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We Discuss ...

Whole Earth Structure and Plate Tectonics
- Earth’s topography i
- Earth’s layers
The crust
The mantle
- Tenets of plate tectonics
Insights from earthquakes and volcanoes
Today’s plates
Plate boundaries
- Kinematic of plate tectonics
Linear and angular velocities
Absolute and relative motions
- Drivers of plate tectonics
- Tectonic cycles
Wilson Cycle ._
Supercontinent Cycle el
- Reconstructions of plate motion (Past and Future) :
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Today’s Plates and Plate Boundaries

USGS
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Earth’s Surface - 3D Topography
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Hypsometric (=cumulative frequency) Elevation Curve
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Earth CT-Scan (EQ waves)

2004 Su INami 2004-12-26 00:58 UTC Human CT scan: X-ray energy waves
Rotate Earth by dragging on it. to create an earthquake: "
a0 ; Earth CT scan: earthquake energy waves

Seismograms
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Earth’s Seismologic, Petrologic and Rheologic Layering
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The Mantle - Tomography (CTscan) and Plates
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Crustal Thickness
Cratons Arcs Orogenic belts Rifts
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Crustal Section and Characteristic Rock Types
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Age of Continental and Oceanic Crust

OCEANIC CRUST
=
0-20Ms_ 20-65Ma >6s

AGE OF LAST THERMO
TECTONIC EVENT

[] Mesc-and ctnozoic
[ Paleozoic
[ Late Proterozoic
Middle Proterozoic NOAA
[ Eerly Proterozoic

[ Archean

]
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The Crust and Geologic Provinces

i
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Oceanic vs. Continental Crust

Composition

Formation

Thickness

Heterogeneity

Age

Moho

Continental crust has a mean composition that is less mafic than
oceanic crust.

Continental crust is an amalgamation of rock that originally formed at
volcanic arcs and hot spots, and subsequently passes through the rock
cycle. Mountain building, erosion and sedimentation, and continued
volcanism add to or change continental crust. Oceanic crust all forms at
ocean ridges by the process of seafloor spreading.

Continental crust ranges between 25 kmand 70 kmin thickness. Most
oceanic crust is between 6 km and 10 km thick. Thus, continental
crust is muchthicker than oceanic crust.

Oceanic crust can be subdivided into distinct layers. Continental crust
is very heterogeneous, reflecting its evolution and that different
regions of continental crust formed in different ways.

Continental crust is buoyant relative to upper mantle, and cannot be
subducted. Thus, portions of the continental crust are very old
(oldest known crust is ~4000 Ma). Oceanic crust gets carried back
into the mantle during subduction, so there is no oceanic crust on
Earth older than ~200 Ma, with exception of oceanic crust that has
been emplaced and preserved on continents (ophiolite).

Moho at base of oceanic crust is sharp, suggesting that the boundary
between crust and mantle is abrupt. The continental Moho tends to be
less distinct.

o
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Plate Tectonics

Insights from Earthquakes: Location and Depth
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Oceanic crust:

Continental crust:
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Insights from Earthquakes: Geometry and Displacement

Focal mechanisms and fault-plane

solutions Strike Slip Fault

Global seismometer records of first
motion define two sectors of

compression (C, white) and two sectors Normal Fault
of tension (T, shaded), separated by
two perpendicular planes.

@i D¢

One is fault plane on which EQ Reverse Fault
occurred, and from distribution of
compressive and tensile sectors, sense
of slip is determined.

C and T define regions of 0, and o3,
but not exact orientation (not a fracture
solution).
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The Tenets of Plate Tectonics
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- — L. Actively-spreading ridges and transform faults
Antarctic Seota Pl
- s Antarctic Plate )( Total spreading rate, em/year, NUVEL-1 model
ate 14 (DeMels ot al., Geophys. J. International, 101, 425, 1990)
A S~ ___ Major active fault or fault zone; dashed where nature,
== = . =~ location, or activity uncertain
== - 4 Normal fault or rift; hachures on downihrown side
) ane | an® 4y, p Reverse fault (overthrust, subduction zones); generalized;
http://denali.gsfc.nasa.gov/dtam/ barbs on upthrown side
W Volcanic centers active within the last one million years;
.t generalized. Minor basaltic centers and seamounts omitted.
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Types of Plate Boundaries

