

Biology of microrganisms

Organisms not visible to the naked eye

Microbiology of microorganisms responsible for some human pathologies

<u>Medical microbiology</u>

- Virology
- Bacteria
 Bacteriology
- Fungi Mycology
- Protozoa
- Helminths and arthropods

• Parasitology

<u>VIROLOGY</u>

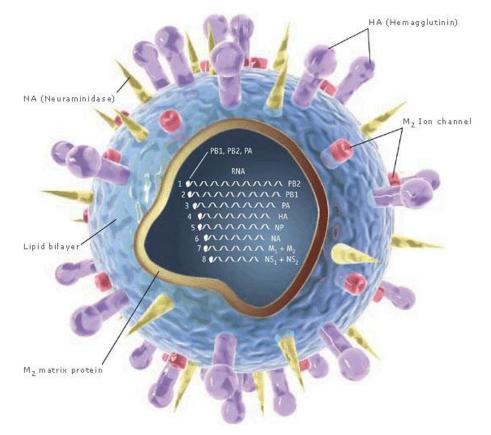
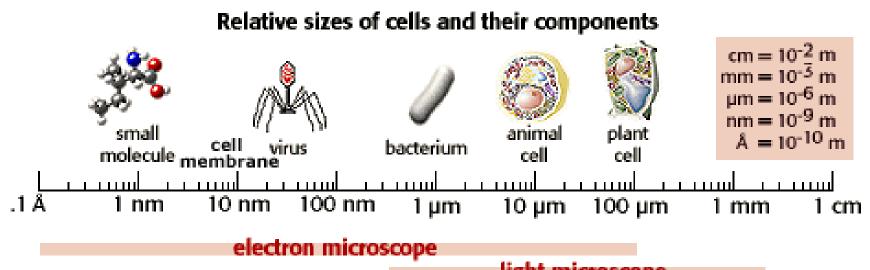
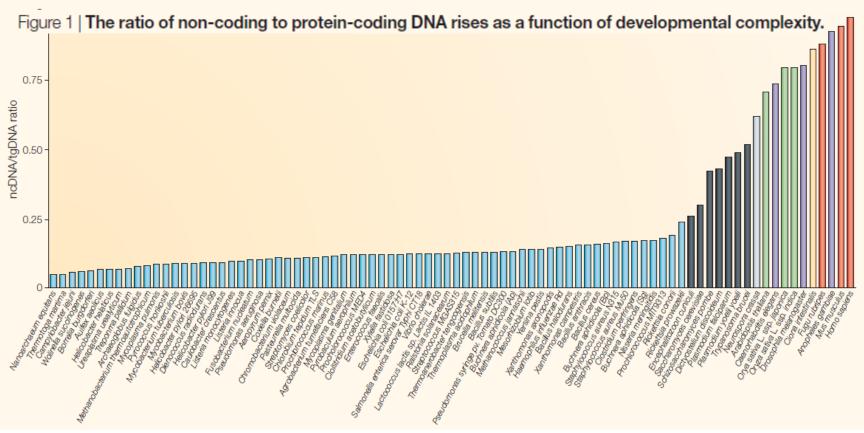



Illustration: Chris Bickel/Science. Reprinted with permission from Science Vol. 312, page 380 (21 April 2006) © 2006 by AAAS

light microscope

Redifining determinants of complexity: lesson from RNA


Organism	Genome size
Protopterus aethiopicus (lung fish)	139,000,000,000
Fritillaria assyriaca	124,900,000,000
Lilium longiflorum	90,000,000,000
Necturus maculosus (salamander)	50,000,000,000
Triturus cristatus (newt)	18,600,000,000
Zea mays	5,000,000,000
Xenopus laevis (frog)	3,000,000,000
Rattus norvegicus	3,000,000,000
Mus musculus	3,000,000,000
Homo sapiens	3,000,000,000
Bos Taurus	3,000,000,000
Gallus gallus	1,200,000,000
Oryza sativa	400,000,000
Fugu rubripes (puffer fish)	400,000,000
Drosophila melanogaster	165,000,000
Caenorhabditis elegans	100,000,000
Arabidopsis thaliana	100,000,000
Toxoplasma gondii	89,000,000
Plasmodium falciparum	25,000,000
Saccharomyces cerevisiae	12,067,280
Escherichia coli	4,639,221
Mycobacterium tuberculosis	4,397,000
Bacillus subtilis	4,170,000
Synechocystis sp. strain PCC6803	3,573,470
Haemophilus influenzae	1,830,137
Mycoplasma pneumoniae	816,394
Mycoplasma genitalium	580,000
Human immunodeficiency virus type 1	9,750

