1 A different view of the Verlet update

We wish now to give a new look at the Verlet transformation, that is useful when discussing more general algorithms. From a theoretical point of view the transformation is obtained by combining two distinct transformations $\exp \left(i L_{p} t\right)$ and $\exp \left(i L_{q} t\right)$. We wish to discuss these two transformations in more detail.
The operator L_{p} can be viewed as a Liouvillian associated with the Hamiltonian $H(p, q)=U(q)$. The operator $\exp \left(i L_{p} t\right)$ generates the transformation

$$
Q=q \quad P=p+F(q) t ;
$$

It is quite easy to verify that this transformation is canonical with $H_{2}(P, Q)=H(p(P, Q), q(P, Q))=$ $H(P-F(Q) t, Q)=U(Q)=H(P, Q)$. As we have discussed in the previous lesson this implies

$$
i L_{p}(q, p) A(Q(q, p), P(q, p))=\left[i L_{p}(Q, P) A(Q, P)\right]_{Q=Q(q, p), P=P(q, p)} .
$$

The same argument applies to L_{q}, which is a Liouvillian associated with $H(p, q)=p^{2} /(2 m)$. The operator $\exp \left(i L_{q} t\right)$ generates the transformation

$$
Q=q+\frac{p t}{m} \quad P=p
$$

It is quite easy to verify that the transformation is canonical with $H_{2}(P, Q)=H(p(P, Q), q(P, Q))=$ $H(P, Q-P t / m)=P^{2} /(2 m)=H(P, Q)$. As we have discussed in the previous lesson, this implies

$$
i L_{q}(q, p) A(Q(q, p), P(q, p))=\left[i L_{q}(Q, P) A(Q, P)\right]_{Q=Q(q, p), P=P(q, p)} .
$$

We can thus reinterpret the three steps that are relevant for the Verlet dynamics as follows. Suppose that the system is in point q_{0}, p_{0} at time t. The first step is

$$
\binom{p_{1}}{q_{1}}=\left[\exp \left[i L_{p}(q, p) \Delta t / 2\right]\binom{p}{q}\right]_{q=q_{0}, p=p_{0}}
$$

The second step corresponds to

$$
\binom{p_{2}}{q_{2}}=\left[\exp \left[i L_{q}(q, p) \Delta t\right] \exp \left[i L_{p}(q, p) \Delta t / 2\right]\binom{p}{q}\right]_{q=q_{0}, p=p_{0}}
$$

which can be rewritten as

$$
\binom{p_{2}}{q_{2}}=\left[\exp \left[i L_{q}(q, p) \Delta t\right]\binom{p_{1}(q, p)}{q_{1}(q, p)}\right]_{q=q_{0}, p=p_{0}}
$$

Now, we use the relations we have proved to rewrite this expression as

$$
\binom{p_{2}}{q_{2}}=\left[\exp \left[i L_{q}(Q, P) \Delta t\right]\binom{P}{Q}\right]_{Q=q_{1}, P=p_{1}}
$$

The last step is dealt analogously so that

$$
\binom{p_{3}}{q_{3}}=\left[\exp \left[i L_{p}(Q, P) \Delta t / 2\right]\binom{P}{Q}\right]_{Q=q_{2}, P=p_{2}}
$$

Of course, $p(t+\Delta t)=p_{3}$ and $q(t+\Delta t)=q_{3}$.
This argument allows us to rewrite the update in the following way:
a) We set $q_{0}=q(t)$ and $p_{0}=p(t)$;
b) We apply $\exp \left[i L_{p}(q, p) \Delta t / 2\right]$ and set $q_{1}=q_{0}$ and $p_{1}=p_{0}+\frac{1}{2} F\left(q_{0}\right) \Delta t$;
c) We apply $\exp \left[i L_{q}(q, p) \Delta t\right]$ and set $q_{2}=q_{1}+\frac{p_{1}}{m} \Delta t$ and $p_{2}=p_{1}$;
d) We apply $\exp \left[i L_{p}(q, p) \Delta t / 2\right]$ and set $q_{3}=q_{2}$ and $p_{3}=p_{2}+\frac{1}{2} F\left(q_{2}\right) \Delta t$;
e) We set $p(t+\Delta t)=p_{3}$ and $q(t+\Delta t)=q_{3}$.

It is trivial to verify that we reobtain the standard Verlet transformation if we eliminate the intermediate variables q_{1}, q_{2}, p_{1}, and p_{2}. This approach is convenient when we approximate the evolution operator in terms of many factors. The multiple-time step algorithms represent a typical example.

