STUDYING STATIStICAL SYSTEMS USING MD.
MAD. = MOLECULAR DYNAMICS

Molecular dynamics is defined naturally in the microcanonical ensemble. The total energy is fixed

In the microcanonical ensemble

$$
\langle A(p, q)\rangle=\frac{1}{\Omega} \int_{\uparrow} d p d q A(p, q)
$$

integration on the surface $H(p, q)=E$.
The idea:
given a starting point ($90, p_{0}$) we counder the Hamultonian evolution

$$
\left\{\begin{array}{l}
\dot{p}=-\frac{\partial H}{\partial q} \\
\dot{q}=\frac{\partial H}{\partial p}
\end{array} \Rightarrow \begin{array}{l}
p(t), q(t) \\
\end{array} \quad \text { such that } p(0)=p_{0} .\right.
$$

Then, we counder the "temporal average"

$$
\langle A(p, q)\rangle_{M D, T}=\frac{1}{T} \int_{0}^{T} d t A(p(t), q(t))
$$

for large T.

We would like to relate the ensemble average $\langle A(p, q)\rangle$ with $\langle A(p, q)\rangle_{\text {MD IT }}$

In the absence of additional conserved quantities (the energy is the only conserved quantity) it is conjectured that (ergodic hypothesis)

$$
\langle A(p, q)\rangle=\langle A(p, q)\rangle_{M O, T} \text { for } T \rightarrow \infty
$$

ensemble average

temporal average.

NOTE:
T is NOT the temperature T is the length of the trajectories

If we use periodic boundary conditions (usual choice) there are no boundary forces and we should therefore cousider an additional conserved quautity
$\left.\begin{array}{l}\text { NO BOUNDARY FORCES } \\ \text { NO EXTERNAL FIELDS }\end{array}\right\} \Longrightarrow \begin{aligned} & \text { WE ON } \\ & \text { INTERN } \\ & \downarrow\end{aligned}$
TOTAL MOMENTUM \vec{P} is COWSERVED

CAN WE STILL USE THE ERGODIC THEOREM?

Observahoin
(1) For thermodynamics there is a preferred reference system: we consider a gas in a container that DOES NOT MOVE: The C.M velocity of the molecules is zens.

The Maxcuell distribution of the velocities is of course only valid for a still box.
(2) In statistical mechanics $\vec{P}=\sum \vec{p}_{1}$ is an extensive quantity with $\langle\bar{p}\rangle=0$ (compute it for example is the canonical ensemble). which again reflects the fact that the box does not move.

The assumption in the calculation: $\langle A(p, q)\rangle$ in the microcanonical ensemble is dominated by the configurations with $\bar{P}=0$ (the relation becomes exact for $V \rightarrow \infty$).

Therefore

$$
\langle A(p, q)\rangle=\langle A(p, q)\rangle_{M D, T} \text { for } T \rightarrow \infty
$$

fixing $\quad \bar{P}=0$.
The starting (q0i, poi) satisfies $\sum_{i} p_{0 i}=0$