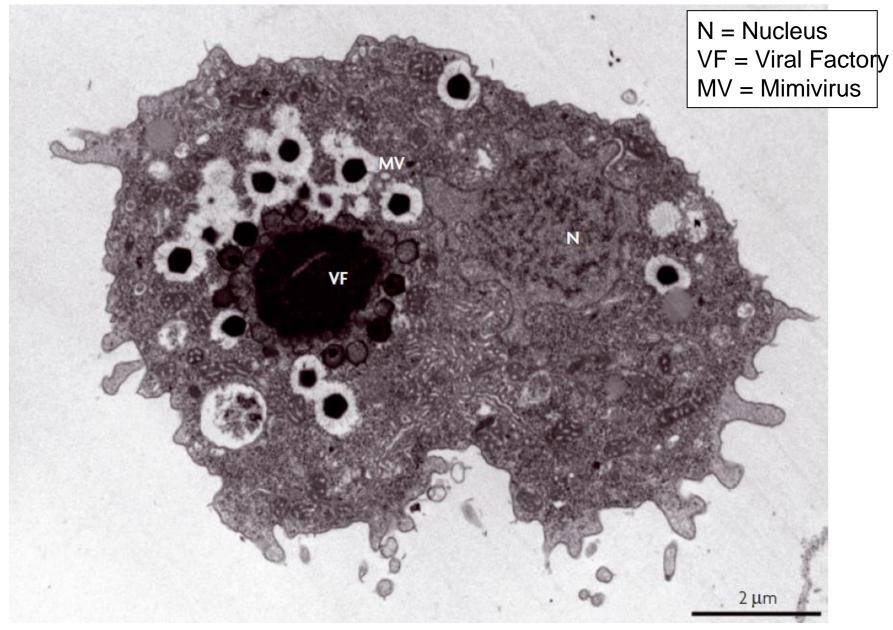
NonCodingRNA/TotalGenomicDNA

OPINION

RNA regulation: a new genetics?

John S. Mattick

For 50 years the term 'gene' has been synonymous with regions of the genome encoding mRNAs that are translated into protein. However, recent genome-wide studies have shown that the human genome is pervasively transcribed and produces many thousands of regulatory non-protein-coding RNAs (ncRNAs), including microRNAs, small interfering RNAs, and various classes of long ncRNAs.

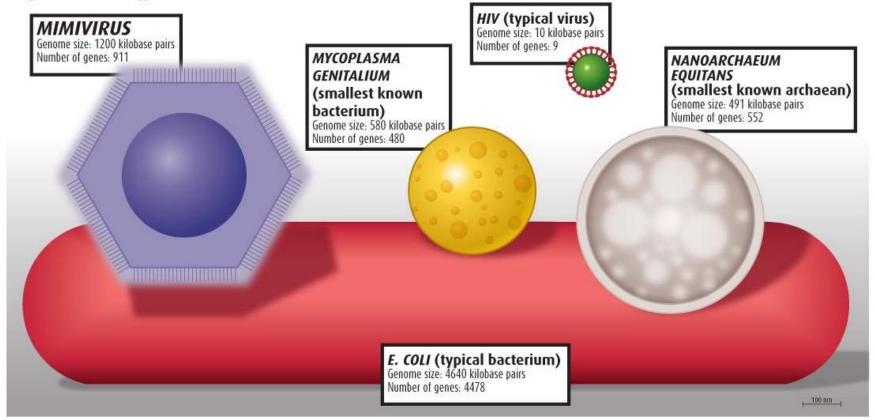

It is now clear that these RNAs fulfil critical roles as transcriptional and post-transcriptional regulators and as guides of chromatinmodifying complexes. Redifining viruses: lesson from Mimivirus

