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Deformation Components
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Strain Quantities
Representations of Strain
(Finite) Strain Analysis

Spherical Objects

Angular Changes

Length Changes
Understanding Strain Values
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The Components of Deformation

1. Strain (distortion)
a) Extension (or stretch)
length changes
b) Internal rotation (vorticity)
finite strain axes rotate relative
to instantaneous strain axes
¢) Volume change
2. Rigid-body rotation (or spin)
instantaneous strain axes and finite strain
axes rotate together
3. Rigid-body translation

shear
strain
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Distortion
(b)
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Homogeneous vs. Heterogeneous Strain

Homogeneous strain:
m Straight lines remain straight
m Parallel lines remain parallel

m Circles become ellipses (or
spheres become ellipsoids)

VS.

Heterogeneous strain

(deck of cards)
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Deformation
(a)

Translation

Rotation
(d)

(c)
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Homogeneous Strain: Principal Strain Axes

Homogeneous strain: transformation of square to rectangle, circle to ellipse (“strain
ellipse”). Note: lines in circle all equal length; line lengths in square vary by orientation.

Two material lines perpendicular before and after strain are principal axes of strain
ellipse (red lines): X2Yz2Z.

Dashed lines are material lines that do not remain perpendicular after strain; they
rotate toward long axis of strain ellipse (X).
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Strain path
/ Y\ v,\ i .
k\ \ /)(‘ /XZ/ \ i =
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¢ Same strain
Different path
X
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A4 || 4 :
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(b)
Incremental strain (steps)
Finite strain (difference between unstrained and final shape)
Infinitely small strain increments (mathematical): instantaneous strain
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Strain Accumulation: coaxial and non-coaxial strain
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a. (progressive) simple shear or non-coaxial strain
b. (progressive) pure shear, or coaxial strain
Compare incremental strain (X;, Y;) and finite strain (X, , 3, Y; 5 3): vorticity
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Vorticity (internal rotation) and Particle Paths

! o

(b) ()
coaxial general shear non-coaxial

a

Rotation of material lines wrt to finite strain is kinematic vorticity.
Kinematic vorticity number: W, = cos o

a. W, =0 (pure shear, coaxial strain end-member)

b. 0 <W, <1 (general shear, non-coaxial strain)

c. W, =1 (simple shear, non-coaxial strain end-member)

M?ﬁ © Ben van der Pluijm Deformation & Strain

2/21/2019

10

12



2/21/2019

[ ]
Progressive Coaxial Strain — Pure Shear
Event 1 Event 2 Finite strain
|
(a)
Coaxial It
superimposition
LI}
1. lines continue to be extended
1. lines continue to be shortened
. shortening during event 1 is followed by
extension during event 2.
DePaor, 2002
=3
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Progressive Non-coaxial Strain — Simple Shear
1]
(b)
Non-coaxial
superimposition
[ Extension [] Shortening
I.  lines continue to be extended
. lines continue to be shortened
.  shortening during event 1 is followed by extension
during event 2.
Iv. extension is followed by shortening during event 2 bepaor, 2002
s
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Strain Addition

Pure shear, then simple shear

“Adding” non-coaxial strain and 70 i ! -
coaxial strain is )
. Simple shear, then pure shear
non-commutative: 1
strainA + strainB # strainB+ strainA
I |
0 1 (b)
Simultaneous simple and pure shear
1 —
4
0 1 ((a]
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Combinations: Transtension and Transpression
a. Transtension
E b. Transpression
@ (b)
Transtension Transpression
Fossen, 2016
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Strain Quantification
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StrainSim (R. Allmendinger)
[Eemmeee e e e
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http://www.geo.cornell.edu/geology/faculty/RWA/programs/strainsim-v-3.html

]
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Strain Quantities

e = elongation = (I-1,)/l, = dl/l,
(e; 2 e, 2 e; e; usually negative)

s = stretch = I/l, (X2 Y 2 Z; strain ellipsoid
= [(HIHN, + 10,1 = e+l

axes)

A = quadratic elongation (lambda) =s? = (e+1)2

A=A, 2\,

v = shear strain (gamma) = tan y
vy = angular shear (psi)

