JACKKNIFE METHOD
Suppose we wish to compute $\langle f\rangle_{\pi}$ and $J\left(\langle f\rangle_{\pi}\right)$
Generate N number cit probability $\pi(x)$

$$
x_{1} \ldots \ldots x_{N}
$$

Define the Jackknife averages

$$
\bar{f}_{i}=\frac{1}{N-1} \sum_{\substack{j=1 \\ j \neq i}}^{N} f\left(x_{j}\right) \quad J_{i}=J\left(\bar{f}_{i}\right)
$$

\bar{f}_{i} is the sample mean in which we consider all data, except X_{i}

Example $\quad N=4$
We compute

$$
\begin{array}{ll}
\bar{f}_{1}=\frac{1}{3}\left(f\left(x_{2}\right)+f\left(x_{3}\right)+f\left(x_{4}\right)\right) & J_{1}=J\left(\bar{f}_{1}\right) \\
\bar{f}_{2}=\frac{1}{3}\left(f\left(x_{1}\right)+f\left(x_{3}\right)+f\left(x_{4}\right)\right) & J_{2}=J\left(\bar{f}_{2}\right) \\
\bar{f}_{3}=\frac{1}{3}\left(f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{4}\right)\right) & J_{3}=J\left(\bar{f}_{3}\right) \\
\bar{f}_{4}=\frac{1}{3}\left(f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{3}\right)\right) & J_{4}=J\left(\bar{f}_{4}\right)
\end{array}
$$

Note $\frac{1}{4} \sum_{\imath=1}^{4} \bar{f}_{\imath}=\frac{1}{3} \cdot \frac{1}{4}\left(3 f\left(x_{1}\right)+3 f\left(x_{2}\right)+3 f\left(x_{3}\right)+3 f\left(x_{4}\right)\right)$

$$
\begin{aligned}
& =\frac{1}{4}\left(f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{3}\right)+f\left(x_{4}\right)\right. \\
& =\bar{f}
\end{aligned}
$$

This result is true in general

$$
\begin{aligned}
\mu_{J K}=\frac{1}{N} \sum_{i} \bar{f}_{i} & =\frac{1}{N} \sum_{i}\left[\frac{1}{N-1} \sum_{j=1}^{N} f\left(x_{j}\right)\right] \\
& =\frac{1}{N(N-1)} \sum_{i=1}^{N}\left(\sum_{j=1}^{j \neq i} f\left(x_{j}\right)-f\left(x_{i}\right)\right) \\
& {\left[\text { we add } f\left(x_{i}\right) \text { to the sum }\right] } \\
& =\frac{1}{N(N-1)} \sum_{i=1}^{N}\left[N \bar{f}-f\left(x_{i}\right)\right] \\
& =\frac{1}{N(N-1)}\left(\sum_{i=1}^{N} N \bar{f}-\sum_{i=1}^{N} f\left(x_{i}\right)\right) \\
& =\frac{1}{N(N-1)}\left(N^{2} \bar{f}-N \bar{f}\right)=\bar{f}
\end{aligned}
$$

For the sample mean the average of the jackknife averages is equivalent to \bar{f}.

$$
\sigma_{J K}^{2}=\frac{1}{N} \sum_{i} \bar{f}_{i}^{2}-\mu_{J K}^{2} \quad \text { (Jackknife variance) }
$$

Now

$$
\begin{aligned}
\frac{1}{N} \sum_{i=1}^{N} \bar{f}_{i}^{2} & =\frac{1}{N} \sum_{i=1}^{N}\left(\frac{1}{N-1} \sum_{\substack{j=1 \\
j \neq i}}^{N} f\left(x_{i}\right)\right)^{2} \\
& =\frac{1}{N(N-1)^{2}} \sum_{i=1}^{N}\left(\sum_{j=1}^{N} f\left(x_{j}\right)-f\left(x_{i}\right)\right)^{2} \\
& =\frac{1}{N(N-1)^{2}} \sum_{i=1}^{N}\left(N \bar{f}-f\left(x_{i}\right)\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{N(N-1)^{2}} \sum_{i=1}^{N}\left(N^{2-2}-2 N \bar{f} f\left(x_{i}\right)+f\left(x_{i}\right)^{2}\right) \\
& =\frac{1}{N(N-1)}[N^{2} \bar{f}^{2} \sum_{i=1}^{N} 1-2 N \bar{f} \underbrace{\sum_{i=1}^{N} f\left(x_{i}\right)}_{N}+\underbrace{\left.\sum_{i=1}^{N} f\left(x_{i}\right)^{2}\right]}_{N \bar{f}} \\
& =\frac{1}{(N-1)^{2}} \bar{f}^{2}+\frac{N(N-2)}{(N-1)^{2}} \bar{f}^{2}
\end{aligned}
$$

