1 Computation of the conserved Hamiltonian: Sketch

We start from

$$
\begin{aligned}
& i L_{p}=F \frac{\partial}{\partial p} \rightarrow H_{p}=U(q) \\
& i L_{q}=\frac{p}{m} \frac{\partial}{\partial q} \rightarrow H_{q}=\frac{p^{2}}{2 m}
\end{aligned}
$$

Now we compute H_{3} associated with $i L_{3}=\left[i L_{q}, i L_{p}\right]$:

$$
H_{3}=-\frac{\partial H_{q}}{\partial q} \frac{\partial H_{p}}{\partial p}+\frac{\partial H_{q}}{\partial p} \frac{\partial H_{p}}{\partial q}=\frac{p}{m} \frac{\partial U(q)}{\partial q} .
$$

Now we compute H_{4} associated with $i L_{4}=\left[i L_{q},\left[i L_{q}, i L_{p}\right]\right]=\left[i L_{q}, i L_{3}\right]$:

$$
H_{4}=-\frac{\partial H_{q}}{\partial q} \frac{\partial H_{3}}{\partial p}+\frac{\partial H_{q}}{\partial p} \frac{\partial H_{3}}{\partial q}=\frac{p^{2}}{m^{2}} \frac{\partial^{2} U(q)}{\partial q^{2}}
$$

Now we compute H_{5} associated with $i L_{5}=\left[i L_{p},\left[i L_{q}, i L_{p}\right]\right]=\left[i L_{p}, i L_{3}\right]$:

$$
H_{5}=-\frac{\partial H_{p}}{\partial q} \frac{\partial H_{3}}{\partial p}+\frac{\partial H_{p}}{\partial p} \frac{\partial H_{3}}{\partial q}=-\frac{1}{m}\left(\frac{\partial U(q)}{\partial q}\right)^{2}
$$

Now, it can be shown that

$$
i \hat{L}=i L_{p}+i L_{q}+\frac{\Delta t^{2}}{12} i L_{4}+\frac{\Delta t^{2}}{24} i L_{5}
$$

so that

$$
\hat{H}=U(q)+\frac{p^{2}}{2 m}+\frac{\Delta t^{2}}{12} H_{4}+\frac{\Delta t^{2}}{24} H_{5}=H(p, q)+\frac{\Delta t^{2}}{24 m}\left[\frac{2 p^{2}}{m} \frac{\partial^{2} U(q)}{\partial q^{2}}-\left(\frac{\partial U(q)}{\partial q}\right)^{2}\right]
$$

This formula holds with corrections of order Δt^{3}.
We can apply this result to the harmonic oscillator with $U(q)=\frac{1}{2} m \omega^{2} q^{2}$. We find

$$
\hat{H}=\left(1+\frac{1}{6} \omega^{2} \Delta t^{2}\right) \frac{p^{2}}{2 m}+\frac{1}{2}\left(1-\frac{1}{12} \omega^{2} \Delta t^{2}\right) m \omega^{2} q^{2}+O\left(\Delta t^{3}\right)
$$

To relate this result with the exact result obtained a few lessons ago, note that, if we take

$$
\lambda=\frac{1}{1+\frac{1}{6} \omega^{2} \Delta t^{2}},
$$

we have

$$
\lambda \hat{H}=\frac{p^{2}}{2 m}+\frac{1}{2}\left(1-\frac{1}{4} \omega^{2} \Delta t^{2}\right) m \omega^{2} q^{2}+O\left(\Delta t^{3}\right) .
$$

