1 Leap-frog algorithm

The Verlet approximation is
GILAL o iLpAL)2 Lot il AL/2

The leapfrog factorization is obtained by performing a similar approximation

LA o iLgAt/2 il At iLgAt/2

Let us compute the different transformations:

a) Applying e*ladt/2:
oiLaAAt/2 <p) _ ( p )
q G+ 4ep

eiLPAt< p )_( p+ F(q)At )
q+5ip g+ 5Lp+ F(q)At]

iLgAt)2

b) Applying elrAt:

c¢) Finally, we apply e again

A
eiLth/2< p+ F(g)At ) _ ( p+F (q+ £ip) At )
Ot glp + Flg)A] g+ S+ 5EF (g4 otp) At

2m

Let us now apply this transformation in practice. Suppose we know ¢(t) and p(t). In the leapfrog
scheme we define a value of ¢ that, conventionally, we associate to time ¢ + At/2:

At

q(t + At/2) = q(t) + 5—p(t)

Then, we have

p(t+At) = pt)+ F (q(t) + Aﬂip(t)) At = p(t) + AtF[q(t + At/2)]

2
qt+ A1) = q(t)+ %p(t) + %F <q(t) + 2Anip(t)> At = q(t + At/2) + %p(t +At) (1)

In the following step we start again by computing
3 At At
q(t+ 5A1) = gt + At) + o—p(t + At) = q(t + At/2) + —p(t + At).

Note that we do not need ¢(t + At) to compute q(t + 3At); only q(t + At/2) is needed. We can
thus use an algorithm that does not compute ¢(t + At). Thus the algorithm computes:

q(t 4+ At/2) = p(t + At) — q(t + 3At/2) — p(t + 2At) — q(t + 5AL/2) — ...

Note that the leapfrog relations can be rewritten as

[p(t + At) — p(t)]
At




where one immediately recognizes a simple discrete version of the derivatives of ¢ and p with respect
to time. In this naive derivation of the leapfrog recursions, it is quite natural to associate the values
of ¢ to the midpoints nAt + At/2.

Practical implementation with starting values gy and py:
ql0] = qO0; p[0] = pO; q[1] = g0 + Deltat*p0/(2*m);

for i = 1,...., Number_of_iterations
F = F(q[il);
pl[i]l = pli-1] + Deltat*F;
qli+1] = ql[i] + Deltat*p[il]/m;
endfor

Here q[n] is the value of ¢ at time (n — 1/2)At, and p[n] is the value of p at time nAt. If needed,
we can compute g(nAt), using Eq. (1).



