1 Multiple histogram method

We wish now to combine results obtained at different values of β. In the simplest setting, imagine that you have performed two runs at β_{0} and β_{1}, that are reasonably close so that the energy distributions for the two values of β essentially overlap. Using the reweighting method discussed before we can:

1) use the data at β_{1} to compute averages at β_{0} and viceversa;
2) use the data at β_{1} to compute averages at any β that is between β_{0} and $\beta_{1}(h(E, \beta)$ will be "in the middle", between $h\left(E, \beta_{0}\right)$ and $h\left(E, \beta_{1}\right)$, and hence it will overlap with both of them).

In this way, for any β between β_{0} and β_{1}, and also for these two values, we have two different estimates, one obtained from the run at β_{0}, one for the run at β_{1}. The question now is: How do we combine them, to obtain a more precise estimate?
Another imteresting problem is the following. Suppose we need an estimate of a given observable A for any β in a relatively large interval $\left[\beta_{a}, \beta_{b}\right]$. How can we adress this problem? The idea here is to consider a set of β values $\beta_{a}=\beta_{1}<\beta_{2}<\ldots \beta_{R}=\beta_{b}$ (R is the number of β values) such that the energy distribution at β_{i} overlaps with the energy distributions at β_{i-1} and β_{i+1}. Then, one performs numerical simulations at all values β_{i}. Now, the question is: How do we combine the numerical data, to obtain an estimate at a given value of β that belongs to the interval $\left[\beta_{a}, \beta_{b}\right]$?
The most naive method would consist in performing a weighted average of the reweighted data. To explain the shortcomings of this approach, let us assume $R=2$ and, for instance, let us consider a value of β between β_{1} and β_{2} which is closer to β_{1} than to β_{2}. A formally correct strategy to compute an average $\langle A\rangle_{\beta}$ could be the following. We first use the data at β_{1} to obtain an estimate A_{1} with error σ_{1} and then the data at β_{2} to obtain an estimate A_{2} with error σ_{2}. Finally, one could combine the two estimates as

$$
A_{12}=\frac{A_{1} \sigma_{1}^{-2}+A_{2} \sigma_{2}^{-2}}{\sigma_{1}^{-2}+\sigma_{2}^{-2}}
$$

However, since β is not close to β_{2}, A_{2} has a somewhat large error; but, what is worse, also the error estimate σ_{2} has a somewhat large error. Hence, σ_{2} as estimated from the data could be largely underestimated. But, if σ_{2} is largely underestimated, we would give too much weight to A_{2}, adding essentially noise and not signal to A_{1}. In these cases A_{12} would be a worst estimate than A_{1}.
We now discuss a more robust method, the multihistogram method of Ferrenberg and Swendsen. As before, we consider a system with discrete phase space. The basic quantity of the method is the energy histogram

$$
h\left(E_{0}, \beta\right)=\left\langle\delta_{H(x), E_{0}}\right\rangle_{\beta}=\frac{1}{Z_{\beta}} \sum_{E} \rho(E) \delta_{E, E_{0}} e^{-\beta E}=\frac{1}{Z_{\beta}} \rho\left(E_{0}\right) e^{-\beta E_{0}} .
$$

where $\rho(E)$ is the density of states (for a discrete system it represents the number of states with a given energy). It satisfies

$$
\begin{equation*}
\sum_{E} h(E, \beta)=1 . \tag{1}
\end{equation*}
$$

From the computation of $h(E, \beta)$ we can estimate $\rho(E)$ using

$$
\rho(E)=Z_{\beta} e^{\beta E} h(E, \beta) .
$$

It is important to realize that $h(E, \beta) \sim 1 / \sqrt{N}$. Indeed, $h(E, \beta)$ is roughly a Gaussian centered around $\langle E\rangle_{\beta}$ with a variance of order N. Because of the normalization condition (1), we have

$$
h(E, \beta)=\frac{1}{\sqrt{\pi a N}} e^{-\left(E-\langle E\rangle_{\beta}\right)^{2} /(a N)} .
$$

