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1 Introduction

In the following report the results of error analysises carried out on data set as they could have
been obtained from Monte Carlo or Molecular Dynamics simulations are presented. The generation
of the data is not part of this paper, but it was provided.
The work presented here is part of the course ”Computational Statistical Mechanics” given by
professor Andrea Pelissetto at ”Sapienza - Università di Roma” in spring 2017.

2 Verification of Proper Thermalization

In order to verify that the data is thermalized, the results Ui(t) were plotted against the Monte
Carlo time. An exemplary plot is shown in figure 1. Since the data does not show a trend towards
de- or increasing values for all four different sets but only fluctuations, it is legitimate to assume
thermalization and include all the data points in the following analysis.

3 Analysis under the Assumption of Independence

Below, the equations for obtaining the estimated averages Ui and variances V arUi of a given data
set are provided
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N is the number of data points Ui(k) in a set. The factor N
N−1 in the expression for the variance,

equation 2, although only having a small effect on the result for large N , removes the bias from
the estimator.
The error σi for thermalized (i.e. time-translation invariant) date sets is obtained from the variance
as follows:
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Figure 1: Measured values of U1 at different times. Every 10th result is plotted.

The calculation of Ci(τ), the autocorrelation function, will be discussed in section 5. Here, it is
assumed that the data points are independent which is equivalent to setting the correlation to zero.
Thus the following formula is used:

σi =

√
V arUi
N

(4)

The averages and errors obtained via this approach are listed in table 1.

4 Blocking Analysis

However, usually, Monte Carlo techniques do not generate independent results in every step. One
first approach in order to take into account correlation is the so-called blocking analysis. Here,
pairwise blocking is performed, i.e. a new set of data is generated by averaging over neighboring
points, with the result being used again as the input for the next blocking step.

U
(1)
i (t) =

1

2
[Ui(2t− 1) + Ui(2t)] (5)

U
(k)
i =

1

2

[
U

(k−1)
i (2t− 1) + U

(k−1)
i (2t)

]
(6)

When (what happens the first time for k = 7) a set contains an uneven number of blocks, the last
one is neglected in future steps.

The errors obtained for U
(k)
i depending on the number of blocking steps k are shown in figure 2.

It is expected that from a certain block size onwards the values associated to the different blocks
(i.e. the averages over the underlying data points) can be considered independent, because they
will only contain a negligible share of data points that are closely correlated to some included
in the neighboring blocks. From that point onwards the error obtained via formula 4 should no
longer depend on k, i.e. a plateau is expected to appear in each of the graphs presented in figure
2. However, it should also be considered that with increasing k the number of blocks decreases
exponentially. Thus for high k, there is only a small number of blocks left resulting in fluctuations
due to statistical errors. This explains why for high k the errors plotted in figure 2 decrease or
fluctuate. Although it is not in all cases entirely clear that the plateau has been reached, the slopes
of the curves still decrease reasonably before fluctuations take over. Thus, it seems legitimate to
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(a) U1 (b) U2

(c) U3 (d) U4

Figure 2: k-dependence of the errors σi during the blocking analysis. The red lines indicate the
error that was determined as the optimal estimate through visual analysis.
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Ui Ui σi,ind σi,block

U1 3.984 0.008 0.068
U2 6.406 0.005 0.047
U3 2.015 0.002 0.009
U4 1.509 0.008 0.039

Table 1: Error estimates obtained under the assumption of independence σi,ind and via a blocking
analysis σi,block. Additionally, the averages Ui are given.

assume that the real error is close to the one graphically determined here. It is obtained after 8 to
10 blocking steps. The error estimates received via the blocking procedure are given in table 1. To
allow a clearer observation of a plateau and thus a more precise estimation of the error, more data
points would have to be generated. The errors obtained through the blocking analysis are up to 9
times higher than those calculated under the assumption of independence, which is a sign that the
data points are indeed correlated.

5 Autocorrelation Analysis

In the following, correlation will be considered explicitly for the computation of the error of the
sample mean via equation 3 by computing the autocorrelation functions and the integrated auto-
correlation time τint.
The correlation between measurements at n and m is defined as follows:

C(n,m) = 〈(Ui(n)− 〈Ui〉) (Ui(m)− 〈Ui〉)〉 (7)

In equilibrium C no longer depends on the values of n and m themselves but only on their difference
k. It can be shown that the k-dependent autocorrelation function can be computed as follows:

C(k) =
1

N − k

N−k∑
j=1

(Ui(j + k)− Ui)(Ui(j)− Ui) (8)

With k = 0 equation 8 obviously becomes equivalent to the estimator for the variance as given in
formula 2.
From the autocorrelation functions the integrated autocorrelation time τint can be computed:

τint =
1

2
+
∞∑
k=1

C(k)

C(0)
(9)

Entering this in equation 3 yields the following equation for estimating the error:

σi =

√
C(0)

N
2τint (10)

However, for an actual estimation of σi the sum in equation 9 has to be cut. There is not only
just a finite number of data points available, but also the results obtained for the autocorrelation
functions through equation 8 become unreliable due to increasing statistical errors for high k. Thus,
τint(kmax) is defined and calculated for increasing values of kmax.

τint(kmax) =
1

2
+

kmax∑
k=1

C(k)

C(0)
(11)
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Ui σi,block τint(kmax) σi,auto deviation / %

U1 0.068 38.2 0.066 -3.2
U2 0.047 39.6 0.047 -1.5
U3 0.009 20.3 0.010 7.5
U4 0.039 13.5 0.041 5.4

Table 2: Error estimates obtained via a blocking analysis σi,block and estimates for the autocorre-
lation times τint(kmax) as well as the corresponding errors, σi,auto . Additionally, the deviations of
σi,auto from σi,block are given.

