mathrm{~g} l^{-1}
$$

Exercise 3

- A solution of methane and sulfur dioxide at $27^{\circ} \mathrm{C}$ and 1 atm fills up a volume of 2 L . After having eliminated SO_{2}, methane fills up a volume of 1.4 L at $18^{\circ} \mathrm{C}$ and 1 atm .
Calculate the partial pressures of the gases in the solution.

$$
\begin{aligned}
& P_{i}=x_{i} P_{\text {tot }}=\frac{\left(n_{i} P \text { Ptot }\right)}{n_{\text {tot }}} \quad n_{\text {tot }}=\frac{\left(P_{\text {tot }} V_{\text {tot }}\right)}{R T_{1}}=\frac{1 \mathrm{~atm} * 2 \mathrm{~L} * \mathrm{molK}}{(0.082 \mathrm{Latm} * 300 \mathrm{~K})}=8.1310^{-2} \mathrm{~mol} \\
& n_{\text {CH }_{4}}=\frac{P_{C H_{A}} V_{C H_{4}}}{R T_{2}}=\frac{1 \mathrm{~atm} \times 1.4 l \times \mathrm{mol} \times \mathrm{K}}{0.082 l \times a t m \times 291 \mathrm{~K}}=5.87 \times 10^{-2} \mathrm{~mol}
\end{aligned}
$$

$$
P_{C H_{4}}=\frac{n_{C H_{4}} P_{\text {bot }}}{n_{\text {tot }}}=\frac{5.87 \times 10^{-2} \mathrm{~mol} \times 1 \mathrm{~atm}}{8.13 \times 10^{-2} \mathrm{~mol}}=0.72 \mathrm{~atm}
$$

$$
P_{\mathrm{sO} 2}=P_{\mathrm{tot}}-P_{\mathrm{CH} 4}=1-0.72=0.28 \mathrm{~atm}
$$

Exercise 4

- Calculate the density of molecular nitrogen at $37^{\circ} \mathrm{C}$ and 608 mmHg .
$\mathrm{T}=273+37=310 \mathrm{~K}$
$\mathrm{P}=608 / 760=0.8 \mathrm{~atm}$
$M W=14+14=28 \mathrm{Da}=28 \mathrm{~g} / \mathrm{mol}$

$$
d=\frac{M W * P}{R T}=\frac{28 * 0.8}{(0.082 * 310)}=0.88 \mathrm{~g} / \mathrm{l}
$$

Exercise 5

- An unknown gas has density= $1.8 \mathrm{~g} / \mathrm{L}$. At the same values of T and P, N_{2} has density= $1.35 \mathrm{~g} / \mathrm{L}$. Which is the molecular weight of the gas?

We can calculate the relative density of gas1 with respect to N_{2} :

$$
\begin{aligned}
& \frac{d_{1}}{d_{N 2}}=\frac{M W_{1}}{M W_{N 2}} \\
& M W_{1}=\frac{d_{1} * M W_{N 2}}{d_{N 2}}=\frac{1.8 * 28}{1.35}=37.33 \mathrm{Da}
\end{aligned}
$$

Exercise 6

Calculate $\mathrm{P}_{\text {tot }}$ of a gaseous mixture made by 7 g of N_{2}, 3.84 g of $\mathrm{O}_{2}, 14.2 \mathrm{~g}$ of Cl_{2} in a cylinder of 10 L at $27^{\circ} \mathrm{C}$.

$$
n_{\text {tot }}=\frac{g_{N 2}}{M W_{N 2}}+\frac{g_{O 2}}{M W_{O 2}}+\frac{g_{C l 2}}{M W_{C 12}}=\frac{7}{28}+\frac{3.84}{32}+\frac{14.2}{70.9}=0.57 \mathrm{~mol}
$$

$$
P_{\text {tot }}=\frac{n_{\text {tot }} * R * T}{V_{\text {tot }}}=\frac{0.57 \mathrm{~mol} * 0.082 \mathrm{~L} * \mathrm{~atm} * 300 \mathrm{~K}}{(10 \mathrm{~L} * \mathrm{~mol} * K)}=1.4 \mathrm{~atm}
$$

Exercise 7

- A balloon can fly because the density of the hot air inside is smaller than that of the external air.
At which temperature does the air reach d=1.169 g/L at 1atm?

$$
\left(<\mathrm{MW}_{\mathrm{air}}>=28.8 \mathrm{Da}\right)
$$

$$
\begin{aligned}
& d=\frac{P * M W}{R T} \rightarrow \text { hence we can derive } \mathrm{T} \text { from this formula } \\
& T=\frac{(P * M W)}{(R * d)}=\frac{(1 * 28.8)}{(0.082 * 1.169)}=300.44 \mathrm{~K}
\end{aligned}
$$

Exercise 8

- Calculate the density of carbon dioxide in standard conditions.