Let us now compute the variance associated to $h(E, \beta)$. We have

$$
\operatorname{var}\left[h\left(E_{0}, \beta\right)\right]=\left\langle\delta_{H(x), E_{0}}^{2}\right\rangle_{\beta}-\left\langle\delta_{H(x), E_{0}}\right\rangle_{\beta}^{2}=h\left(E_{0}, \beta\right)\left[1-h\left(E_{0}, \beta\right)\right] \approx h\left(E_{0}, \beta\right)
$$

where we have used the obvious property $\delta_{H(x), E_{0}}^{2}=\delta_{H(x), E_{0}}$ and, in the last step, that $h\left(E_{0}, \beta\right) \sim$ $1 / \sqrt{N} \ll 1$.
We can now define the method. We have performed simulations at $\beta_{1}<\beta_{2} \ldots<\beta_{R}$. Suppose we have taken n_{i} independent measurements ${ }^{1}$ at β_{i} and let us denote with $N_{i}(E)$ the number of measures with energy E at this value of the inverse temperature. The ratio $N_{i}(E) / n_{i}$ is an estimator of the histogram variable $h\left(E, \beta_{i}\right)$. Indeed, assume that $E_{i}^{(1)}, \ldots, E_{i}^{\left(n_{i}\right)}$ are the energy estimates obtained in the run at β_{i}. The estimator of $h\left(E, \beta_{i}\right)$ is the sample mean of $\delta_{E, H(x)}$, i.e.

$$
\frac{1}{n_{i}} \sum_{\alpha=1}^{n_{i}} \delta_{E, E_{i}^{(\alpha)}}
$$

Now, the δ term gives one only if $E=E_{i}^{(\alpha)}$, i.e., if the measurement at time α is E. Summing over α we obtain $N_{i}(E)$, the number of measures with energy E.
Using the data at β_{i} we can therefore estimate $\rho(E)$ as

$$
\rho_{i}(E) \approx n_{i}^{-1} N_{i}(E) e^{\beta_{i} E} Z_{i}
$$

where Z_{i}, the partition function at β_{i}, is however not known. Note that we have appended an index i to $\rho_{i}(E)$ only to specify that this is the estimate obtained from the data computed at β_{i}. Indeed, the density of states is a property of the state space, not of the probability distribution (therefore it does not depend on β_{i}).
The variance of the estimator of $\rho_{i}(E)$ can be computed if one assumes that the partition function Z_{i} is known. Indeed, with this assumption

$$
\begin{align*}
\sigma_{i}^{2}(E) & =n_{i}^{-1} \operatorname{var}[\rho(E)]=n_{i}^{-1} e^{2 \beta_{i} E} Z_{i}^{2} \operatorname{var}\left[h\left(E, \beta_{i}\right)\right]= \\
& =n_{i}^{-1} e^{2 \beta_{i} E} Z_{i}^{2} h\left(E, \beta_{i}\right)=n_{i}^{-1} e^{\beta_{i} E} Z_{i} \rho(E) . \tag{2}
\end{align*}
$$

If we would really want to compute the error, we should replace $\rho(E)$ in the last term with its estimator ρ_{i}. Since we know that this estimator may be very imprecise - it provides an accurate estimate of $\rho(E)$ only if E is a typical energy at inverse temperature β_{i}-we do not do it here. This is a crucial point in the method and it is the one that guarantees the robustness of the results. It is also important to stress that σ_{i} is more properly related to the error on $\rho_{i}(E) / Z_{i}$, the only quantity that we can compute by simulations. This is not relevant in practive as we will only use σ_{i} to write down a weighted average of the estimators $\rho_{i}(E)$.

[^0]A robust estimate of the density of states using all R datasets is given by a weighted average, where each estimate $\rho_{i}(E)$ enters with a weight proportional to $1 / \sigma_{i}^{2}(E)$:

$$
\begin{align*}
\rho(E) & =\frac{\sum_{i=1}^{R} \rho_{i}(E) / \sigma_{i}^{2}(E)}{\sum_{j=1}^{R} 1 / \sigma_{j}^{2}(E)}=\frac{\sum_{i=1}^{R}\left(N_{i} / n_{i}\right) e^{\beta_{i} E} Z_{i} n_{i} e^{-\beta_{i} E} /\left(Z_{i} \rho(E)\right)}{\sum_{j=1}^{R} n_{j} e^{-\beta_{j} E} /\left(Z_{j} \rho(E)\right)}= \\
& =\frac{\sum_{i=1}^{R} N_{i}(E)}{\sum_{j=1}^{R} n_{j} e^{-\beta_{j} E} Z_{j}^{-1}} . \tag{3}
\end{align*}
$$

