1 Leap-frog algorithm

The Verlet approximation is

$$
e^{i L \Delta t} \approx e^{i L_{p} \Delta t / 2} e^{i L_{q} \Delta t} e^{i L_{p} \Delta t / 2} .
$$

The leapfrog factorization is obtained by performing a similar approximation

$$
e^{i L \Delta t} \approx e^{i L_{q} \Delta t / 2} e^{i L_{p} \Delta t} e^{i L_{q} \Delta t / 2}
$$

Let us compute the different transformations:
a) Applying $e^{i L_{q} \Delta t / 2}$:

$$
e^{i L_{q} \Delta t / 2}\binom{p}{q}=\binom{p}{q+\frac{\Delta t}{2 m} p}
$$

b) Applying $e^{i L_{p} \Delta t}$:

$$
e^{i L_{p} \Delta t}\binom{p}{q+\frac{\Delta t}{2 m} p}=\binom{p+F(q) \Delta t}{q+\frac{\Delta t}{2 m}[p+F(q) \Delta t]}
$$

c) Finally, we apply $e^{i L_{q} \Delta t / 2}$ again

$$
e^{i L_{q} \Delta t / 2}\binom{p+F(q) \Delta t}{q+\frac{\Delta t}{2 m}[p+F(q) \Delta t]}=\binom{p+F\left(q+\frac{\Delta t}{2 m} p\right) \Delta t}{q+\frac{\Delta t}{m} p+\frac{\Delta t}{2 m} F\left(q+\frac{\Delta t}{2 m} p\right) \Delta t}
$$

Let us now apply this transformation in practice. Suppose we know $q(t)$ and $p(t)$. In the leapfrog scheme we define a value of q that, conventionally, we associate to time $t+\Delta t / 2$:

$$
q(t+\Delta t / 2)=q(t)+\frac{\Delta t}{2 m} p(t)
$$

Then, we have

$$
\begin{align*}
& p(t+\Delta t)=p(t)+F\left(q(t)+\frac{\Delta t}{2 m} p(t)\right) \Delta t=p(t)+\Delta t F[q(t+\Delta t / 2)] \\
& q(t+\Delta t)=q(t)+\frac{\Delta t}{m} p(t)+\frac{\Delta t}{2 m} F\left(q(t)+\frac{\Delta t}{2 m} p(t)\right) \Delta t=q(t+\Delta t / 2)+\frac{\Delta t}{2 m} p(t+\Delta t) \tag{1}
\end{align*}
$$

In the following step we start again by computing

$$
q\left(t+\frac{3}{2} \Delta t\right)=q(t+\Delta t)+\frac{\Delta t}{2 m} p(t+\Delta t)=q(t+\Delta t / 2)+\frac{\Delta t}{m} p(t+\Delta t)
$$

Note that we do not need $q(t+\Delta t)$ to compute $q\left(t+\frac{3}{2} \Delta t\right)$; only $q(t+\Delta t / 2)$ is needed. We can thus use an algorithm that does not compute $q(t+\Delta t)$. Thus the algorithm computes:

$$
q(t+\Delta t / 2) \rightarrow p(t+\Delta t) \rightarrow q(t+3 \Delta t / 2) \rightarrow p(t+2 \Delta t) \rightarrow q(t+5 \Delta t / 2) \rightarrow \ldots
$$

Note that the leapfrog relations can be rewritten as

$$
p(t)=m \frac{[q(t+\Delta t / 2)-q(t-\Delta t / 2)]}{\Delta t} \quad F[q(t+\Delta t / 2)]=\frac{[p(t+\Delta t)-p(t)]}{\Delta t}
$$

where one immediately recognizes a simple discrete version of the derivatives of q and p with respect to time. In this naive derivation of the leapfrog recursions, it is quite natural to associate the values of q to the midpoints $n \Delta t+\Delta t / 2$.

Practical implementation with starting values q_{0} and p_{0} :

```
q[0] = q0; p[0] = p0; q[1] = q0 + Deltat*p0/(2*m);
for i = 1,...., Number_of_iterations
    F = F(q[i]);
    p[i] = p[i-1] + Deltat*F;
    q[i+1] = q[i] + Deltat*p[i]/m;
endfor
```

Here $\mathrm{q}[\mathrm{n}]$ is the value of q at time $(n-1 / 2) \Delta t$, and $\mathrm{p}[\mathrm{n}]$ is the value of p at time $n \Delta t$. If needed, we can compute $q(n \Delta t)$, using Eq. (1).

