THE STARTING CONFIGURATION

6) Positions: randomly in the box. For each particle

\[x_i = L \times \text{RAN}(\cdot) \]
\[y_i = L \times \text{RAN}(\cdot) \]
\[z_i = L \times \text{RAN}(\cdot) \]

- Velocities. Two requirements:
 (a) \(\vec{P} = 0 \) (center-of-mass momentum)
 This relation should be satisfied exactly.
 (b) We would like a velocity distribution such that the temperature is approximately \(T_{ini} \). (approximate requirement)

A simple algorithm

(a) generate for each particle

\[v_{ix} = \text{RAN} - 0.5 \]
\[v_{iy} = \text{RAN} - 0.5 \]
\[v_{iz} = \text{RAN} - 0.5 \]

(b) compute

\[V_x = \sum_i v_{ix} \]
\[V_y = \sum_i v_{iy} \]
\[V_z = \sum_i v_{iz} \]
(c) redefine for all \(i; 1 \ldots N \)

\[
\begin{align*}
 \nu_{i\,x} &= \nu_{i\,x} - \frac{1}{N} \nu_x \\
 \nu_{i\,y} &= \nu_{i\,y} - \frac{1}{N} \nu_y \\
 \nu_{i\,z} &= \nu_{i\,z} - \frac{1}{N} \nu_z
\end{align*}
\]

\(\uparrow \) (\(= \) in the "C-language" meaning)

Now condition (a) is satisfied

(d) We would like to have (reduced units)

\[
\sum \frac{1}{2} \nu_i^2 = \frac{3}{2} N T_{\text{ini}}
\]

Now this is obtained by a rescaling of the velocities, i.e. \(\bar{v} \) is replaced by \(\alpha \bar{v} \).

Let us compute \(\alpha \): define \(\bar{v}_i' = \alpha \bar{v}_i \)

where \(\bar{v}_i \) is the result of step (c) and \(\nu_i' \) is such that

\[
\sum \frac{1}{2} \nu_i'^2 = \frac{3}{2} N T_{\text{ini}}
\]

We have

\[
\alpha^2 \sum_i \nu_i^2 = 3 N T_{\text{ini}}
\]

\[
\alpha = \left(\frac{3 N T_{\text{ini}}}{\sum_i \nu_i^2} \right)^{1/2}
\]

The velocities \(\nu_i' \) are the starting velocities.