Note that $\rho(E)$ in the right-hand side simplifies (it appears both in the numerator and in the denominator). At this point it is important to stress a very important difference between this method and the naive method presented at the beginning. Here, we do not use estimates of the errors (that may very imprecise). We use instead an expression that follows from the exact result for the variance of $h(E, \beta)$ and do not replace $\rho(E)$ in the errors with its estimate. This is what makes the final expression robust. Second, observe that for any given E, the only runs that contribute to the determination of $\rho(E)$ are those for which $N_{i}(E) \neq 0$. This means that we are using the data at β_{i} only where they are relevant.
Eq. (3) still depends on the unknown partition functions Z_{i}. They can be determined in a selfconsistent way by noting that

$$
\begin{equation*}
Z_{k}=\sum_{E} \rho(E) e^{-\beta_{k} E}=\sum_{E} \frac{\sum_{i=1}^{R} N_{i}(E)}{\sum_{j=1}^{R} n_{j} e^{\left(\beta_{k}-\beta_{j}\right) E} Z_{j}^{-1}} . \tag{4}
\end{equation*}
$$

which can be rewritten as

$$
\begin{equation*}
\sum_{E} \frac{\sum_{i=1}^{R} N_{i}(E)}{\sum_{j=1}^{R} n_{j} e^{\left(\beta_{k}-\beta_{j}\right) E}\left(Z_{k} / Z_{j}\right)}=1 \tag{5}
\end{equation*}
$$

The consistency condition gives us R equations (one for each value of k) for the partition function ratios Z_{i} / Z_{j}. However, there are only $R-1$ independent partition function ratios. For instance, all ratios can be expressed in terms of $z_{j}=Z_{j} / Z_{1},(j=2, \ldots, R)$ as

$$
\frac{Z_{j}}{Z_{k}}=\frac{Z_{j}}{Z_{1}} \frac{Z_{1}}{Z_{k}}=\frac{z_{j}}{z_{k}} .
$$

Apparently, the consistency system appears to be overdefined (there are more equations than unknowns). But this is not the case, since the R equations are linearly dependent. To clarify this point, let us define

$$
f_{k}=\sum_{E} \frac{\sum_{i=1}^{R} N_{i}(E)}{\sum_{j=1}^{R} n_{j} e^{\left(\beta_{k}-\beta_{j}\right) E}\left(Z_{k} / Z_{j}\right)}
$$

this is the left-hand side of equation (5). The consistency equations become $f_{k}=1$. Now let us compute

$$
\begin{align*}
\sum_{k=1}^{R} n_{k} f_{k} & =\sum_{k=1}^{R} n_{k} \sum_{E} \frac{\sum_{i=1}^{R} N_{i}(E)}{\sum_{j=1}^{R} n_{j} e^{\left(\beta_{k}-\beta_{j}\right) E}\left(Z_{k} / Z_{j}\right)} \\
& =\sum_{E} \sum_{k=1}^{R} n_{k}\left(e^{-\beta_{k} E} / Z_{k}\right) \frac{\sum_{i=1}^{R} N_{i}(E)}{\sum_{j=1}^{R} n_{j} e^{-\beta_{j} E} / Z_{j}} \\
& =\sum_{E} \sum_{i=1}^{R} N_{i}(E) \frac{\sum_{k=1}^{R} n_{k} e^{-\beta_{k} E} / Z_{k}}{\sum_{j=1}^{R} n_{j} e^{-\beta_{j} E} / Z_{j}}=\sum_{E} \sum_{i=1}^{R} N_{i}(E)=\sum_{i=1}^{R} \sum_{E} N_{i}(E)=\sum_{i=1}^{R} n_{i} . \tag{6}
\end{align*}
$$

It is now easy to verify that the system of equations is not overdetermined. Suppose we use the equations $f_{1}=1, \ldots, f_{R-1}=1$, to determine the ratios z_{i}. Let us now show that the equation $f_{R}=1$ is automatically satisfied. Indeed, the previous relation gives

$$
f_{R}=\frac{1}{n_{R}}\left(\sum_{i=1}^{R} n_{i}-\sum_{i=1}^{R-1} f_{i} n_{i}\right)=\frac{1}{n_{R}}\left(\sum_{i=1}^{R} n_{i}-\sum_{i=1}^{R-1} n_{i}\right)=\frac{1}{n_{R}} \times n_{R}=1
$$