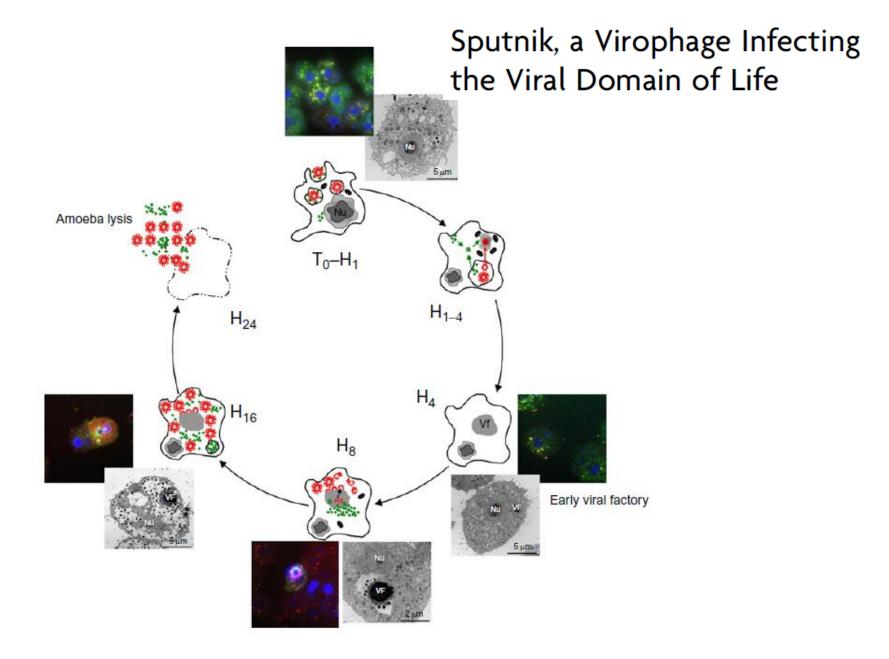
A Giant Virus in Amoebae

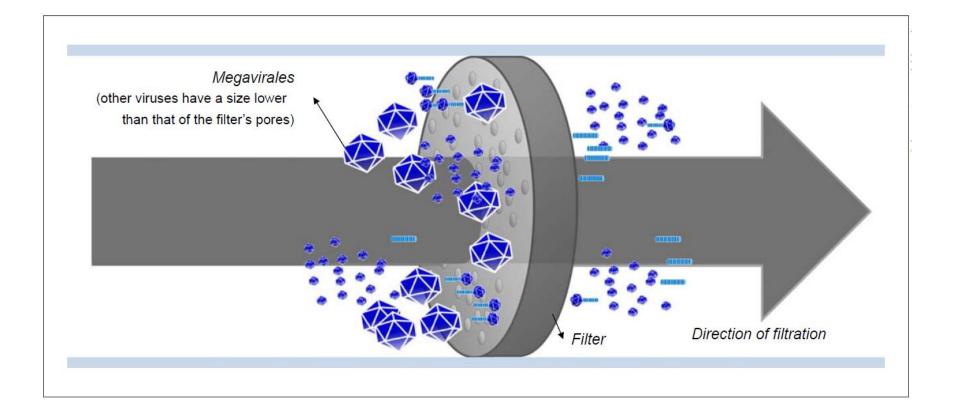
Bernard La Scola,¹ Stéphane Audic,² Catherine Robert,¹ Liang Jungang,¹ Xavier de Lamballerie,³ Michel Drancourt,¹ Richard Birtles,¹ Jean-Michel Claverie,^{2*} Didier Raoult^{1*}

Study of this microorganism within Acanthamoeba polyphaga (2) revealed a characteristic viral morphology with mature particles of 400 nm in diameter and surrounded by an icosahedral capsid. This structure is consistent with the finding that Mimivirus is not filterable through 0.2- μ m pore size filters. No envelope was observed, but 80-nm fibrils attached to the capsid were visible (fig. S1). A typical virus developmental cycle, including an eclipse phase, was observed

Mimivirus - NCLDV (NucleoCytoplasmic Large DNA Virus)




Mimivirus = Mimicking microbe as it resembles a bacterium on Gram staining


NCLDV (NucleoCytoplasmic Large DNA Virus)

NCLDV (NucleoCytoplasmic Large DNA Virus)

The giant virus Mimivirus is bigger than some bacteria and archaeans

General characteristics of virus

- Viruses are unique in nature.
- They are the smallest of all self-replicating organisms, historically characterized by their ability to pass through filters that retain even the smallest bacteria.
- In their most basic form, viruses consist solely of a small segment of nucleic acid encased in a simple protein shell.
- Viruses have no metabolism of their own, but rather are obliged to invade cells and parasitize subcellular machinery, subverting it to their own purposes.