Misnomer: should be quadratic stretch
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Relationship between strain ratio, y and line angle and length

material line
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Angle:
@ to @’ is fion of strain ratio

tang’/ tang = Y/X
X/ (X.Y =1, constant area)
So,
tang’ = Y/X . tang
tang = X/Y . tang’

Length:
I, to lis fion of strain ratio

X/ 2= X2 +Y2
So,
P (X, y) =
X/Y.cos2, Y/X.sin2@
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Strain Calculator

X=2,Y=1/2
Strain Calculator
strain ratio: X/Y 4
initital angle, ¢ (deg) 45 45.0
— deformed angle, ¢' (deg) 14.0
[—— |
I - initital length, lo 1 1.0
deformed length, | 15
X=4,Y=1/4
Strain Calculator
strain ratio: X/Y 16
Strain Calculator initital angle, @ (deg) 45 45.0
L strain ratio: X/Y 1 deformed angle, @' (deg) 3.6
StrainSim .
http://www.geo.cornell.edu/geology/f :j’";'ta' E’Zf'e' ‘f’ (‘:::'g()d ) & Zg'g initital length, lo 1 1.0
aculty/RWA/programs/strainsim-v- slormecang’e, @ 1ee : deformediiengthy] 28
m initital length, lo 1 1.0
deformed length, | 1.0

o
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3D Strain States
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(@) General strain (X>Y > 2)

(b) Axially symmetric extension (X >Y = Z)
(c) axially symmetric shortening (X =Y > Z)
(d) plane strain (X > 1> Z)

(e) simple shortening (1 > Z2)

Deformation & Strain
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http://www.geo.cornell.edu/geology/faculty/RWA/programs/strainsim-v-3.html

Representation of Strain — Section, Map
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Representation of
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Strain — 3D in 2D-Space
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3D strain geometry in 2D plot: axial ratios and volume change
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Strain Methods: Variably-shaped Objects
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Strain Methods: Initially Spherical Objects

Deformed ooids after:
(b) 25% (X/Z = 1.8) shortening
(c) 50% (X/Z = 4.0) shortening

2 3
Y z z
X_2 Yo X-24
s Y zZ z
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Strain Methods: Non-spherical Objects, c-t-c

a5

e

______ s

Reference line X _164 $=48
Y

(a) (b)

Center-to-center method (or Fry method):
spacing varies as function of finite strain

]
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Strain Methods: Non-spherical Objects, R{/¢

V-
’ , R/¢ method
.

-
Reference line

=167 f=47 90

90 X
Y

i
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Strain Methods: Angular Changes

+y 30—

: !
\ 201 G-
\
| 10/
oH J + + + +
90 B\ 60 30 0 30 60 %
104~ a
201
E —v 30
¢

%\:—
©

60—
Max v
50—
% wl-

30 .
o > Breddin method:
so- Y X Strain ratio determined at maximum
& X angular shear, angle ¢ = 45°
/ ®) Substituting tan ¢ = 1
Y/IX =tan ¢'ax
(a) Reference line
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Strain Methods: Length Changes

Stretching
lineation

Kp= U+l o) Y1 v=123
ol 2 =11
g =0/01+15..14)) A=051
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Finite Strain Compilation

T oy . .
Typical strain values:
20}
3 1<X/Z<20
; Plane strain 1<X<3
10 10 k=1, A=0 k=1, A=-0.5 0.13<Z<1
i Plane strain: X>1>7 (k=1)
5 I, .
L g A is volume change
o ~daS?E_d a;e(a)oo Where does lost rock volume
—— .contains 1, " .
additional go? Veins.
measurements
: A . e ¥
00 05 1I.o 11.5 o907
L | | 1 1 | RN 1 | 3
1 2 3 4 5 10 20 30 z
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Understanding Strain Values

Clay

Inclusion

g (a)
Clay: X/Y=1.33/075=1.77
‘ Marble: X/¥ =1/1=1 >

Fluid: X/Y = 1.50/0.66 = 2.27

Marble Fluid
(b) (c)
Strain and Mechanical Contrast:
- Passive markers have no mechanical contrast: bulk rock strain
(clay and clay inclusion; oolite)
- Active markers have mechanical contrast: marker strain
(clay and marble or fluid; conglomerate)
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