WIDOM ALGORITHM FOR THE CHEMICAL POTENTAL
We work in the canonical ensemble

$$
\begin{aligned}
& Q(N, V, T)=\frac{1}{N^{\prime} \lambda^{3 N}} \int d^{3 N} q e^{-\beta U\left(q, \cdots q_{N}\right)} \\
& F \notin N, V, T)=-k T \ln Q(N, V, T) \\
& \quad=F^{(1 d)}+F^{(\text {exc })} \quad F^{(e x c)}=-k T \ln \left(\frac{Z}{V^{N}}\right)
\end{aligned}
$$

with $Z=\int d^{3 N} q e^{-\beta U(q, \ldots q N)}$
By definition $\mu=\left(\frac{\partial F}{\partial N}\right)_{V_{1} T}, \mu^{(1 d)}=\left(\frac{\partial F^{(1 d)}}{\partial N}\right)_{V_{1} T}, \mu^{(\text {exc) }}=\left(\frac{\partial F^{(\text {exc })}}{\partial N}\right)_{V T}$

$$
\mu=\mu^{\prime d}+\mu^{e x c}=k T \ln \left(p \lambda^{3}\right)+\mu^{(e x c)}
$$

The interesting quantity is $\mu^{(e x c)}$

$$
\begin{aligned}
\mu^{(\text {exc })} & (N, V, T)=\left(\frac{\partial F^{(\text {exc })}}{\partial N}\right)_{V, T} \approx \frac{F^{(\text {exc }}(N+1)-F^{(\text {exc })}(N)}{(N+1)-N} \\
& \approx F^{(\text {exc) }}(N+1)-F^{(\text {exc } c)}(N) \\
& =-k T \ln \frac{Z(N+1)}{V^{N+1}}+k T \ln \frac{Z(N)}{V^{N}} \\
& =-k T \ln \left[\frac{Z(N+1, V, T)}{V Z(N, V, T)}\right]
\end{aligned}
$$

We must evaluate the rato in the square brackets

$$
\frac{Z(N+1, V, T)}{V Z(N, V, T)}=\frac{\int d r_{1} \ldots d r_{N+1} e^{-\beta U\left(r_{1} \ldots r_{N+1}\right)}}{V \int d r_{1} \ldots d r_{N} e^{-\beta U\left(r_{1} \ldots r_{n}\right)}}
$$

Now, notation $\left\{\begin{array}{l}U\left(r_{1} \ldots r_{N+1}=U_{N+1}\right. \\ U\left(r_{1} \ldots r_{N}\right)=U_{N}\end{array}\right.$
and $V=\int d r_{N+1}$

$$
\begin{aligned}
& \text { so that } \\
& \begin{array}{l}
\frac{Z\left(N+1, V_{1} T\right)}{V Z\left(N, V_{1} T\right)}=\frac{\int d r_{1} \ldots d r_{N+1} e^{-\beta U_{N+1}}}{\int d r_{N+1} \int d r_{1} \ldots d r_{N+1} e^{-\beta U_{N}} \text { Correction: Here } r_{-} N+1 \text { is } r_{-} N} \\
\\
=\frac{\int d r_{1} \ldots d r_{N+1} e^{-\beta U_{N}}\left(e^{-\beta U_{N+1}} e^{\beta U_{N}}\right)}{\int d r_{1} \ldots d r_{N+1} e^{-\beta U_{N}}} \\
=\left\langle e^{-\beta\left(U_{N+1}-U_{N}\right)}\right\rangle
\end{array} \sqrt{1 \text { particle free }}
\end{aligned}
$$

The average value is the usual average value for $N+1$ particles with Hamiltonian

$$
U_{N}=U\left(r_{1} \ldots r_{N}\right)
$$

Particle $(N+1)$ does not interact with the OTHERS
NOTE: for pair interachoins

$$
U_{N+1}-U_{N}=\sum_{j=1}^{N} V\left(\bar{r}_{N+1}-\bar{r}_{\jmath}\right)
$$

The implementation
We only shore the portion of the INTERACTING N particles.

A banc iteration is the following
(a) Perform $N_{\text {it }}$ canonical MC steps for the first N particles [1 step \equiv update of one particle] [particle $N+1$ does not interact and therefore plays no role in the update of $\left.\left\{\bar{r}_{1} \ldots r_{N}\right\}\right]$ We use the canonical MC algorithm we have discussed before
(b) Perform N_{r} userthons of the $N+1$ particle and measure:

For $1: 1, \ldots N_{r}$

$$
\begin{aligned}
& r j: 1, \ldots N_{r} \\
& \bar{r}_{N+1}=(L * \operatorname{RAN}(), L * \operatorname{RAN}(), L * \operatorname{RAN}()) \\
& \quad-\beta U_{N+1}+\beta U_{N} \text { and shone }
\end{aligned}
$$

compute $e^{-\beta U_{N+1}+\beta U_{N}}$ and store END FOR

The ratio $N_{r} / N_{i t}$ can be optimized to obtain the smallest errors. Typically $N_{r} / N_{i t}$ is of order 1. $\left[N_{r}=1.2 \mathrm{Nit}, N_{r}=1.6 \mathrm{Nit}\right.$, for example].