Definitions:

Virion - physical particle of the virus

Core - nucleic acid and tightly associated proteins within the virion

Capsid - protein shell around NA or core

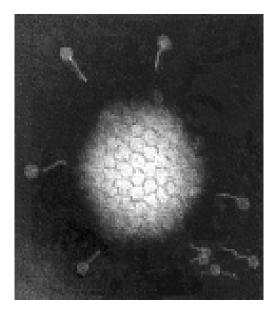
Capsomere - protein subunit making up the capsid

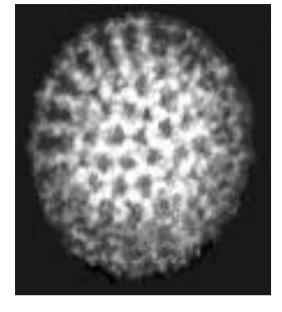
Nucleocapsid - core and capsid

Envelope - lipid membrane found on some viruses, often derived by budding from infected gp120 (SU)

cells. *Peplomer* - ("spike")- morphological unit projecting from the envelope or surface of a naked virion gp41 (TM)

Definition Usage: <u>Viruses</u> outside of cells are usually metabolically inert. <u>Virions</u> consist of either DNA of RNA (constituting the genome) usually complexed with protein into a <u>core</u>, surrounded by a protein coat ^{p55} (RT), p53 called the <u>capsid</u>, altogether called a <u>nucleocapsid</u>. The <u>capsid</u> is composed of identical subunits called <u>capsomeres</u>. It serves to protect and to ensure efficient delivery of the nucleic acid genome to new cells. Virally encoded <u>peplomer</u> spikes found protruding from the envelope or at the surface of a naked virion serve the critical function of receptor recognition necessary for binding and entry into susceptible cells. For many viruses, isolated viral nucleic acid is by itself infectious, albeit less so than when it is encapsidated.

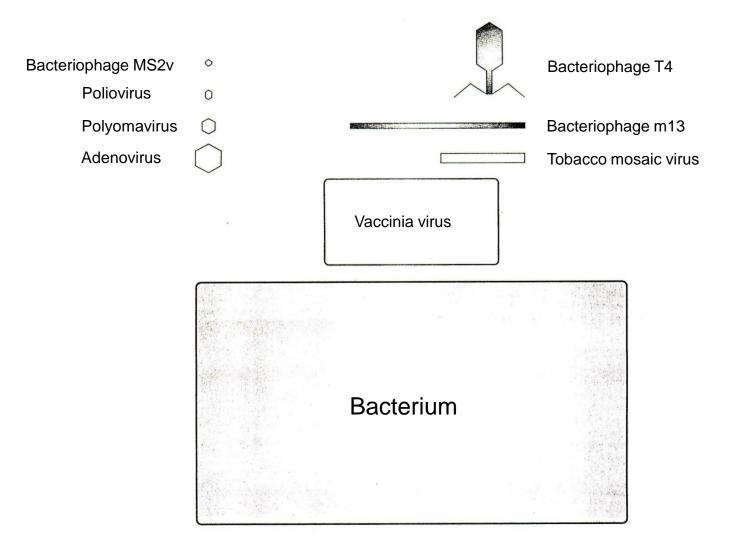

VIRUS STRUCTURE


06, 9 (NC)

24 (CA)

