To estimate
\[\langle f \rangle_\pi = \int dx \, \pi(x) f(x) \quad \text{\(\pi(x)\) probability density} \]
we use the algorithm we described before.

We perform \(N\) iterations and compute
\[\bar{f} = \frac{1}{N} \sum_{i=1}^{N} f(X_i) \quad \text{[SAMPLE MEAN]} \]

\(\bar{f}\) is an estimator of \(\langle f \rangle_\pi\).

Now we wish to define the error. We wish to define the error for any value of \(N\) not necessarily large. We can even take \(N=2,3\).

To define the error we imagine the following procedure:

1. We perform a simulation \((N_{\text{iter}})\) and obtain \(\bar{f}^{(1)}\).
2. We perform a second different simulation, again with \(N_{\text{iter}}\) iterations and obtain a second, different estimate \(\bar{f}^{(2)}\).
3. We perform a third different simulation \(\rightarrow \bar{f}^{(3)}\).
 \[
 \vdots
 \]
4. We perform a \(N_{\text{MC}}\)-th different simulation \(\rightarrow \bar{f}^{(N_{\text{MC}})}\).
Then, we plot the distribution of the results.

In each bin i, the height that is equal to the number of times \bar{f} is in the corresponding interval.

The number of times \bar{f} is in $a < \bar{f} \leq b$ is 1 $[\text{# = number}]$.
The number of times \bar{f} is in $b < \bar{f} \leq c$ is 8.
The number of times \bar{f} is in $c < \bar{f} \leq d$ is 17 ...

For $N_{MC} \rightarrow \infty$, the distribution (once normalized so that the area is 1) converges to the probability of obtaining a given value for \bar{f} in a simulation of N iterations.

\[
P(\bar{f})
\]

Two quantities of interest:

\[
\mu = \langle \bar{f} \rangle_{MC} \quad \text{average of } \bar{f} \text{ with respect to } P(\bar{f})
\]

\[
\sigma^2 = \langle (\bar{f} - \mu)^2 \rangle_{MC} = \langle \bar{f}^2 \rangle_{MC} - \mu^2 \quad \text{variance of } \bar{f} \text{ with respect to } P(\bar{f})
\]
NOTE:
Do not confuse $\langle \cdot \rangle_{MC}$ and $\langle \cdot \rangle_{\pi}$
They are two different averages, although it is customary to use the same symbol $\langle \cdot \rangle$ (with no suffix) for both of them.

ERROR: by definition is the standard deviation σ
It gives the width of the distribution of the values of \bar{f} obtained in the simulations.

BIAS: It is defined as
\[\text{bias} = \mu - \langle f \rangle_{\pi} \]

COMMENT: N is fixed and arbitrary
Instead we assume $N_{MC} \to \infty$ in the computation of error and bias
(we assume that we are repeating the same simulation of length N an infinite number of times).
SOME BASIC CALCULATIONS.

Consider again the simulation of \(N\) iterations. We wish to compute \(\langle f(X_5) \rangle_{MC}\).

The meaning of the average is the following:

Simul. 1: \(X_1^{(1)} \ldots X_N^{(1)} \rightarrow \) compute \(f(X_5^{(1)})\) and the value of \(f\) using the result at \(i = 5\).

Simul. 2: \(X_1^{(2)} \ldots X_N^{(2)} \rightarrow \) compute \(f(X_5^{(2)})\).

Simul. 3: \(X_1^{(3)} \ldots X_N^{(3)} \rightarrow \) compute \(f(X_5^{(3)})\).

and so on.

\[
\langle f(X_5) \rangle_{MC} = \frac{1}{N_{MC}} \sum_{i=1}^{N_{MC}} f(X_5^{(i)}) \quad \text{for } N_{MC} \to \infty
\]

Now \(X_5^{(i)}\) for each \(i\) is extracted with probability \(\pi(X)\). We can thus use the sample-mean theorem:

\[
\langle f(X_5) \rangle_{MC} = \langle f \rangle_{\pi}
\]

There is nothing special about "5":

\[
\langle f(X_i) \rangle_{MC} = \langle f \rangle_{\pi} \quad \text{for any } 1 \leq i \leq N
\]

Analogously:

\[
\langle f(X_i^2) \rangle = \langle f^2 \rangle_{\pi}
\]
Now we wish to compute \(\langle f(X_5) f(X_7) \rangle_{HC} \).

