A proof-reading mechanism for non-proteinogenic amino acid incorporation

into glycopeptide antibiotics

Milda Kaniusaite,^{1,2} Julien Tailhades,^{1,2} Edward A. Marschall,^{1,2} Robert J. A. Goode,^{1,3} Ralf B. Schittenhelm ^{1,3} and Max J. Cryle ^{1,2}*

- 1. The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia.
- 2. EMBL Australia, Monash University, Clayton, Victoria 3800, Australia.
- 3. Monash Biomedical Proteomics Facility, Monash University, Clayton, Victoria 3800,

Australia

* Address correspondence to <u>max.cryle@monash.edu</u>.

Supporting Information

SI Figures S1-S17.	 Page 2
SI Tables S1-S6.	 Page 17
SI References.	 Page 28

SI Figures

SI Figure S1. Results of gel filtration purification of three Tcp11 modules divided according to traditional module (E/C) division. A) Module 4 (C-A-PCP-E, GB1 fusion, 170 kDa). B) Module 5 (C-A-PCP-E, GB1 fusion, 171 kDa). Three peaks after gel filtration indicate incorrect folding and protein aggregation. C) Module 6 (C-A-PCP, GB1 fusion, 124 kDa). The first peak indicates aggregated protein fraction that was separated from monomeric protein (second peak). Isolated protein yields: 7 mg of module 4, ~700 ng scale of module 5 and 9 mg of module 6 were isolated from 10 L of bacterial growth media, respectively.

SI Figure S2. Results of gel filtration purification of alternate architecture Tcp11 modules. A) Module 4 (C-A-PCP-E-C, GB1 fusion, 218 kDa). B) Module 5 (A-PCP-E-C, GB1 fusion, 171 kDa). C) Module 6 (A-PCP, GB1 fusion, 74 kDa). Isolated protein yields: 4.5 mg of module 4, 15 mg of module 5 and 20 mg of module 6 were isolated from 10 L of bacterial growth media, respectively.

SI Figure S3. Results of gel filtration purification from other NRPS proteins analysed in this study. A) Tcp11 di-module 4-5 (C-A-PCP-E-C-A-PCP-E, GB1 fusion, 329 kDa), B) Full length trimodule 4-5-6 Tcp11 protein (C-A-PCP-E-C-A-PCP-E-C-A-PCP, GB1 fusion, 441 kDa). C) BpsB module 6 (A-PCP, MBP fusion, 113 kDa). Three peaks indicate protein aggregation. Due to low protein yield, both monomeric (3rd peak) and dimeric (2nd peak) fractions were used for biochemical characterisation. D) Tcp11 module 5 hybrid (A-PCP-E-C*, GB1 fusion, 172 kDa). E) KisK module 6 (A-PCP, GB1 fusion, 78 kDa). F) KisK module 6 A domain double mutant (A*-PCP, GB1 fusion, 78 kDa). Isolated protein yields: 1 mg of Tcp11 di-module 4-5, < 1mg of full length Tcp11, 1mg of BpsB module 6, 20 mg of Tcp11 module 5 hybrid, 5.4 mg of KisK module 6 and 6.5 mg of KisK module 6 A domain double mutant were isolated from 10 L of bacterial growth media, respectively.

SI Figure S4. Synthesis and characterisation of Br-Tyr (7)

 $(400\text{Hz}, \text{CD}_3\text{N}/\text{D}_2\text{O}): \delta = 2.9 \text{ ppm (dd, 1H, J1 = 6.6\text{MHz}, J2 = 8.1\text{MHz}), 3.2 \text{ ppm (dd, 1H, J1 = 9.8 MHz, J2 = 4.9\text{MHz}), 3.9 \text{ ppm (m, 1H)}, 6.9 (d, 1H), 7.1 (dd, 1H), 7.4 (d, 1H).$

Line#:1 R.Time:0.000(Scan#:1) MassPeaks:901 RawMode:Averaged 8.433-9.933(507-597) BasePeak:260.00(359445) BG Mode:None Segment 1 - Event 1

MS spectrum in positive mode

4

SI Figure S5. Synthesis and characterisation of I-Tyr (8)

(400Hz, CD₃N/D₂O): δ = 3.0 ppm (dd, 1H, J1 = 6.6MHz, J2 = 8.0MHz), 3.2 ppm (dd, 1H, J1 = 9.6 MHz, J2 = 5.0MHz), 4.0 ppm (m, 1H), 6.8 (d, 1H), 7.1 (dd, 1H), 7.6 (d, 1H).