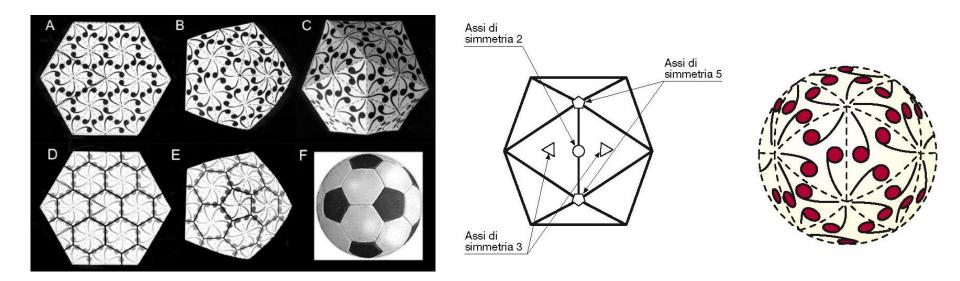
D 7 (MA)

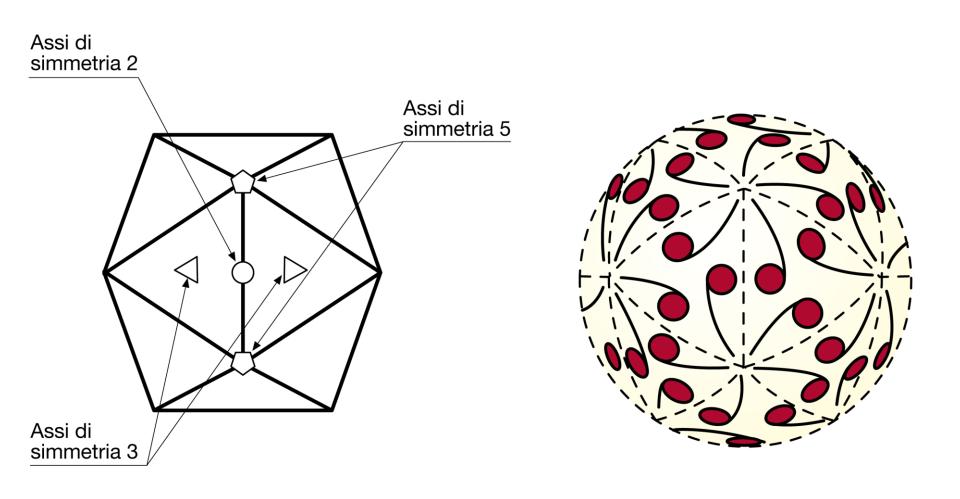
Electronmicrographs

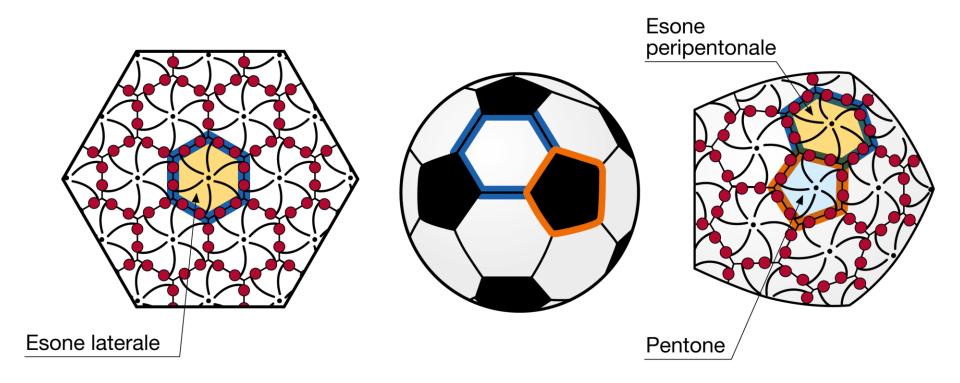


Adenovirus

Rotavirus


(courtesy of Linda Stannard, University of Cape Town, S.A.)


Viruses come in many shapes and sizes


Icosahedral symmetry

- An icosahedron is composed of 20 facets, each an equilateral triangle, and 12 vertices; because of the axes of rotational symmetry is said to have 5:3:2 symmetry.
- STRUCTURE UNITS are the smallest functional equivalent building units of the capsid, thus individual proteins.
- CAPSOMERS are morphological units seen on the surface of particles and represent clusters of structure units
- For icosahedral viruses, there are two kinds of capsomers called pentamers and hexamers

Figura 35.2 Forme icosaedriche e relativi assi di simmetria.