We plug in the result in $\sigma_{J k}^{2} \cdots\left(\mu_{J k}=\bar{f}\right)$

$$
\begin{aligned}
\sigma^{2} & =\frac{1}{(N-1)^{\iota}} \overline{f^{2}}+\frac{N(N-2)}{(N-1)^{2}} \bar{f}^{2}-\bar{f}^{2}=\quad \begin{array}{c}
\text { Correction: here sigma} \\
\text { is sigma } \\
\wedge \\
2 \\
\mathbf{N K}
\end{array} \\
& =\frac{1}{(N-1)^{2}}\left(\overline{f^{2}}-\bar{f}^{2}\right)
\end{aligned}
$$

Now note that the error σ on \bar{f} is

$$
\sigma^{2}=\frac{1}{(N-1)}\left(\overline{f^{2}}-\bar{f}^{2}\right) \quad \rightarrow \quad \sigma^{2}=(N-1) \sigma_{J k}^{2}
$$

Thus, we can estimate

$$
\sigma=\sqrt{(N-1) \sigma_{J K}}
$$

- To compute the error on \bar{f} there is NO. ADVANTAGE in using the JackKnife method
- Results are equivalent

The jackknife method is useful for estimating $J(\langle f\rangle)$

AVERAGE
jackknife estimate

$$
\left.\operatorname{est}\left[J(<f\rangle_{n}\right)\right]=N J(\bar{f})-\frac{(N-1)}{N} \sum_{i=1}^{N} J\left(\bar{f}_{i}\right)
$$

ERROR

Justification of the error:
(a) It is equivalent to the error propagation formula for $N \rightarrow \infty$ (N large)
(b) It provides a stable method to estimate the error even if N is not large

Proof of @ (exercise):
note that $\bar{f}_{i}=\frac{1}{N-1} \sum_{\substack{j=1 \\ j \neq i}}^{N} f\left(x_{j}\right)=\bar{f}+\underbrace{\frac{1}{N-1}\left(\bar{f}-f\left(x_{i}\right)\right.}_{\Delta})$
Δ is small so that

$$
J\left(\bar{f}_{i}^{\prime}\right)=J(\bar{f})+J^{\prime}(\bar{f}) \Delta_{i}+\text { negligible terms }
$$

Definition of the average: motivations

$$
\text { est. }\left[J\left(\langle f\rangle_{\pi}\right)\right]=N J(\bar{f})-\frac{N-1}{N} \sum_{i=1}^{N} J\left(\bar{f}_{i}\right)
$$

$$
\begin{aligned}
\cdot\langle J(\bar{f})\rangle_{M C} & =J\left(\langle f\rangle_{\pi}\right)+\frac{1}{2 N} J^{\prime \prime}\left(\langle f\rangle_{\pi}\right) V a r_{\pi} f+O\left(N^{-2}\right) \\
& =J\left(\langle f\rangle_{\pi}\right)+\frac{a}{N}+O\left(N^{-2}\right) \\
0\left\langle J\left(\bar{f}_{i}\right)\right\rangle_{M C} & =J\left(\left.\langle f\rangle_{\pi}+\frac{a}{N-1}+O \right\rvert\, N^{-2}\right) \quad\left[\begin{array}{c}
\text { of course, } \\
\text { independent of } i
\end{array}\right]
\end{aligned}
$$

[\bar{f}_{i} is indeed a sample mean over $(N-1)$ measures]
It follows

$$
\begin{aligned}
& \left\langle N J(\bar{f})-\frac{N-1}{N} \sum_{i=1}^{N} J\left(\bar{f}_{i}\right)\right\rangle_{M C} \\
& =N\left(J\left(\langle f\rangle_{\pi}+\frac{a}{N}\right)-\frac{N-1}{N} \cdot{ }_{\uparrow}^{N}\left(J\left(\langle f\rangle_{\pi}+\frac{a}{N-1}\right)\right.\right.
\end{aligned}
$$

there are N terms in the sum

$$
\begin{aligned}
& =N J\left(\langle f\rangle_{\pi}\right)+a-(N-1)\left[J\left(\langle f\rangle_{\pi}\right)+\frac{a}{N-1}\right] \\
& =J\left(\langle f\rangle_{\pi}\right)+O\left(N^{-2}\right)
\end{aligned}
$$

The average is defined so as to eliminate the bias of order N