Volcanic

Convergent Plate boundaries and fault displacements
Divergentboundary  Lateral boundary bendary . + Divergent = normal faulting
< « Convergent = reverse faulting
+ Lateral = strike-slip faulting

Volcanic arc

Convergent Boundary Accretionary =

Trench / prism

Divergent Boundary Ocean ridge

(b)

=]
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Examples of Plate Boundaries

Divergent: Red Sea

Lateral: New Zealand

M?ﬁ © Ben van der Pluijm Plate Tectonics 24
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Plate Kinematics on a Sphere

geographic pole
(spin axis)

Displacement and Rotation:
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The Kinematics of Plate Tectonics

Map
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Today’s Plate Motions (Absolute and Relative Velocities)
A_A A Convergent boundary = Ridge Transform ‘ ~-— Absolute plate motions =~ —<=— Relative plate motions
——
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Absolute Motions and Speed Limit?
Age =200 Ma
i
Speed (cmiyr)
- Continental/Non-oceanic lithosphere Phanerozoic lithosphere
E] Proterozoic shield .Ar(hean craton
it
’ ’ Abs:!u\ave‘l:aw (cr::‘yv} ° "
Zahirovic et al., 2015
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Mechanics of Plate Tectonics - Driving Forces and Plate Mineralogy
Shallow plate ~3000 kg/m? Fsp = slab pull
Frp = ridge push
Fgp = basal drag
Fer = continent resistance
Mantie ~3300 kg/m? Fyr = mantle resisténce
Frr = transform resistance
Meta gabbro .
ribolit Rt
(amphibolite) Gabbro
Deep plate
Fim ~3600 kg/m?
S, Gravitational forces (colored):
Eclogite Ridge push: topographic spreading
(garnet- - Slab pull: negative buoyancy of slab
pyroxenite) L .
Resistive forces (black) are relatively small
M; © Ben van der Pluijm Plate Tectonics
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Plate Tectonic Cycles: The Wilson Cycle N - o
(2]
a) -b) Continent rifts, such that _
crust stretches, faults and

Ocean ridge

subsides. @
c) Seafloor spreading begins,

forming a new ocean basin.
d) The ocean widens and “ ~— —

flanked by passive margins. =" S
e) Subduction of oceanic

lithosphere begins on one N

margins, closing ocean basin.

f) -g) Ocean basin is destroyed

by continent-continent 0 — —
collision.

Continent-continent collision

: “
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Plate Tectonics Cycles: The Supercontinent Cycle

Continent Upwelling

Continents

V4 disperse
=

D li
ownwelling ©

a) Continents gradually aggregate over a mantle
downwelling zone.

b) While supercontinent exists, large-scale convection in
the mantle reorganizes.

¢) Upwelling begins beneath supercontinent and
weakens it, leading to rifting and breakup.

i
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Supercontinents
Rodinia (L Proterozoic; 1100-750Ma) Pangea (L Paleozoic; 320-175Ma)
“mother of all continents” “all land”

Early Triassic 237 Ma

@ Indochina

-~ Rodinia 750 Ma
NCey >
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T - Kalahari f Mozambique / E. Arabia
. - E.Gondwana
% (India, Madagascar,
Australia, Antarctica)
- Cimmeria
- Sibumasu
- Cathaysia -Indochina
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- Siberia
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Plate Tectonic Cycles: The Wilson Cycle and Supercontinents

Continent rifts and breaks up (divergent
boundary).

Seafloor spreading forms new ocean basin.
Subduction of oceanic lithosphere closes
ocean basin (convergent boundary).
Ocean basin destroyed by continent-
continent collision (collisional boundary).

Continents aggregate over whole-mantle
downwelling.

Convection in mantle reorganizes.
Upwelling beneath supercontinent weakens
continental lithosphere, leading to rifting and
breakup.

3
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Today to Precambrian-Paleozoic Boundary (0-540Ma)

Chris Scotese
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