We reason as before.

Simulation: we compute \(f(X_5^{(i)}) f(X_7^{(i)}) \), i.e. we use the values of for \(X_5^{(i)} \), the 5th-extracted number and \(X_7^{(i)} \), the 7th-extracted number.

We repeat \(N_{HC} \) times

\[
\langle f(X_5) f(X_7) \rangle_{HC} = \frac{1}{N_{HC}} \sum_{i=1}^{N_{HC}} f(X_5^{(i)}) f(X_7^{(i)})
\]

for \(N_{HC} \to \infty \)

To understand how to apply the sample-mean theorem note that \((X_5, X_7)\) are a pair \((x, y)\) of random numbers distributed according to

\[
P(x, y) = \pi(x) \pi(y)
\]

Here we use the hypothesis of no correlations among different random numbers.

The joint probability is simply the product of the individual probabilities

\[
\frac{1}{N_{HC}} \sum_{i=1}^{N_{HC}} f(X_5^{(i)}) f(X_7^{(i)}) \to \int dx \, dy \, P(x, y) f(x) f(y)
\]

\[
= \int dx \, dy \, \pi(x) \pi(y) f(x) f(y) =\]

\[
= \int dx \pi(x) f(x) \cdot \int dy \pi(y) f(y) = \langle f \rangle^2 \frac{1}{\pi}
\]
SUMMARY

\[\langle f(x_i) \rangle_{\text{MC}} = \langle f \rangle_{\pi} \]

\[\langle f(x_i) f(x_j) \rangle_{\text{MC}} = \begin{cases}
\langle f^2 \rangle_{\pi} & i = j \\
\langle f \rangle_{\pi}^2 & i \neq j
\end{cases} \]

We can now compute \(\langle f \rangle_{\text{MC}} \) and \(\langle f^2 \rangle_{\text{MC}} \).

\[\langle f \rangle_{\text{MC}} = \frac{1}{N} \sum_{i=1}^{N} \langle f(x_i) \rangle = \frac{f}{N} \sum_{i=1}^{N} \langle f \rangle_{\pi} = \langle f \rangle_{\pi} \]

\[\langle f^2 \rangle_{\text{MC}} = \frac{1}{N^2} \sum_{i=1}^{N} \sum_{j=1}^{N} \langle f(x_i) f(x_j) \rangle_{\text{MC}} \]

\[= \frac{1}{N^2} \sum_{i=1}^{N} \langle f(x_i)^2 \rangle_{\text{MC}} + \frac{1}{N^2} \sum_{i \neq j} \langle f(x_i) f(x_j) \rangle_{\text{MC}} \]

\[= \frac{1}{N^2} \sum_{i=1}^{N} \langle f^2 \rangle_{\pi} + \frac{1}{N^2} \sum_{i \neq j} \langle f \rangle_{\pi}^2 \]

\[= \frac{1}{N^2} N \langle f^2 \rangle_{\pi} + \frac{1}{N^2} N(N-1) \langle f \rangle_{\pi}^2 \]

\[= \frac{1}{N} \langle f^2 \rangle_{\pi} + \frac{N-1}{N} \langle f \rangle_{\pi}^2 \]

THERE IS NO BIAS.
\[\sigma^2 = \langle \bar{f}^2 \rangle_{MC} - \langle \bar{f} \rangle_{MC}^2 \]
\[= \frac{1}{N} \langle f^2 \rangle_\pi + \left(1 - \frac{1}{N} \right) \langle f \rangle_\pi^2 - \langle f \rangle_\pi^2 \]
\[= \frac{1}{N} \left[\langle f^2 \rangle_\pi - \langle f \rangle_\pi^2 \right] \text{ cancel} \]
\[= \frac{1}{N} \text{Var}_\pi f \]

\[\text{Var}_\pi f = \int dx \pi(x) f(x)^2 - \left(\int dx \pi(x) f(x) \right)^2 \]
\[= \text{a number independent of } N \]

The error scales as \(\frac{1}{\sqrt{N}} \).

