
1 Data reweighting

We consider a generic system with state space S and Hamiltonian H. For simplicity, we assume the
configuration space to be discrete (for definiteness imagine the Ising system) but everything can be
generalized to continuous configuration spaces. We work in the canonical ensemble, assuming that
configurations x are distributed according to the Boltzmann-Gibbs probability density

πβ(x) =
e−βH(x)

Zβ
,

where H(x) is the energy function and the normalizing constant Zβ is the partition function at
inverse temperature β:

Zβ =
∑
x

e−βH(x).

We indicate by 〈·〉β the average with respect to πβ(x).

Here we will address two problems:

1) Suppose we perform a MC simulation at inverse temperature β0; can we use the same data
to compute average values at β1 6= β0?

2) Using again data at β0, can we compute free energies at different values of β?

As we shall discuss below, the answer to the first question is positive as long as |β0 − β1| is small.
The answer to the second question is negative (MC simulations are not able to compute partition
functions or, equivalently, free energies); however, the answer is positive if we already know the
free energy at β0 (computed by means of some other method, not by Monte Carlo). The general
class of methods that are used in this context are called reweighting methods.

If A(x) is any observable, its average at β1 can be expressed as

〈A〉β1 =

∑
xA(x)e−β1H(x)∑

x e
−β1H(x)

=

∑
xA(x)e−β0H(x)eβ0H(x)−β1H(x)∑

x e
−β0H(x)eβ0H(x)−β1H(x)

=

=

1
Zβ0

∑
xA(x)e−∆βH(x)e−β0H(x)

1
Zβ0

∑
x e
−∆βH(x)e−β0H(x)

=
〈Ae−∆βH〉β0
〈e−∆βH〉β0

,

where ∆β = β1 − β0. To compute the Helmholtz free energy F (β) = −β−1 lnZβ, we write

β1F (β1) = − ln
∑
x

eβ1H(x) = − ln
∑
x

e−β0H(x)eβ0H(x)−β1H(x) = − ln[Zβ0〈e−∆βH〉β0 ]

= − lnZβ0 − ln〈e−∆βH〉β0 = β0F (β0)− ln〈e−∆βH〉β0

Both calculations involve the same type of averages: they depend on e−∆βH .

Though in principle the previous formulae solve the problem, in practice they are only useful
if the averages at β0 can be computed with reasonable accuracy. But this is not obvious since
H is extensive with fluctuations of order

√
N . At β0, H fluctuates around the mean value E0

with fluctuations ±a
√
N (a > 0). Roughly speaking, this implies that e−∆βH fluctuates between

Me−∆βa
√
N and Me+∆βa

√
N , M = 〈e−∆βH〉β0 . Thus, when computing the sample mean of e−∆βH ,
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one sums very large and very small numbers: effectively the results is dominated by the few largest
numbers obtained in the simulation. Correspondingly, the error is large. Reasonable errors are
only obtained if ∆β is so small that

√
N∆β is a number of order one. This implies that the method

works only in an interval around β0 that shrinks as N increases.

Figure 1: Define E1 = 〈H〉β1 , E0 = 〈H〉β0 , ∆E = E1 − E0. The width of the distribution can be
characterized by the standard deviation σ(E). The two distributions overlap if ∆E . σ(β0) (note
that this is a qualitative statement; do not ask yourself the question whether the condition should
include some constant, say, be, for instance ∆E . 2σ(β0), or similar).

This argument can be reformulated, considering the probability h(E, β) of configurations of energy
E at temperature β. This distribution has a width that can be characterized by the variance

σ(β)2 = 〈H(x)2〉β − 〈H(x)〉2β = kT 2Cv(T ) = Ĉ(T ),

where

Cv(T ) =
∂E

∂T
, Ĉ(T ) = −∂E

∂β
.

Now the physical argument is the following. We expect to be able to estimate an average at β1

only if we explore the configurations that are typical at β1 in the simulation at β0. This only occurs
if the distributions of the typical configurations at β0 and β1 overlap. In other words, if E0 and
E1 are the average values for β0 and β1, if E1 > E0 (this is the case of the figure), we expect the
method to work if

E0 + σ(β0) & E1 E1 − E0 . σ(β0)

If E1 < E0, we would require E0 − E1 . σ(β0) , so that the general condition is

|E1 − E0| . σ(β0)
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Now, for ∆β small,

E1 − E0 = E(β1)− E(β0) ≈ [E(β0)−∆βĈ(β0)]− E(β0) ≈ −∆β Ĉ(β0)

The condition becomes

|∆β|Ĉ(β0) .
√
Ĉ(β0) |∆β| . 1√

Ĉ(β0)

Now, note the Ĉ(β0) is extensive (proportional to N), and therefore we obtain

|∆β| . b√
N
.

This is a general property of all reweighting methods: the temperature interval in which the
procedure works shrinks as 1/

√
N as N increases.

