We want to compute the error on the sample mean, which is again defined as

\[
\sigma^2 = \left\langle \left(\frac{1}{N+1} \sum_{n=0}^{N} f(X_n) - \sum_{x} \pi_x f(x) \right)^2 \right\rangle_{MC,0}
\]

where, the average is taken over all possible histories (MC repetitions) that start at \(X_0\).

Note: This expression is correct only if there is no bias on the sample mean or if the bias is negligible. For generic \(X_0\) this occurs for large values of \(N\). The formula is valid for any \(N\) if we start in equilibrium (the only case we will consider, see slide 3).

THEOREM: The limit

\[
\lim_{N \to \infty} N\sigma^2
\]

is finite and independent of the initial configuration.

Thus, also in the case of dynamic Monte Carlo fluctuations (errors) decrease as \(1/\sqrt{N}\).
We wish now to estimate σ^2 from the data. If

$$F = \sum_x \pi_x f(x)$$

we have

$$\sigma^2 = \frac{1}{(N+1)^2} \sum_{n=0}^{N} \sum_{m=0}^{N} \langle (f(X_n) - F)(f(X_m) - F) \rangle_{MC,0}$$

Now we define the **autocorrelation function** $C_f(n,m,X_0)$:

$$C_f(n,m,X_0) = \langle (f(X_n) - F)(f(X_m) - F) \rangle_{MC,0}$$

so that

$$\sigma^2 = \frac{1}{(N+1)^2} \sum_{n=0}^{N} \sum_{m=0}^{N} C_f(n,m;X_0)$$

The autocorrelation function depends on X_0, while the large-N limit of σ does not.
We now assume we start in equilibrium. From a mathematical point, starting in equilibrium means averaging over the starting point with probability π: we average the behavior of the system with respect to the initial state using the equilibrium distribution.

In practice, starting in equilibrium means considering a typical configuration as starting conf (if we choose a configuration with probability π_x, we will obviously select a typical configuration).

In equilibrium, configurations at time $t = n$ are distributed according to π.

$$\text{prob of } y \text{ at time } n = \sum_{x_0} \pi_{x_0} P_{x_0 y}^n$$

But now we use repeatedly the stationarity relation $\sum_x \pi_x P_{xy} = \pi_y$ so that

$$\sum_{x_0} \pi_{x_0} P_{x_0 y}^n = \sum_{x_0} \pi_{x_0} \sum_z P_{x_0 z} P_{z y}^{n-1} = \sum_z [\sum_{x_0} \pi_{x_0} P_{x_0 z}] P_{z y}^{n-1} = \sum_z P_{z y}^{n-1} = \ldots = \pi_y$$

Configurations have always the same distribution, independently of time: the system is time-translation invariant.
We define the equilibrium autocorrelation function:

\[C_f(n, m; \text{eq}) = \sum_{x} \pi_x C_f(n, m, x) \]

The equilibrium autocorrelation function is time-translation invariant, hence depends only on \(|n - m|\): \(C_f(n, m; \text{eq}) = C_f(|n - m|) \). Therefore,

\[\sigma^2 = \frac{1}{(N + 1)^2} \sum_{n=0}^{N} \sum_{m=0}^{N} C_f(|n - m|) \]

Now, we wish to replace the two sums with a single sum over \(k = n - m \).
To understand this point, let us imagine $N = 2$ and compute ($g(n)$ is a generic function)

$$\sum_{n=0}^{N} \sum_{m=0}^{N} g(n-m) = \sum_{n=0}^{2} [g(n) + g(n-1) + g(n-2)]$$

Now we make the summation over n explicit. We obtain

$$g(0) + g(-1) + g(-2) \quad \text{here } n = 0$$
$$g(1) + g(0) + g(-1) \quad \text{here } n = 1$$
$$g(2) + g(1) + g(0) \quad \text{here } n = 2$$

Summing all terms, we get

$$3g(0) + 2g(1) + 2g(-1) + g(2) + g(-2)$$
For generic values of N we have

$$\sum_{n=0}^{N} \sum_{m=0}^{N} g(n-m) = (N+1)g(0) + N[g(1) + g(-1)] + (N-1)[g(2) + g(-2)] + \ldots g(N) + g(-N)$$

that is

$$\sum_{n=0}^{N} \sum_{m=0}^{N} g(n-m) = (N+1)g(0) + \sum_{k=1}^{N} (N+1-k)[g(k) + g(-k)]$$

