

E�ciency of Monte Carlo algorithms

The basic Monte Carlo algorithm:

1) Repeat N times the basic iteration step: generate Xn uniformly distributed in [a, b] and compute

gn = g(Xn).

2) An estimate of I is simply

I ⇡ (b� a)

N

NX

n=1

gn.

The Monte Carlo algorithm is not e�cient in one dimension, since errors vanish as 1/

p
N . De-

terministic algorithms have much faster convergence rates. For instance, compute the integral

as

I ⇡ h

2

[g(a) + g(b)] + h

N�1X

n=1

g(xn)

where xn are equally spaced points such that x0 = a, xN = b, and h = xn�xn�1. The convergence

rate is 1/N

2
(Simpson’s rule gives 1/N

4
convergence).

Example:

I =

Z 1

0
x

2
dx

Using the two methods (N is the number of points in the trapezoidal rule, and the number of

iterations in the MC calculation), we obtain

N = 100 Itrap = 0.33335 IMC = 0.261

N = 1000 Itrap = 0.3333335 IMC = 0.327

N = 10000 Itrap = 0.333333335 IMC = 0.335

The main problem of deterministic algorithms. They become ine�cient in large dimensions

D. Since they use essentially a regular grid, to obtain reliable results one needs at least 10 points

in each direction, hence at least 10

D
points. But, if D & 10, the number of points is far too large.

Moreover, the convergence rate is slower.

An example: suppose we wish to compute

I = 3

5
Z 1

0
x

2
y

2
z

2
t

2
u

2
dxdydzdtdu = 1

We use the trivial multidimensional generalization of the trapezoidal rule (trap) and Monte Carlo.

We obtain (�MC is the Monte Carlo error, �trap = Itrap � 1)

n.points Itrap IMC �MC �trap/�MC

3

5
= 2.43 · 102 1.802 1.174 0.257 3.1

4

5
= 1.02 · 103 1.310 1.001 0.125 2.5

5

5
= 3.13 · 103 1.166 1.091 0.072 2.3

6

5
= 7.78 · 103 1.104 0.956 0.045 2.3

7

5
= 16.8 · 104 1.071 0.942 0.031 2.3

10

5
= 1 · 105 1.031 1.004 0.013 2.4

1

