Equahois of motion

$$
\begin{aligned}
& H=\sum_{i} \frac{p_{i}^{2}}{2 m s^{2}}+U+\frac{p_{s}^{2}}{2 Q}+g k T \ln s \\
& \left\{\begin{array}{l}
\dot{r}_{2}=\frac{\partial H}{\partial \bar{p}_{i}}=\frac{\vec{p}_{i}}{m s^{2}} \\
\dot{p}_{i}=-\frac{\partial H}{\partial \vec{q}_{i}}=-\frac{\partial U}{\partial \vec{r}_{i}}=\vec{F}_{2} \\
\dot{s}=\frac{\partial H}{\partial p_{s}}=\frac{p_{s}}{Q} \\
\dot{p}_{s}=-\frac{\partial H}{\partial s}=2 \sum_{i} \frac{p_{i}^{2}}{2 m s^{3}}-\frac{g k T}{s}
\end{array}\right.
\end{aligned}
$$

Now we change variables

$$
\begin{aligned}
& \text { we change } \quad \vec{p}_{2} \Leftrightarrow \bar{p}_{2}^{\prime}=\frac{\bar{p}_{2}}{s} \\
& t \rightarrow \tau \\
& \frac{d t}{s^{\alpha}}=d \tau
\end{aligned}
$$

We start from

$$
\dot{r}_{i}=\frac{d r_{i}}{d t}=\frac{\vec{p}_{i}}{m s^{2}} \Longrightarrow \frac{d \bar{r}_{i}}{d \tau}=\frac{d \vec{r}_{1}}{d t} s^{\alpha}=\frac{\bar{p}_{i}}{m s^{2}} s^{\alpha}=\frac{\bar{p}_{i}^{\prime}}{m} s^{\alpha-1}
$$

The relation between $\frac{d \bar{r}_{2}}{d \tau}$ and \bar{p}_{i}^{\prime} is CANONICAL if we fix $\alpha=1$

Thus, from now on we set $\alpha=1 \quad g=3 N$

For $\quad \alpha=1 \quad g=3 N$
(a) $\frac{d \bar{r}_{i}}{d \tau}=\frac{\bar{p}_{i}^{\prime}}{m}$
(b)

$$
\begin{aligned}
\frac{d \bar{p}_{2}^{\prime}}{d \tau} & =s \frac{d}{d t}\left(\frac{\bar{p}_{2}}{s}\right)=s\left[\frac{\dot{\bar{p}}_{2}}{s}-\frac{P_{i}}{s^{2}} \dot{s}\right] \\
& =\dot{\bar{p}}_{2}-\bar{p}_{2}^{\prime} \dot{s}=\bar{F}_{2}-\frac{1}{Q} p_{s} \stackrel{\rightharpoonup}{P}_{2}^{\prime}=\bar{F}_{2}-\frac{P_{s}}{Q} \bar{P}_{2}^{\prime}
\end{aligned}
$$

(c)

$$
\frac{d s}{d \tau}=S \dot{S}=\frac{s p s}{Q}
$$

(d)

$$
\frac{d p_{s}}{d \tau}=s \dot{p}_{s}=2 s \sum_{i} \frac{\dot{p}_{i}^{2}}{2 m s^{3}}-3 N k T=2\left(\sum_{i} \frac{p^{12}}{2 m}-\frac{3}{2} N k T\right)
$$

COMMENTS: $(a),(b),\left(d^{\prime}\right)$ are independent of s We only need to solve them.
$(a)+(b)$ give the "Newton" equation

$$
m \frac{d^{2} r_{i}}{d \tau^{2}}=\bar{F} ;-\frac{1}{Q} P_{s} m \bar{v}_{i} \quad \bar{v}=\frac{d \bar{r}}{d \tau}
$$

There is a velocity-dependent term

- For $p_{s}>0$ it acts as a friction, it decreases the energy of the system.
- For $p_{s}<0$ it gives energy to the system p_{s} is the reservoir variable: the system exchanges energy with the reservoir by means of p_{s}