Note that the consistency equations do not provide the partition functions but only the ratios of the partition function, so that we are only able to estimate $\rho(E)$ up to a constant that is independent of E. In practice we only compute the ratio $\rho(E) / Z_{i}$ for any i. However, this is enough to compute averages of functions of the energy since

$$
\langle g(E)\rangle_{\beta_{i}}=\frac{1}{Z_{i}} \sum_{x} g(H(x)) e^{\beta_{i} H(x)}=\sum_{E} g(E) e^{-\beta_{i} E}\left[\rho(E) / Z_{i}\right] .
$$

or ratios of partition functions

$$
\frac{Z_{\beta}}{Z_{i}}=\sum_{E} e^{-\beta E}\left[\rho(E) / Z_{i}\right] .
$$

At a generic β we can use

$$
\langle g(E)\rangle_{\beta}=\frac{\sum_{E} g(E) e^{-\beta E}\left[\rho(E) / Z_{i}\right]}{\sum_{E} e^{-\beta E}\left[\rho(E) / Z_{i}\right]} .
$$

The procedure in practice works as follows. Using the standard reweighting method we compute the ratios Z_{i} / Z_{i-1} by means of a single simulation at β_{i} or β_{i-1}. Then, we obtain the solution of the R consistency equations by minimizing

$$
\sum_{k=1}^{R}\left(f_{k}-1\right)^{2}
$$

starting the minimization from the estimates obtained using the reweighting method. Once the ratios of partition functions are known, we can compute any average of functions of the energy for any β in the relevant interval $\left[\beta_{a}, \beta_{b}\right]$.
The procedure we have discussed works for discrete systems. We will now rewrite the expressions in the different form, that also works for continuous systems, which avoids the use of $N_{i}(E)$, which is well defined only in systems with discrete energy values. Let $E_{i}^{(\alpha)}$ be the measurements at β_{i} (α runs from 1 to n_{i}). Let us consider for instance f_{k} that defines the consistency equations. We rewrite it as

$$
f_{k}=\sum_{E} \sum_{i=1}^{R} N_{i}(E) s(E) \quad s(E)=\left[\frac{1}{\sum_{j=1}^{R} n_{j} e^{\left(\beta_{k}-\beta_{j}\right) E}\left(Z_{k} / Z_{j}\right)}\right] .
$$

Now, we can equally write it as

$$
\begin{equation*}
f_{k}=\sum_{i=1}^{R} \sum_{\alpha=1}^{n_{i}} s\left[E_{i}^{(\alpha)}\right] . \tag{7}
\end{equation*}
$$

since, for each i, we have

$$
\sum_{\alpha=1}^{n_{i}} s\left[E_{i}^{(\alpha)}\right]=\sum_{E} N_{i}(E) s(E)
$$

In the form (7) the expression is also valid for continuous systems. The same procedure can be applied to the computation of mean values: the sums over E are replaced by sums over all measures and $N_{i}(E)$ is simply replaced by 1 .
The procedure we have presented can be generalized to allow us to compute averages of generic observables $A(x)$. In this case, the basic quantity is the joint histogram with respect to E and A

$$
h\left(E_{0}, A_{0}, \beta\right)=\left\langle\delta_{E, E_{0}} \delta_{A, A_{0}}\right\rangle_{\beta},
$$

its estimator $N_{i}\left(E_{0}, A_{0}\right) / n_{i}$, and the density of states $\rho\left(E_{0}, A_{0}\right)$ which counts the number of states such that $E=E_{0}$ and $A=A_{0}$. Repeating the same steps as before, we end up with

$$
\rho(E, A)=\frac{\sum_{i=1}^{R} N_{i}(E, A)}{\sum_{j=1}^{R} n_{j} e^{-\beta_{j} E} Z_{j}^{-1}}
$$

Once $\rho(E, A) / Z_{i}$ is known, any average involving E and A can be directly computed.

[^0]: ${ }^{1}$ If measures are correlated with an autocorrelation time τ_{i}, then $n_{i}=\tilde{n}_{i} /\left(2 \tau_{i}\right)$, where \tilde{n}_{i} is the total number of measurements. Analogously $N_{i}(E)$ is the total number of times we obtained an energy E, divided by the autocorrelation time τ_{i}. In the following we always assume measures to be independent for simplicity.

