
1 Multiple histogram method

We wish now to combine results obtained at different values of β. In the simplest setting, imagine
that you have performed two runs at β0 and β1, that are reasonably close so that the energy
distributions for the two values of β essentially overlap. Using the reweighting method discussed
before we can:

1) use the data at β1 to compute averages at β0 and viceversa;

2) use the data at β1 to compute averages at any β that is between β0 and β1 (h(E, β) will be
“in the middle”, between h(E, β0) and h(E, β1), and hence it will overlap with both of them).

In this way, for any β between β0 and β1, and also for these two values, we have two different
estimates, one obtained from the run at β0, one for the run at β1. The question now is: How do
we combine them, to obtain a more precise estimate?

Another imteresting problem is the following. Suppose we need an estimate of a given observable
A for any β in a relatively large interval [βa, βb]. How can we adress this problem? The idea here
is to consider a set of β values βa = β1 < β2 < . . . βR = βb (R is the number of β values) such
that the energy distribution at βi overlaps with the energy distributions at βi−1 and βi+1. Then,
one performs numerical simulations at all values βi. Now, the question is: How do we combine the
numerical data, to obtain an estimate at a given value of β that belongs to the interval [βa, βb]?

The most naive method would consist in performing a weighted average of the reweighted data. To
explain the shortcomings of this approach, let us assume R = 2 and, for instance, let us consider
a value of β between β1 and β2 which is closer to β1 than to β2. A formally correct strategy to
compute an average 〈A〉β could be the following. We first use the data at β1 to obtain an estimate
A1 with error σ1 and then the data at β2 to obtain an estimate A2 with error σ2. Finally, one could
combine the two estimates as

A12 =
A1σ

−2
1 +A2σ

−2
2

σ−21 + σ−22

.

However, since β is not close to β2, A2 has a somewhat large error; but, what is worse, also the error
estimate σ2 has a somewhat large error. Hence, σ2 as estimated from the data could be largely
underestimated. But, if σ2 is largely underestimated, we would give too much weight to A2, adding
essentially noise and not signal to A1. In these cases A12 would be a worst estimate than A1.

We now discuss a more robust method, the multihistogram method of Ferrenberg and Swendsen.
As before, we consider a system with discrete phase space. The basic quantity of the method is
the energy histogram

h(E0, β) = 〈δH(x),E0
〉β =

1

Zβ

∑
E

ρ(E)δE,E0e
−βE =

1

Zβ
ρ(E0)e

−βE0 .

where ρ(E) is the density of states (for a discrete system it represents the number of states with a
given energy). It satisfies ∑

E

h(E, β) = 1. (1)

From the computation of h(E, β) we can estimate ρ(E) using

ρ(E) = Zβe
βEh(E, β).
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It is important to realize that h(E, β) ∼ 1/
√
N . Indeed, h(E, β) is roughly a Gaussian centered

around 〈E〉β with a variance of order N . Because of the normalization condition (1), we have

h(E, β) =
1√
πaN

e−(E−〈E〉β)
2/(aN).

Let us now compute the variance associated to h(E, β). We have

var [h(E0, β)] = 〈δ2H(x),E0
〉β − 〈δH(x),E0

〉2β = h(E0, β)[1− h(E0, β)] ≈ h(E0, β) ,

where we have used the obvious property δ2H(x),E0
= δH(x),E0

and, in the last step, that h(E0, β) ∼
1/
√
N � 1.

We can now define the method. We have performed simulations at β1 < β2 . . . < βR. Suppose
we have taken ni independent measurements1 at βi and let us denote with Ni(E) the number of
measures with energy E at this value of the inverse temperature. The ratio Ni(E)/ni is an estimator

of the histogram variable h(E, βi). Indeed, assume that E
(1)
i , . . ., E

(ni)
i are the energy estimates

obtained in the run at βi. The estimator of h(E, βi) is the sample mean of δE,H(x), i.e.