It follows

$$\sigma^2 = \frac{1}{(N+1)^2} \left[(N+1)C_f(0) + 2 \sum_{k=1}^{N} (N+1-k)C_f(k) \right]$$

$$\sigma^2 = \frac{1}{(N+1)} \left[C_f(0) + 2 \sum_{k=1}^{N} C_f(k) \right] - \frac{2}{(N+1)^2} \sum_{k=1}^{N} kC_f(k)$$
The function $C_f(|k|)$ decays exponentially (not at continuous transitions but we are not discussing this issue here). This guarantees that for $N \to \infty$ we have

(a) $\sum_{k=1}^{N} C_f(k) \approx \sum_{k=1}^{\infty} C_f(k)$, with (exponentially small) corrections that vanish as $N \to \infty$.

(b) $\sum_{k=1}^{N} kC_f(k)$ is finite for $N \to \infty$, so that the last term in the expression of σ^2 is of order N^{-2}.

Hence, we have proved that the error is of order $1/N$ and obtained the relation

$$\sigma^2 = \frac{1}{N+1} \left[C_f(0) + 2 \sum_{k=1}^{\infty} C_f(k) \right].$$

Observation: $C_f(0)$ is the variance with respect to π

We use the definition

$$C_f(n,n;X_0) = \langle (f(X_n) - F)^2 \rangle_{MC,0} = \sum_x P^n_{X_0,x} (f(x) - F)^2$$

Now we assume that we are in equilibrium:

$$C_f(0) = \sum_{x_0} C_f(n,n;x_0) \pi_{x_0} = \sum_{x_0} \sum_x \pi_{x_0} P^n_{x_0,x} (f(x) - F)^2 = \sum_x (f(x) - F)^2 \sum_{x_0} \pi_{x_0} P^n_{x_0,x}$$

$$C_f(0) = \sum_x (f(x) - F)^2 \pi_x = \langle (f(x) - F)^2 \rangle_{\pi} = \text{Var}_\pi f$$
Observation. For static algorithms we obtain the usual formula (do not get confused by the $N + 1$ in the normalization: here we sum from 0 to N and therefore there are $N + 1$ data).

Indeed, if $n \neq m$ we have $\langle f(X_n)f(X_m) \rangle_{MC} = \langle f(X_n) \rangle_{MC} \langle f(X_m) \rangle_{MC}$. It follows $C_f(n,m;X_0) = 0$ if $n \neq m$.

For uncorrelated data the autocorrelation function $C_f(n)$ vanishes except for $n = 0$.

It follows

$$\sigma^2 = \frac{1}{N+1} C_f(0) = \frac{1}{N+1} \text{Var}_\pi f$$
We define an integrated autocorrelation time $\tau_{\text{int}, f}$ as

$$\tau_{\text{int}, f} = \frac{1}{2} + \sum_{k=1}^{\infty} \frac{C_f(k)}{C_f(0)}.$$

The error becomes

$$\sigma^2 = \frac{C_f(0)}{N+1} 2\tau_{\text{int}, f}.$$

The definition of $\tau_{\text{int}, f}$ can be understood by considering the simple case in which $C_f(k) = C_f(0) \exp(-k/\tau)$. We use the result for the geometric series $(1-x)^{-1} = \sum_n x^n$, so that

$$\sum_{k=1}^{\infty} e^{-k/\tau} = -1 + \sum_{k=0}^{\infty} e^{-k/\tau} = -1 + \frac{1}{1 - e^{-1/\tau}}.$$

It follows

$$\tau_{\text{int}, f} = -\frac{1}{2} + \frac{1}{1 - e^{-1/\tau}} \approx \tau$$

where the last equality holds for $\tau \gg 1$ ($1/\tau$ is small so that we can expand the expression in powers of $1/\tau$, $e^{-1/\tau} \approx 1 - 1/\tau$). For uncorrelated data $\tau_{\text{int}, f} = 1/2$.