1 Langevin Equation

We wish to devise an algorithm for the Langevin equation

$$
m \frac{d v}{d t}=F(r(t))-\gamma v(t)+\alpha \eta(t)
$$

We consider a discrete-time dynamics with time step Δt.
We first consider a time s with $t<s<t+\Delta t$, and integrate the Langevin equation obtaining

$$
m \int_{t}^{s} d p \dot{v}(p)=\int_{t}^{s} d p[F(r(p))-\gamma v(p)+\alpha \eta(p)]
$$

so that

$$
\begin{equation*}
v(s)=v(t)+\frac{1}{m} \int_{t}^{s} d p F(r(p))-\frac{\gamma}{m} \int_{t}^{s} d p v(p)+\frac{\alpha}{m} W(s-t) \tag{1}
\end{equation*}
$$

Now, we integrate in s from t up to $t+\Delta t$:

$$
\int_{t}^{t+\Delta t} d s v(s)=v(t) \Delta t+\int_{t}^{t+\Delta t} d s\left[\frac{1}{m} \int_{t}^{s} d p F(r(p))-\frac{\gamma}{m} \int_{t}^{s} d p v(p)+\frac{\alpha}{m} W(s-t)\right]
$$

which gives $(F(p)=F(r(p))$ as usual $)$

$$
r(t+\Delta t)=r(t)+v(t) \Delta t+\int_{t}^{t+\Delta t} d s\left[\frac{1}{m} \int_{t}^{s} d p F(p)-\frac{\gamma}{m} \int_{t}^{s} d p v(p)\right]+\frac{\alpha}{m} u(\Delta t)
$$

Up to now, everything is exact. We wish now to perform an approximation with an error of order Δt^{3}. We use the simplest approximation for the two integrals:

$$
\int_{t}^{t+\Delta t} d s \int_{t}^{s} d p F(p)=\int_{t}^{t+\Delta t} d s \int_{t}^{s} d p[F(t)+O(\Delta t)]=\frac{1}{2} \Delta t^{2} F(t)+O\left(\Delta t^{3}\right)
$$

and

$$
\int_{t}^{t+\Delta t} d s \int_{t}^{s} d p v(p)=\int_{t}^{t+\Delta t} d s \int_{t}^{s} d p[v(t)+O(\Delta t)]=\frac{1}{2} \Delta t^{2} v(t)+O\left(\Delta t^{3}\right)
$$

We thus obtain the recursion

$$
r(t+\Delta t)=r(t)+v(t) \Delta t+\frac{1}{2 m} F(t) \Delta t^{2}-\frac{\gamma}{2 m} v(t) \Delta t^{2}+\frac{\alpha}{m} u(\Delta t)
$$

which generalizes the usual Verlet formula. No approximation has been made on the noise term.
We also need a recursion relation for the velocity. We go back to the exact expression (1) and set $s=t+\Delta t$.

$$
v(t+\Delta t)=v(t)+\frac{1}{m} \int_{t}^{t+\Delta t} d p F(r(p))-\frac{\gamma}{m} \int_{t}^{t+\Delta t} d p v(p)+\frac{\alpha}{m} W(\Delta t)
$$

The velocity integral can be don exactly:

$$
\int_{t}^{t+\Delta t} d p v(p)=r(t+\Delta t)-r(t)
$$

The integral over the force is treated as in the standard Verlet case, so that the neglected terms are of order Δt^{3} :

$$
\int_{t}^{t+\Delta t} d p F(r(p))=\frac{\Delta t}{2}[F(t+\Delta t)+F(t)] .
$$

Therefore, we obtain the recursion

$$
v(t+\Delta t)=v(t)+\frac{\Delta t}{2 m}[F(t+\Delta t)+F(t)]-\frac{\gamma}{m}[r(t+\Delta t)-r(t)]+\frac{\alpha}{m} W(\Delta t) .
$$

We now discuss the practical implementation. Suppose we have computed $r(t), v(t)$ and $F(t)=$ $F(r(t))$. We wish to compute the same quantities at time $t+\Delta t$. We proceed as follows:

- 1) we compute the independent Gaussian random number with zero mean and unit variance ξ and θ and set

$$
W(\Delta t)=\sqrt{\Delta t} \xi \quad u(\Delta t)=\frac{1}{2}(\Delta t)^{3 / 2}\left(\xi+\frac{1}{\sqrt{3}} \theta\right) ;
$$

- 2) we compute the new position using

$$
r(t+\Delta t)=r(t)+v(t) \Delta t+\frac{1}{2 m} F(t) \Delta t^{2}-\frac{\gamma}{2 m} v(t) \Delta t^{2}+\frac{\alpha}{m} u(\Delta t) ;
$$

- 3) we compute the force $F(t+\Delta t)$;
- 4) we compute the new velocity:

$$
v(t+\Delta t)=v(t)+\frac{\Delta t}{2 m}[F(t+\Delta t)+F(t)]-\frac{\gamma}{m}[r(t+\Delta t)-r(t)]+\frac{\alpha}{m} W(\Delta t) .
$$