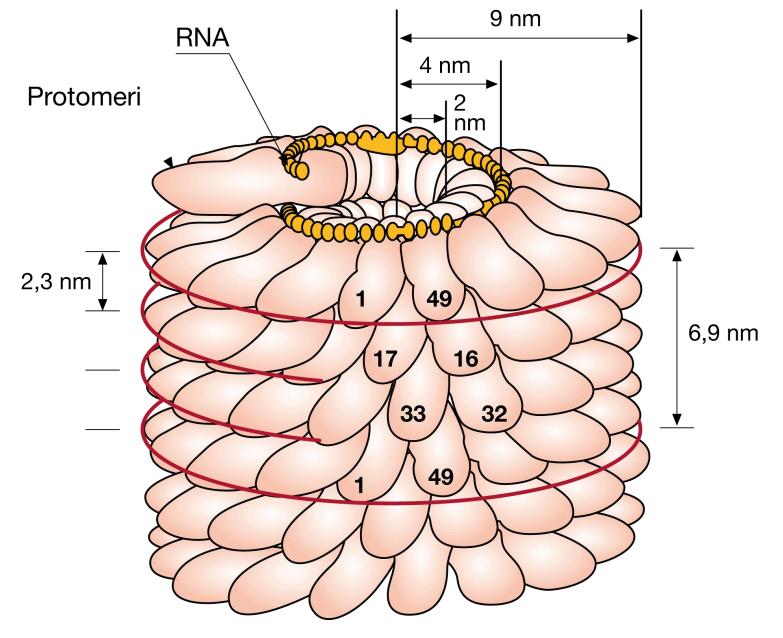


Figura 35.4 Struttura del virus del mosaico del tabacco.

Principles of Virus Structure

- The broadest distinction is between the so-called "enveloped" and "nonenveloped" viruses that is, those that contain or do not contain, respectively, a lipid-bilayer membrane.
- Further categorization of virus structures depends on details of their molecular organization.
- Types of viral particles:
 - Icosahedral symmetry nonenveloped
 - Icosahedral symmetry enveloped
 - Helical symmetry nonenveloped
 - Helical symmetry enveloped

Structures and Organization of Viral Genomes

- Genomes of animal viruses differ greatly in size, from as small as 3 kb to as large as 250-280 kb and the consequent differences in genetic capacity mean that viruses from different families vary widely in terms of how many of the functions necessary for virus replication they can encode for themselves
- Types of viral genome:
 - double stranded DNA(dsDNA)
 - single stranded DNA(ssDNA)
 - ➤ single stranded positive-sense (+) RNA
 - ➢ single stranded negative-sense (-) RNA
 - double stranded RNA

DNA VIRUS

- Single strand DNA (ssDNA)
- Double strand DNA (dsDNA):
 - linear
 - circular
 - partially double strand circular

RNA VIRUS

•Single strand RNA (ssRNA):

- Nonsegmented Genomes
- Segmented
- •Double strand RNA (dsRNA):
 - Segmented

Virus Properties and Their Use in Taxonomy

- Genome structure
 - Nature of the viral genome (DNA or RNA)
 - Strandedness
 - Size kb/kbb
 - Conformation (linear, circular)
 - Polarity (positive sense, negative sense, ambisense)
 - Number of segments

Virus Properties and Their Use in Taxonomy

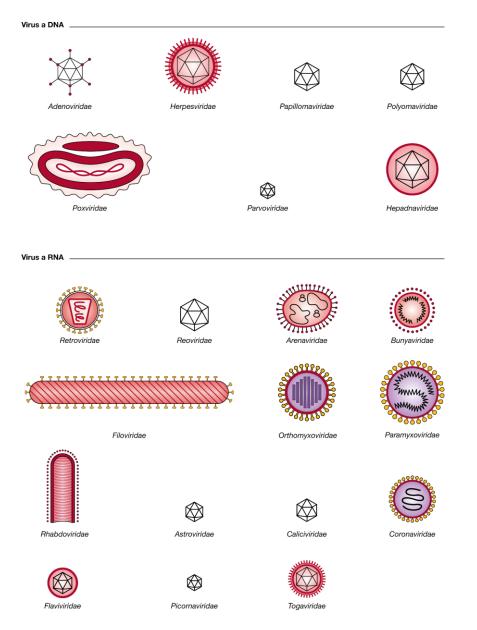
- Replication strategy
 - mechanisms of transcription
 - mechanisms of translation
 - post-transcriptional modifications
 - protein localization

