
1 Leap-frog algorithm

The Verlet approximation is
eiL�t ⇡ eiLp�t/2eiLq�teiLp�t/2.

The leapfrog factorization is obtained by performing a similar approximation

eiL�t ⇡ eiLq�t/2eiLp�teiLq�t/2.

Let us compute the di↵erent transformations:

a) Applying eiLq�t/2:

eiLq�t/2

✓
p
q

◆
=

p

q + �t
2mp

!

b) Applying eiLp�t:

eiLp�t

p

q + �t
2mp

!
=

p+ F (q)�t

q + �t
2m [p+ F (q)�t]

!

c) Finally, we apply eiLq�t/2 again

eiLq�t/2

p+ F (q)�t

q + �t
2m [p+ F (q)�t]

!
=

p+ F

�
q + �t

2mp
�
�t

q + �t
m p+ �t

2mF
�
q + �t

2mp
�
�t

!

Let us now apply this transformation in practice. Suppose we know q(t) and p(t). In the leapfrog
scheme we define a value of q that, conventionally, we associate to time t+�t/2:

q(t+�t/2) = q(t) +
�t

2m
p(t)

Then, we have

p(t+�t) = p(t) + F

✓
q(t) +

�t

2m
p(t)

◆
�t = p(t) +�tF [q(t+�t/2)]

q(t+�t) = q(t) +
�t

m
p(t) +

�t

2m
F

✓
q(t) +

�t

2m
p(t)

◆
�t = q(t+�t/2) +

�t

2m
p(t+�t) (1)

In the following step we start again by computing

q(t+
3

2
�t) = q(t+�t) +

�t

2m
p(t+�t) = q(t+�t/2) +

�t

m
p(t+�t).

Note that we do not need q(t + �t) to compute q(t + 3
2�t); only q(t + �t/2) is needed. We can

thus use an algorithm that does not compute q(t+�t). Thus the algorithm computes:

q(t+�t/2) ! p(t+�t) ! q(t+ 3�t/2) ! p(t+ 2�t) ! q(t+ 5�t/2) ! . . .

Note that the leapfrog relations can be rewritten as

p(t) = m
[q(t+�t/2)� q(t��t/2)]

�t
F [q(t+�t/2)] =

[p(t+�t)� p(t)]

�t

1

where one immediately recognizes a simple discrete version of the derivatives of q and p with respect
to time. In this naive derivation of the leapfrog recursions, it is quite natural to associate the values
of q to the midpoints n�t+�t/2.

Practical implementation with starting values q0 and p0:

q[0] = q0; p[0] = p0; q[1] = q0 + Deltat*p0/(2*m);

for i = 1,...., Number_of_iterations

F = F(q[i]);

p[i] = p[i-1] + Deltat*F;

q[i+1] = q[i] + Deltat*p[i]/m;

endfor

Here q[n] is the value of q at time (n � 1/2)�t, and p[n] is the value of p at time n�t. If needed,
we can compute q(n�t), using Eq. (1).

2