1

ni

ni∑
α=1

δ
E,E

(α)
i

Now, the δ term gives one only if E = E
(α)
i , i.e., if the measurement at time α is E. Summing over

α we obtain Ni(E), the number of measures with energy E .

Using the data at βi we can therefore estimate ρ(E) as

ρi(E) ≈ n−1i Ni(E)eβiEZi ,

where Zi, the partition function at βi, is however not known. Note that we have appended an index
i to ρi(E) only to specify that this is the estimate obtained from the data computed at βi. Indeed,
the density of states is a property of the state space, not of the probability distribution (therefore
it does not depend on βi).

The variance of the estimator of ρi(E) can be computed if one assumes that the partition function
Zi is known. Indeed, with this assumption

σ2i (E) = n−1i var [ρ(E)] = n−1i e2βiEZ2
i var [h(E, βi)] =

= n−1i e2βiEZ2
i h(E, βi) = n−1i eβiEZiρ(E) . (2)

If we would really want to compute the error, we should replace ρ(E) in the last term with its
estimator ρi. Since we know that this estimator may be very imprecise—it provides an accurate
estimate of ρ(E) only if E is a typical energy at inverse temperature βi—we do not do it here. This
is a crucial point in the method and it is the one that guarantees the robustness of the results.
It is also important to stress that σi is more properly related to the error on ρi(E)/Zi, the only
quantity that we can compute by simulations. This is not relevant in practive as we will only use
σi to write down a weighted average of the estimators ρi(E).

1If measures are correlated with an autocorrelation time τi, then ni = ñi/(2τi), where ñi is the total number of
measurements. Analogously Ni(E) is the total number of times we obtained an energy E, divided by the autocorre-
lation time τi. In the following we always assume measures to be independent for simplicity.
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A robust estimate of the density of states using all R datasets is given by a weighted average, where
each estimate ρi(E) enters with a weight proportional to 1/σ2i (E):

ρ(E) =

∑R
i=1 ρi(E)/σ2i (E)∑R
j=1 1/σ2j (E)

=

∑R
i=1(Ni/ni) e

βiEZi nie
−βiE/(Ziρ(E))∑R

j=1 nje
−βjE/(Zjρ(E))

=

=

∑R
i=1Ni(E)∑R

j=1 nj e
−βjE Z−1j

. (3)

Note that ρ(E) in the right-hand side simplifies (it appears both in the numerator and in the
denominator). At this point it is important to stress a very important difference between this
method and the naive method presented at the beginning. Here, we do not use estimates of the
errors (that may very imprecise). We use instead an expression that follows from the exact result for
the variance of h(E, β) and do not replace ρ(E) in the errors with its estimate. This is what makes
the final expression robust. Second, observe that for any given E, the only runs that contribute to
the determination of ρ(E) are those for which Ni(E) 6= 0. This means that we are using the data
at βi only where they are relevant.

Eq. (3) still depends on the unknown partition functions Zi. They can be determined in a self-
consistent way by noting that

Zk =
∑
E

ρ(E)e−βkE =
∑
E

∑R
i=1Ni(E)∑R

j=1 nj e
(βk−βj)E Z−1j

. (4)

which can be rewritten as ∑
E

∑R
i=1Ni(E)∑R

j=1 nj e
(βk−βj)E (Zk/Zj)

= 1 . (5)

The consistency condition gives us R equations (one for each value of k) for the partition function
ratios Zi/Zj . However, there are only R − 1 independent partition function ratios. For instance,
all ratios can be expressed in terms of zj = Zj/Z1, (j = 2, . . . , R) as

Zj
Zk

=
Zj
Z1

Z1

Zk
=
zj
zk
.