The computed autocorrelation functions C(k) and corresponding integrated autocorrelation times
τint(kmax) for the given data are shown in figure 3.
The maximum integrated autocorrelation time before fluctuations become dominant was deter-
mined via visual investigation. The errors calculated via equation 10 are given and compared to
those obtained via the blocking analysis in table 2.
The estimates are not exactly equal, which is due to the difficulties in finding a correct estimate
before correlations take over and the graphical determination of the best estimate that was not
entirely clear, especially for the autocorrelation analysis. However, the deviation is not higher than
8 % in any case, which is acceptable because for the error in general no high accuracy is needed.

6 Jackknife Analysis

Finally, a Jackknife analysis is carried out on the ratios Ri, with

Ri =
〈Ui〉
〈U1〉

(12)

and i = 2, 3, 4. The analysis starts from blocked variables, which each represent the average over
2000 data points. It is legitimate to neglect autocorrelation, because in section 4 it was shown that
from 8 to 10 blocking steps onwards , what corresponds to blocks with 256 to 1024 elements, the
blocks can be treated as sufficiently independent. Another criteria for a acceptable block size states
that it should be greater or equal than 10 times τint. According to the results obtained in section
5 this criteria is fulfilled, too.
The Jackknife method has the advantage that it is easily applicable on functions of mean values,
and not only the averages themselves, while taking into account possible correlations between the
different observables that were measured, here corresponding to nominator and denominator. The
Jackknife average UJKi,α is defined as the average taken over all blocks except block α.

UJKi,α =
1

M − 1

∑
β 6=α

Ui,β (13)

M is the number of blocks and Ui,α is the average of Ui over block α. Now one can average over all
ratios obtained by always not including another block i.e. by averaging over the different choices
for α:

RJKi =
1

M

M∑
α=1

UJKi,α

UJK1,α

(14)
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(a) C(k) for U1 (b) τint(k) for U1

(c) C(k) for U2 (d) τint(k) for U2

(e) C(k) for U3 (f) τint(k) for U3

U3

(g) C(k) for U4 (h) τint(k) for U4

Figure 3: k-dependence of C(k) and τint(k). The red lines indicate the values used for calculating
the estimated error.
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i Ri,est σJKi σi,ind σi,WE

2 1.607 0.039 0.029 0.038
3 0.506 0.010 0.009 0.011
4 0.378 0.013 0.012 0.017

Table 3: Overview of the estimated ratios Ri,est, the errors obtained via a Jackknife analysis on
blocked data σJKi , the estimates received via the independent-error formula, σi,ind, and the errors
computed with the worst-error formula, σi,WE .

Additionally, the estimator obtained by simply dividing the estimator for the average of Ui over
the estimated average for U1 is calculated:

Rtoti =
Ui

U1

(15)

By using these definitions the Jackknife estimate for the ratio can be obtained:

Ri,est = MRtoti − (M − 1)RJKi (16)

The error of the Jackknife estimate σJKi is obtained via the following relation:

σJKi =
√

(M − 1)V arRi,est (17)

=

√√√√√(M − 1)

M

M∑
α=1

(
UJKi,α

UJK1,α

−Ri,est

)2

(18)

In addition to the Jackknife formalism also two other, very common techniques for estimating the
errors of functions of averages were applied: The independent-error formula and the worst-error
formular: Under the assumption that U1 and Ui are independent the error σi,ind for the ratio is
obtained via equation 19. Equation 20 is the worst-error approximation for the considered ratios.

σi,ind =

∣∣∣∣UiU1

∣∣∣∣
∣∣∣∣∣
(
σ2Ui

Ui
2 +

σ2U1

U1
2

)∣∣∣∣∣
1
2

(19)

σi,WE =

∣∣∣∣∣UiU1

(
σUi∣∣Ui∣∣ +

σU1∣∣U1

∣∣
)∣∣∣∣∣ (20)

As input data for the calculation of σi,ind and σi,WE the estimates obtained from the autocorrelation
analysis were used. All results are summarized in table 3.
The Jackknife method is expected to yield the best estimate of the error. The worst-error formula
gives a higher limit to the error whereas the result of the independent-error equation can yield
lower or higher estimates. Here it always gives a lower result, which, while being close to the
result of the Jackknife method for R3 and R4, differs significantly from the Jackknife result for
R2. On the first sight it seems counterintuitive that the worst-error formula gives a (although only
slightly) lower result for the error in the case of R2 than the Jackknife method. However, one
should consider that the result of the worst-error formula again depends on the estimates made
during the autocorrelation analysis. The freedom in the choice of τ(kmax) is easily large enough to
explain this unexpected result.
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7 Conclusion

First, four sets of data, as they would arise from a Monte Carlo or Molecular Dynamics simulation,
were analyzed separately. The errors computed in a blocking and in an autocorrelation analysis
deviated from each other, but only slightly. Both methods clearly showed that the individual
data points cannot be considered independent. The errors computed using the assumption of
independence are by far too low.
Then a Jackknife analysis was performed and the results compared with those obtained by applying
the independent-error and worst-error equation on the results of the autocorrelation analysis. Al-
though the results are mostly similar, especially the error based on the assumption of independence
differs significantly for one data set. Finally, one should not oversee that the two formulas depend
on additional estimations since they require the errors of the single data sets as input which might
explain some unexpected results.
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