We wish now to make this qualitative discussion more quantitative. For this purpose, let us compute
the statistical error on 〈A〉β1 . Since this quantity is expressed as a ratio of two mean values, the
variance of the estimator (remember, variance with respect to MC repetitions, in equilibrium) can
be obtained by using the general expression

σ2
est ≡ var

(
1
n

∑
iAi

1
n

∑
iBi

)
=

1

n

〈A〉2

〈B〉2
〈
O2
〉

2τO +O(n−2) , (1)

where n is the number of measurements performed,

O =
A

〈A〉
− B

〈B〉
, (2)

and τO is the integrated autocorrelation time associated with O. Eq. (1) is valid as n → ∞,
neglecting corrections of order n−2. In our case the relevant quantity is

〈
O2
〉
. If we specialize

Eq. (2) to our case, we obtain

〈O2〉0 =

〈(
Ae−∆βH

〈Ae−∆βH〉0
− e−∆βH

〈e−∆βH〉0

)2
〉

0

where 〈·〉β0 = 〈·〉0. Now, if A1 = 〈A〉β1 we have

〈Ae−∆βH〉0 = A1〈e−∆βH〉0

Substituting, we get

〈O2〉0 =

〈(
A

A1
− 1

)2 e−2∆βH

〈e−∆βH〉20

〉
0

Now, we define β2 = 2β1 − β0. Since

β1 =
β0 + β2

2

it is easy to understand what β2 is: it is the symmetric point of β0 with respect to β1 (β1 is the
midpoint of the segment connecting β0 and β2 on the β-line). It follows β2 − β1 = β1 − β0 = ∆β
and β2 − β0 = 2(β1 − β0) = 2∆β, which implies

〈B〉2 =
〈Be−(β2−β0)H〉0
〈e−(β2−β0)H〉0

=
〈Be−2∆βH〉0
〈e−2∆βH〉0

.
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We can thus rewrite

〈O2〉0 =

〈(
A

A1
− 1

)2
〉

2

〈
e−2∆βH

〉
0

〈e−∆βH〉20
Finally, in terms of the Helmholtz free energy F (β) we have〈

e−2∆βH
〉

0
= exp[β0F (β0)− β2F (β2)]

〈
e−∆βH

〉
0

= exp[β0F (β0)− β1F (β1)]

We thus obtain the final formula:

〈O2〉0 =

〈(
A

A1
− 1

)2
〉

2

eF(β0,β1) ,

where
F(β0, β1) = 2β1F (β1)− β0F (β0)− β2F (β2) .

Collecting all terms we obtain for the square of the relative error:

σ2
est

〈A〉21
=

1

n

〈(A−A1)2〉2
A2

1

eF(β0,β1)2τO +O(n−2) .

This result shows that the error on the reweighted result depends on the autocorrelation time
(obvious!), and on 〈(A − A1)2〉2, which is some kind of variance of the observable and is a slowly
varying function of β1. The relevant term is the exponential term, which is an exponential of an
extensive (as we shall prove, positive) quantity. The latter term is the one that controls the error.

We wish now to rewrite F(β0, β1) using E = ∂(βF )/∂β and Ĉ = −∂E/∂β. Now, we have∫ β1

β0

Edβ =

∫ β1

β0

∂(βF )

∂β
dβ = β1F (β1)− β0F (β0); (3)

Since the same relation holds with β2 replacing β0 we have

F(β0, β1) =

∫ β1

β0

Edβ +

∫ β1

β2

Edβ.

Now, we rewrite:∫ β1

β0

Edβ =

∫ β1

β0

dβE
d

dβ
(β − β0) = E(β1)(β1 − β0) +

∫ β1

β0

dβĈ(β)(β − β0),

where we have performed an integration by parts in the last step. The same relation holds for β2

replacing β0. Since β1 − β0 = −(β1 − β2) we obtain

F(β0, β1) =

∫ β1

β0

dβĈ(β)(β − β0) +

∫ β1

β2

dβĈ(β)(β − β2)

We now show that both integrals are positive and increasing functions of |∆β|. Assume that β1 > β0

so that β2 > β1. We can write

F(β0, β1) =

∫ β0+∆β

β0

dβĈ(β)(β − β0) +

∫ β1+∆β

β1

dβĈ(β)(β2 − β)
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In the second integral we have interchanged the endpoints and replaced β − β2 with −(β2 − β).
Since the specific heat is always positive, the arguments of the two integrals are both positive. It
is also immediate to verify that they increase with ∆β increasing. The same considerations apply
β1 < β0.

Finally, let us obtain a simpler formula that applies when ∆β is small. In this case∫ β1

β0

dβĈ(β)(β − β0) ≈ Ĉ(β0)

∫ β1

β0

(β − β0) =
1

2
Ĉ(β0)∆β2

and ∫ β1

β2

dβĈ(β)(β − β2) ≈ Ĉ(β2)

∫ β1

β0

(β − β2) =
1

2
Ĉ(β0)∆β2

We obtain the simpler expression

F(β0, β1) = Ĉ(β0)∆β2.

Thus the condition for errors to be small is

Ĉ(β0)∆β2 � 1 |∆β| � 1√
Ĉ(β0)

,

which is the one that we have obtained before, with the more qualitative argument.

It is important to stress that the formula we have obtained has mostly a pure theoretical interest,
as it applies asymptotically, when the number of iterations n is so large that σ2

est is small. In
practical applications, one should use a more robust method, like the jackknife method. Moreover,
the jackknife method also allows one to take into account some of the bias, which may be relevant
here, as it is also proportional to expF(β1, β0).

The calculation of the error on free energy differences is completely analogous. The computation
requires the estimation of − ln〈e−∆βH〉0. The corresponding error σ is (we use the error propagation
formula, assuming data to be independent)

nσ2 =
〈e−2∆βH〉0 − 〈e−∆βH〉20

〈e−∆βH〉20
=
〈e−2∆βH〉0
〈e−∆βH〉20

− 1 = eF(β0,β1) − 1,

where n is the number of independent measurements. If data are correlated we only need to
introduce the appropriate autocorrelation time. For this quantity it is also easy to compute the
bias assuming data to be independent. Prove that

bias ∼ 1

n
(eF(β0,β1) − 1)
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