The dinamics of p_{S} is consoled by

$$
\frac{d p_{s}}{d \tau}=2\left(\sum_{i=1} \frac{p_{i}^{\prime \prime^{2}}}{2 m}-\frac{3}{2} N k T\right)
$$

If the kinetic energy is larger than $\frac{3}{2} N k T$, then $\frac{d p_{s}}{d \tau}>0 \Longrightarrow p_{s}$ increases, eventually it becomes positive, therefore it acts as a friction on the system, reducing the kinetic energy

If instead the kinetic energy is smaller than $\frac{3}{2}$ W KT then
$\frac{d p_{s}}{d \tau}<0 \Rightarrow p_{s}$ decreases, eventually it becomes negative, therefore it proundes additional energy to the system and the kinetic energy increases

The role of p_{s} is that of guaranteeing that the kinetic energy fluctuates around $\frac{3}{2} N k T$, the average value in the canonical ensemble.

The canonical energy is not conserved

$$
\begin{aligned}
& \frac{d}{d \tau}\left[\sum_{i} \frac{p_{i}^{2!}}{2 m}+U\right]= \\
& =\sum_{i} \frac{p_{i}^{\prime}}{m} \cdot \frac{d p_{i}^{\prime}}{d \tau}+\sum_{i} \frac{\partial U}{\partial \bar{r}_{i}} \cdot \frac{d \bar{r}_{i}}{d \tau} \quad \text { (using the egs. of } \\
& =\sum_{i} \frac{\bar{p}_{1}^{\prime}}{m} \cdot\left(\bar{F}_{2}-\frac{p_{s}}{Q} \bar{p}_{2}^{\prime}\right)-\sum_{i} \bar{F}_{1} \cdot \frac{\bar{p}_{i}^{\prime}}{m} \\
& =-\frac{2 p_{s}}{Q} \sum_{i} \frac{p_{i}^{\prime}}{2 m} \quad \text { ES EXPECTED } \\
& \text { the enerou decreases for } p_{s}
\end{aligned}
$$

Correction: Reverse the inequalities at the right increases for $P_{s}>0$
If we include-the energy of the reservoir, the total energy is of course conserved

$$
\begin{aligned}
& \frac{d}{d \tau}\left(\frac{p_{s}^{2}}{2 Q}+3 N k T \ln s\right)=\frac{P_{s}}{Q} \frac{d p_{s}}{d \tau}+\frac{3 N k T}{s} \frac{d s}{d \tau}= \\
& \quad=\frac{2 p_{s}}{Q}\left(\sum_{i} \frac{p_{i}^{12}}{2 m}-\frac{3}{2} N k T\right)+3 N k T \frac{1}{s} \frac{s p_{s}}{Q} \\
& \quad=\frac{2 p_{s}}{Q} \sum_{i} \frac{P_{i}^{12}}{2 m}
\end{aligned}
$$

The energy flows from system to reservoir but the total energy is constant.

Mom entum conservation
Let $\vec{P}=\sum_{i} \bar{p}_{2}^{\prime}$ (total momentum)

$$
\frac{d \bar{P}}{d \tau}=\sum_{i} \frac{d \vec{P}_{i}^{\prime}}{d \tau}=\sum_{i} \bar{F}_{i}-\frac{P_{s}}{Q} \sum_{i} \bar{P}_{i}^{\prime}
$$

In the absence of external forces $\sum_{1} \bar{F}_{1}=0$ (III prinaple of dynamics)
$\frac{d \bar{P}}{d \tau}=-\frac{P_{s}}{Q} \stackrel{\rightharpoonup}{P} \quad$ Now we use $\quad \frac{P_{s}}{Q}=\frac{1}{s} \frac{d s}{d \tau}$
\Downarrow

$$
\frac{d \bar{P}}{d \tau}=-\frac{1}{s} \bar{P} \frac{d s}{d \tau} \Rightarrow s \frac{d \bar{P}}{d \tau}+\bar{P} \frac{d s}{d \tau}=0 \Rightarrow \frac{d}{d \tau}(s \bar{P})=0
$$

The quantity $(S \bar{P})$ is conserved

Same conjecture as in the standard case.
The relevant configuration correspond to $\bar{P}=0$ (at least for N not too small)

