optimization of the umbrella distribution
For a canonical distribution

$$
\begin{aligned}
\left\langle\delta E_{1} \epsilon_{0}\right\rangle_{\beta} & =h\left(E_{0}, \beta\right)=\frac{1}{z_{\beta}} \int d E p(E) e^{-\beta E} \delta_{E_{1} \epsilon_{0}} \\
& =\frac{1}{z_{\beta}} p\left(\epsilon_{0}\right) e^{-\beta E_{0}}
\end{aligned}
$$

Plot of $h\left(\epsilon_{0}, \beta\right)$

For the umbrella destubution

NOTE: The coefficients ai in these notes correspond to the coefficients alpha_i of the notes of the previous lesson

$$
\begin{aligned}
h_{\pi}\left(E_{0}\right) & =\frac{1}{Z_{\pi}} \sum_{x}\left(\sum_{i} a_{i} e^{-\beta_{i} H(x)}\right) \delta_{E_{1} E_{0}} \\
& =\frac{1}{Z_{\pi}} \sum_{E} \rho(E)\left(\sum_{i} a_{i} e^{-\beta_{1} E^{2}}\right) \delta_{E_{1} E_{0}} \\
& =\frac{1}{Z_{\pi}} p\left(E_{0}\right) \sum_{i} a_{i} e^{-\beta_{1} E_{0}} \\
& =\frac{1}{Z_{\pi}} \sum_{i} a_{i} Z_{\beta_{i}}\left(\frac{1}{Z_{\beta_{i}}} p\left(E_{0}\right) e^{-\beta_{1} E_{0}}\right) \\
& =\frac{1}{Z_{\pi}} \sum_{i} a_{i} z_{\beta_{i}} h_{\beta_{i}}\left(E_{0}\right)
\end{aligned}
$$

$$
h_{\pi}\left(\epsilon_{0}\right)=\sum_{i} \frac{a_{i} Z_{\beta_{i}}}{Z_{\pi}} h_{\beta_{1}}\left(\epsilon_{0}\right)=\sum_{i} c_{i} h_{\beta_{i}}\left(\epsilon_{0}\right) \quad\left(\Sigma c_{i}=1\right)
$$

$h_{\pi}\left(E_{0}\right)$ is a linear combination of the $h_{\beta_{i}}$
(1) The algorithm works only if destriautwois overlap

probability to be here ≈ 0 As E changes slowly in the MC simulations, a simulation that starts in (1) never visits (2) and uceversa

Dismbutwous MUST overlap
(2)

Now assume $\quad C_{1}=0.7 \quad C_{2}=10^{-4} \quad C_{3}=0.3-10^{-4}$

the probability to go through configurations that are typical at inverse temperature β_{2} is tiny.

Requirement : the optimal behavior is obtained if all C_{i} are (approximately equal)

$$
\frac{a_{i} Z_{\beta_{1}}}{Z_{\pi}} \approx \frac{a_{j} Z_{\beta j}}{Z_{\pi}} \Rightarrow \frac{a_{i}}{a_{j}}=\frac{Z_{\beta_{j}}}{Z_{\beta_{i}}}
$$

implementation
(a) Given $\beta_{\min }, \beta_{m a x}$, the β-interval we cush to cover define

$$
\beta_{1}=\beta_{m \text { min }}, \beta_{2} \ldots \quad \beta_{N}=\beta_{m a x}
$$

so that the energy distributions overlap
NOTE: the number of β_{i} 's should increase as the volume increases as the distribution of E / V shrinks as $1 / \sqrt{v}$
(b) Perform short runs at $\beta_{1} \ldots \beta_{N}$ to compute
$\frac{Z_{\beta_{i+1}}}{Z_{\beta_{i}}}$ so that $a_{1+1}=\frac{Z_{\beta_{i}}}{Z_{\beta_{i+1}}} a_{i}$
Fix $a_{1}=1 \longrightarrow$ compute all a_{i}
(c) Start the simulation wi the umbrella distribution

The UMBRELLA DISTRIBUTION CAN BE OPTIMED DURING THE RUN

$$
\frac{z_{\beta_{i}}}{z_{\beta_{j}}}=\frac{\left.\left\langle\frac{e^{-\beta_{i} H}}{\sum_{k} a_{k} e^{-\beta_{k} H}}\right\rangle_{\pi}^{\sum_{k} a_{k} e^{-\beta_{k} H}}\right\rangle_{\pi}^{e^{-\beta_{j} H}}}{\left\langle\frac{}{\langle }\right.}
$$