Standard conditions: T=273K; $\mathrm{P}=1 \mathrm{~atm}$
Molar Volume $=\mathrm{V}$ occupied by 1 mol of gas in standard condition

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{m}}=22.4 \mathrm{~L} ; \quad 1 \mathrm{~mol}_{\mathrm{CO2}}=44 \mathrm{~g} \\
& d=\frac{g_{m}}{V_{m}}=\frac{44 \mathrm{~g}}{22.4 \mathrm{~L}}=1.96 \mathrm{~g} / \mathrm{l}
\end{aligned}
$$

Exercise 9

- A mixture of $50 \% \mathrm{He}$ and $50 \% \mathrm{Xe}$ is at $100^{\circ} \mathrm{C}$ and 0.8 atm . Which are the partial pressures of the two gases?
50% means 50 g of compound 1 in 100 g of solution (in this case comp1 +comp2)

Let's start calculating the moles of the two gases corresponding to 50 g , then we can calculate the mole fractions and finally the partial pressures

$$
\begin{array}{rlr}
n_{H e}=\frac{g}{M W}=\frac{50}{4}=12.5 \mathrm{~mol} & n_{X e}=\frac{g}{M W}=\frac{50}{131.29}=0.38 \mathrm{~mol} \\
\mathrm{n}_{\text {tot }}=\mathrm{n}_{\mathrm{He}}+\mathrm{n}_{\mathrm{Xe}}=12.5+0.38=12.88 \mathrm{~mol} & \\
P_{\text {He }}=x_{H e} * P_{\text {tot }}=\frac{n_{H e} * P_{\text {tot }}}{n_{\text {tot }}}=\frac{12.5 * 0.8}{12.88}=0.78 \mathrm{~atm} & \mathrm{P}_{\mathrm{Xe}}=\mathrm{P}_{\text {tot }}-\mathrm{P}_{\text {He }}=0.8-0.78=0.02 \mathrm{~atm}
\end{array}
$$

Exercise 10

- The density of dioxygen is $1.43 \mathrm{~g} / \mathrm{L}$ in standard conditions. Which is its density at $20^{\circ} \mathrm{C}$ and 1.5 atm ?

We have two options: either we calculate d_{2} with the standard formula or we use a proportion to compare the two values
(1) $\quad d_{2}=\frac{P_{2} * M W}{R T_{2}}=\frac{1.5 * 32}{(0.082 * 293)}=1.99 \mathrm{~g} / L$
(2) $\frac{d_{1}}{d_{2}}=\frac{P_{1} * M W}{R T_{1}} *\left(\frac{R T_{2}}{\left(P_{2} * M W\right)}\right)=\frac{P_{1} * T_{2}}{\left(T_{1} * P_{2}\right)}$

$$
d_{2}=\frac{\left(d_{1} * T_{1} * P_{2}\right)}{\left(P_{1} * T_{2}\right)}=\frac{1.43 * 273 * 1.5}{(1 * 293)}=1.99 \mathrm{~g} / \mathrm{L}
$$

Exercise 11

4 L of N_{2} and 1 L of O_{2} (measured at standard conditions) are inserted in an empty cylinder of 8 L at $27^{\circ} \mathrm{C}$. Calculate the partial pressure of the two gases.

$$
\begin{aligned}
& n_{N 2}=\frac{P_{1} * V_{1}}{R T_{1}}=\frac{1 * 4}{(0.082 * 273)}=0.179 \mathrm{~mol} \\
& \mathrm{n}_{\text {tot }}=\mathrm{n}_{\mathrm{N} 2}+\mathrm{n}_{\mathrm{o} 2}=0.179+0.045=0.224 \mathrm{~mol} \\
& P_{\text {tot }}=\frac{n_{\text {tot }} * R * T_{2}}{V_{2}}=\frac{0.224 * 0.082 * 300}{8}=0.687 \mathrm{~atm} \\
& P_{N 22}=x_{N 2} * P_{\text {oto }}=\frac{n_{N ⿰ 亻} * P_{\text {tot }}}{n_{\text {oto }}}=\frac{0.179 * 0.687}{0.224}=0.55 \mathrm{~atm} \\
& \mathrm{P}_{\mathrm{oz}}=\mathrm{P}_{\text {tot }}-\mathrm{P}_{\mathrm{N} 2}=0.689-0.55=0.14 \mathrm{~atm}
\end{aligned}
$$

$$
n_{02}=\frac{1 * 1}{(0.082 * 273)}=0.045 \mathrm{~mol}
$$

alternatively:

Exercise 11 -continued

- Remember the definition of partial volume:

$$
\mathrm{V}_{\mathrm{N} 2}=\mathrm{x}_{\mathrm{N} 2} \mathrm{~V}_{\mathrm{tot}}
$$

hence we could have calculated the mole fraction from these data:

$$
\begin{array}{lr}
x_{N 2}=\frac{V_{N 2}}{V_{\text {tot }}}=\frac{4}{5}=0.8 & x_{O 2}=\frac{V_{O 2}}{V_{\text {tot }}}=\frac{1}{5}=0.2 \\
\frac{P_{1} * V_{1}}{T_{1}}=\frac{P_{2} * V_{2}}{T_{2}} & P_{2}=P_{\text {tot }}=\frac{P_{1} * V_{1} * T_{2}}{\left(T_{1} * V_{2}\right)}=\frac{1 * 5 * 300}{(273 * 8)}=0.687 \mathrm{~atm}
\end{array}
$$

$$
\begin{aligned}
& P_{\mathrm{N} 2}=x_{\mathrm{N} 2} P_{\mathrm{tot}}=0.8^{*} 0.687=0.55 \mathrm{~atm} \\
& P_{\mathrm{O} 2}=P_{\text {tot }}-P_{\mathrm{N} 2}=0.687-0.55=0.14 \mathrm{~atm}
\end{aligned}
$$

