MOMENTUM CONSERVATION

Consider a system in the ABSENCE of EXTERNAL FORCES

All forces are internal and appears in pairs (30 punciple of Newtonian dynamics)
Obvious if $U\left(r_{1} \ldots r_{n}\right)=\sum_{i<j} V\left(\left|r_{1}-r_{j}\right|\right)$
The term $V\left(\left|r_{1}-r_{j}\right|\right)$ gives n se to a force achrig on particles i and j

$$
\begin{aligned}
& \text { (on i) } \rightarrow \bar{F}_{2}=-\frac{\partial}{\partial \bar{r}_{i}} V\left(\left|r_{1}-r_{j}\right|\right)=-\frac{\partial r_{i j}}{\partial \bar{r}_{i}} \frac{\partial V\left(r_{i j}\right)}{\partial r_{i j}} \quad \begin{array}{rlr}
r_{i j} & =\left|\bar{r}_{i}-\bar{r}_{j}\right| \\
& =\left|r_{j}-r_{i}\right|
\end{array} \\
& =-\frac{\left(\bar{r}_{2}-\bar{r}_{j}\right)}{\left|r_{1}-r_{j}\right|} \frac{\partial V\left(r_{i j}\right)}{\partial r_{i j}} \\
& \text { (ono) } \rightarrow \bar{F}_{j}=-\frac{\partial}{\partial \bar{r}_{j}} V\left(\left|r_{1}-r_{j}\right|\right)=-\frac{\left(\overline{r_{j}}-\bar{r}_{i}\right)}{\left|r_{1}-r_{j}\right|} \frac{\partial V\left(r_{i j}\right)}{\partial r_{i j}} \\
& \bar{F}_{\imath}+\vec{F}_{j}=0
\end{aligned}
$$

Verlet-veloaty for particle i of mass mi

$$
\begin{aligned}
& \bar{v}_{i}(t+\Delta t)=v_{i}(t)+\frac{1}{2 m_{i}}\left(F_{i}(t+\Delta t)+F_{i}(t)\right) \\
& \begin{array}{l}
P_{i}(t+\Delta t)=\sum_{i} m_{i} v(t+\Delta t)=\quad O\binom{\text { forces cancel }}{\text { in pairs }}
\end{array} \\
& \begin{array}{c}
\text { CORRECTION } \\
\text { P(t+Delta } \text { t }), ~
\end{array} \\
& \begin{array}{c}
\begin{array}{c}
\text { P(t+Deltat }), \\
\text { there's no index } i ; \\
\text { i should be added to the }
\end{array}
\end{array}=\sum_{i} m_{i} \bar{v}(t)+\frac{1}{2} \sum_{i}\left(F_{i}(t+\Delta t)+F_{i} \cdot(t)\right) \\
& \text { velocities } \mathbf{v} \\
& =P(t) \quad P=\text { is conserved }
\end{aligned}
$$