Apparently, the consistency system appears to be overdefined (there are more equations than
unknowns). But this is not the case, since the R equations are linearly dependent. To clarify this
point, let us define

fk =
∑
E

∑R
i=1Ni(E)∑R

j=1 nj e
(βk−βj)E (Zk/Zj)

;

this is the left-hand side of equation (5). The consistency equations become fk = 1. Now let us
compute

R∑
k=1

nkfk =

R∑
k=1

nk
∑
E

∑R
i=1Ni(E)∑R

j=1 nj e
(βk−βj)E (Zk/Zj)

=
∑
E

R∑
k=1

nk(e
−βkE/Zk)

∑R
i=1Ni(E)∑R

j=1 nj e
−βjE/Zj

=
∑
E

R∑
i=1

Ni(E)

∑R
k=1 nke

−βkE/Zk∑R
j=1 nj e

−βjE/Zj
=
∑
E

R∑
i=1

Ni(E) =
R∑
i=1

∑
E

Ni(E) =
R∑
i=1

ni . (6)
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It is now easy to verify that the system of equations is not overdetermined. Suppose we use the
equations f1 = 1, . . ., fR−1 = 1, to determine the ratios zi. Let us now show that the equation
fR = 1 is automatically satisfied. Indeed, the previous relation gives

fR =
1

nR

(
R∑
i=1

ni −
R−1∑
i=1

fini

)
=

1

nR

(
R∑
i=1

ni −
R−1∑
i=1

ni

)
=

1

nR
× nR = 1

Note that the consistency equations do not provide the partition functions but only the ratios of the
partition function, so that we are only able to estimate ρ(E) up to a constant that is independent
of E. In practice we only compute the ratio ρ(E)/Zi for any i. However, this is enough to compute
averages of functions of the energy since

〈g(E)〉βi =
1

Zi

∑
x

g(H(x))eβiH(x) =
∑
E

g(E)e−βiE [ρ(E)/Zi] .

or ratios of partition functions
Zβ
Zi

=
∑
E

e−βE [ρ(E)/Zi] .

At a generic β we can use

〈g(E)〉β =

∑
E g(E)e−βE [ρ(E)/Zi]∑

E e
−βE [ρ(E)/Zi]

.

The procedure in practice works as follows. Using the standard reweighting method we compute
the ratios Zi/Zi−1 by means of a single simulation at βi or βi−1. Then, we obtain the solution of
the R consistency equations by minimizing

R∑
k=1

(fk − 1)2

starting the minimization from the estimates obtained using the reweighting method. Once the
ratios of partition functions are known, we can compute any average of functions of the energy for
any β in the relevant interval [βa, βb].

The procedure we have discussed works for discrete systems. We will now rewrite the expressions
in the different form, that also works for continuous systems, which avoids the use of Ni(E), which

is well defined only in systems with discrete energy values. Let E
(α)
i be the measurements at βi

(α runs from 1 to ni). Let us consider for instance fk that defines the consistency equations. We
rewrite it as

fk =
∑
E

R∑
i=1

Ni(E)s(E) s(E) =

[
1∑R

j=1 nj e
(βk−βj)E (Zk/Zj)

]
.

Now, we can equally write it as

fk =

R∑
i=1

ni∑
α=1

s[E
(α)
i ]. (7)

since, for each i, we have
ni∑
α=1

s[E
(α)
i ] =

∑
E

Ni(E)s(E).
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In the form (7) the expression is also valid for continuous systems. The same procedure can be
applied to the computation of mean values: the sums over E are replaced by sums over all measures
and Ni(E) is simply replaced by 1.

The procedure we have presented can be generalized to allow us to compute averages of generic
observables A(x). In this case, the basic quantity is the joint histogram with respect to E and A

h(E0, A0, β) = 〈δE,E0δA,A0〉β ,

its estimator Ni(E0, A0)/ni, and the density of states ρ(E0, A0) which counts the number of states
such that E = E0 and A = A0. Repeating the same steps as before, we end up with

ρ(E,A) =

∑R
i=1Ni(E,A)∑R

j=1 nj e
−βjE Z−1j

.

Once ρ(E,A)/Zi is known, any average involving E and A can be directly computed.
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