The MC method converges slowly, compared to deterministic integration algorithms, but it is the only method we have to perform integrals in \(D \) dimensions with \(D \) large.
Efficiency of Monte Carlo algorithms

The basic Monte Carlo algorithm:
1) Repeat \(N\) times the basic iteration step: generate \(X_n\) uniformly distributed in \([a, b]\) and compute \(g_n = g(X_n)\).
2) An estimate of \(I\) is simply
\[
I \approx \frac{(b-a)}{N} \sum_{n=1}^{N} g_n.
\]

The Monte Carlo algorithm is not efficient in one dimension, since errors vanish as \(1/\sqrt{N}\). Deterministic algorithms have much faster convergence rates. For instance, compute the integral as
\[
I \approx \frac{h}{2} [g(a) + g(b)] + h \sum_{n=1}^{N-1} g(x_n)
\]
where \(x_n\) are equally spaced points such that \(x_0 = a, x_N = b\), and \(h = x_n - x_{n-1}\). The convergence rate is \(1/N^2\) (Simpson’s rule gives \(1/N^4\) convergence).

Example:
\[
I = \int_0^1 x^2 \, dx
\]
Using the two methods (\(N\) is the number of points in the trapezoidal rule, and the number of iterations in the MC calculation), we obtain

<table>
<thead>
<tr>
<th>(N)</th>
<th>(I_{\text{trap}})</th>
<th>(I_{\text{MC}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0.33335</td>
<td>0.261</td>
</tr>
<tr>
<td>1000</td>
<td>0.3333335</td>
<td>0.327</td>
</tr>
<tr>
<td>10000</td>
<td>0.33333335</td>
<td>0.335</td>
</tr>
</tbody>
</table>

The main problem of deterministic algorithms. They become inefficient in large dimensions \(D\). Since they use essentially a regular grid, to obtain reliable results one needs at least 10 points in each direction, hence at least \(10^D\) points. But, if \(D \geq 10\), the number of points is far too large. Moreover, the convergence rate is slower.

An example: suppose we wish to compute
\[
I = 3^5 \int_0^1 x^2 y^2 z^2 t^2 u^2 \, dx dy dz dt du = 1
\]
We use the trivial multidimensional generalization of the trapezoidal rule (\(\text{trap}\)) and Monte Carlo. We obtain (\(\Delta_{\text{MC}}\) is the Monte Carlo error, \(\Delta_{\text{trap}} = I_{\text{trap}} - 1\))

<table>
<thead>
<tr>
<th>(n) points</th>
<th>(I_{\text{trap}})</th>
<th>(I_{\text{MC}})</th>
<th>(\Delta_{\text{MC}})</th>
<th>(\Delta_{\text{trap}}/\Delta_{\text{MC}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3^5 = 2.43 \cdot 10^2)</td>
<td>1.802</td>
<td>1.174</td>
<td>0.257</td>
<td>3.1</td>
</tr>
<tr>
<td>(4^5 = 1.02 \cdot 10^3)</td>
<td>1.310</td>
<td>1.001</td>
<td>0.125</td>
<td>2.5</td>
</tr>
<tr>
<td>(5^5 = 3.13 \cdot 10^3)</td>
<td>1.166</td>
<td>1.091</td>
<td>0.072</td>
<td>2.3</td>
</tr>
<tr>
<td>(6^5 = 7.78 \cdot 10^3)</td>
<td>1.104</td>
<td>0.956</td>
<td>0.045</td>
<td>2.3</td>
</tr>
<tr>
<td>(7^5 = 16.8 \cdot 10^4)</td>
<td>1.071</td>
<td>0.942</td>
<td>0.031</td>
<td>2.3</td>
</tr>
<tr>
<td>(10^5 = 1 \cdot 10^5)</td>
<td>1.031</td>
<td>1.004</td>
<td>0.013</td>
<td>2.4</td>
</tr>
</tbody>
</table>