•

- intracellular targeting and assembly of virion components
- post-assembly modifications and virus release

Virus Properties and Their Use in Taxonomy

- Virion morphology:
 - size
 - shape
 - capsid symmetry
 - presence or absence of an envelope
- Virion physical properties:
 - genome structure
 - sensitivity to physical or chemical insults
 - specific features of viral lipids, carbohydrates, and structural nonstructural proteins
- Antigenic properties
- Biologic properties:
 - replication strategy
 - host range
 - mode of transmission
 - pathogenicity
 - geographic distribution
 - tissue tropism
 - histology


ICTV Nomenclature

ORDERS (...-VIRALES) HERPESVIRALES

FAMILIES (...-VIRIDAE) HERPESVIRIDAE

SUBFAMILIES (...-VIRINAE) BETAHERPESVIRINAE

GENERA (.....VIRUS) CYTOMEGALOVIRUS

Figura 35.1 Rappresentazione schematica delle diverse famiglie di virus animali.

Tabella 35 1	Classificazione	dei virus	animali	secondo	Baltimore
Tabella 55.1	Classificazione	uer virus	aimian	Secondo	Dalumore.

Gruppo	Nucleocapside	Pericapside	Virione	Genoma
dsDNA (I)				
Adenoviridae	Icosaedrico	No	Icosaedrico	1 lineare, 30-42 kb
Herpesviridae	Icosaedrico	Sì	Sferico con tegumento	1 lineare, 120-220 kb
Papillomaviridae	Icosaedrico	No	Icosaedrico	1 circolare, 8 kb
Polyomaviridae	Icosaedrico	No	Icosaedrico	1 circolare, 5 kb
Poxviridae	Complesso	Sì	Ovoidale	1 lineare, 130-375 kb
ssDNA (II)				
Parvoviridae	Icosaedrico	No	Icosaedrico	1 lineare, 130-375 kb
Anelloviridae	Icosaedrico	No	Icosaedrico	1 circolare, 3-4 kb
dsRNA (III)				
Reoviridae	Icosaedrico	No	Icosaedrico	10-12 lineare, 18-30 kb
ssRNA + (IV)				
Arteriviridae	Icosaedrico	Sì	Sferico	1 lineare, 13 kb
Astroviridae	Icosaedrico	No	Icosaedrico	1 lineare, 7-8 kb
Caliciviridae	Icosaedrico	No	Icosaedrico	1 lineare, 8 kb
Coronaviridae	Elicoidale	Sì	Pleiomorfo	1 lineare, 20-33 kb
Flaviviridae	Poliedrico	No	Sferico	1 lineare, 10-12 kb
Picornaviridae	Icosaedrico	No	Icosaedrico	1 lineare, 7-8 kb
Togaviridae	Icosaedrico	Sì	Sferico	1 lineare, 10-12 kb
Hepeviridae	Icosaedrico	No	Icosaedrico	
ssRNA - (V)				
Arenaviridae	Elicoidale	Sì	Sferico	2 lineare, 5-7 kb
Bornaviridae	n.d.	Sì	Sferico	1 lineare, 9 kb
Bunyaviridae	Elicoidale	Sì	Sferico	3 lineare, 10-23 kb
Filoviridae	Elicoidale	Sì	Pleiomorfo filamentoso	1 lineare, 19 kb
Orthomyxoviridae	Elicoidale	Sì	Pleiomorfo sferico	8 lineare, 12-15 kb
Paramyxoviridae	Elicoidale	Sì	Pleiomorfo sferico	1 lineare, 15-16 kb
Rhabdoviridae	Elicoidale	Sì	A proiettile	1 lineare, 11-15 kb
sRNA RT (VI)				
Retroviridae	Sferico, troncoidale	Sì	Sferico	1 RNA dimerico, 7-11 kb
dsDNA RT (VII)				
Hepadnaviridae	Icosaedrico	Sì	Sferico	1 DNA parz. circolare, 3 k

Abbreviazione: n.d., non determinato.