SI Figure S6. Synthesis and characterisation of di-Cl-Tyr (9)

(400MHz, CD₃N/D₂O): δ = 3.0 ppm (dd, 1H, J1 = 14.7MHz, J2 = 7.9MHz), 3.2 ppm (dd, 1H, J1 = 14.7 MHz, J2 = 5.0MHz), 3.9 ppm (dd, 1H, J1 = 7.9 MHz, J2 = 5.1MHz), 7.2 ppm (s, 2H).

SI Figure S7. Synthesis and characterisation of di-Br-Tyr (10)

 $C_{11}H_9Br_2N2O_3^+$ (ACN adduct) 380.9.

(400MHz, CD₃N/D₂O): δ = 3.0 ppm (dd, 1H, J1 = 14.7MHz, J2 = 7.8MHz), 3.2 ppm (dd, 1H, J1 = 14.7 MHz, J2 = 5.2MHz), 4.0 ppm (dd, 1H, J1 = 7.8MHz, J2 = 5.2MHz), 7.4 ppm (s, 2H).

Line#:1 R.Time:----(Scan#:----) MassPeaks:901 RawMode:Averaged 12.000-14.167(721-851) BasePeak:339.8(4419553) BG Mode:None Segment 1 - Event 1

SI Figure S8. Synthesis and characterisation of di-I-Tyr (11)

(400MHz, CD₃N/D₂O): δ = 2.9 ppm (dd, 1H, J1 = 14.7MHz, J2 = 7.8MHz), 3.1 ppm (dd, 1H, J1 = 14.7 MHz, J2 = 5.3MHz), 4.0 ppm (dd, 1H, J1 = 7.8MHz, J2 = 5.3MHz), 7.7ppm (s, 2H).

Line#:1 R.Time:----(Scan#:----) MassPeaks:901 RawMode:Averaged 15.133-20.267(909-1217) BasePeak:474.8(2386095) BG Mode:None Segment 1 - Event 1

SI Figure S9. Synthesis and characterisation of NH₂-(D)-Hpg-(D)-Tyr-(L)-Dpg-CoA tripeptide (**3T-CoA**).

 $\label{eq:chemical-Formula: C46} \textbf{H}_{59} \textbf{N}_{10} \textbf{O}_{23} \textbf{P}_3 \textbf{S}$

Exact Mass: 1244.27 Da

Retention time: 17.457 min (86%); 5-35% to ACN gradient over 30 minutes **MS (ESI)**: m/z calcd C₄₆H₅₉N₁₀O₂₃P₃S 1244.45, found [M+H]⁺ m/z C₄₆H₆₀N₁₀O₂₃P₃S⁺ 1245.45, [M+H]²⁺ C₄₆H₆₀N₁₀O₂₃P₃S²⁺ 623.40.

HPLC elution profile

Line#:1 R.Time:17.467(Scan#:1049) MassPeaks:1180 RawMode:Single 17.467(1049) BasePeak:623.40(5995040) BG Mode:None Segment 1 - Event 1

SI Figure S10. Synthesis and characterisation of NH₂-(D)-Hpg-(D)-Tyr-(L)-Dpg-(L)-Hpg-CoA tetrapeptide (**4T-CoA**).

Chemical Formula: C₅₄H₆₆N₁₁O₂₅P₃S Exact Mass: 1393.32 Da Retention time: 19.256 min (72%); 5-35% to ACN gradient over 30 minutes MS (ESI): *m/z* calcd C₅₄H₆₆N₁₁O₂₅P₃S 1393.9, found [M+H]⁺ *m/z* C₅₄H₆₇N₁₁O₂₅P₃S⁺ 1394.9, [M+H]²⁺ C₅₄H₆₈N₁₁O₂₅P₃S²⁺ 697.95.

Line#:1 R.Time:19.267(Scan#:1157) MassPeaks:1173 RawMode:Single 19.267(1157) BasePeak:697.95(3931709) BG Mode:None Segment 1 - Event 1

SI Figure S11. Synthesis and characterisation of NH₂-(D)-Hpg-(D)-Tyr-(L)-Dpg-(D)-Hpg-(L)-Hpg-CoA pentapeptide (**5T-CoA**).

Chemical Formula: $C_{62}H_{73}N_{12}O_{27}P_3S$ Exact Mass: 1542.36 Da

Retention time: 16.496 min (84%); 10-40% to ACN gradient over 30 minutes **MS (ESI)**: m/z calcd $C_{62}H_{73}N_{12}O_{27}P_3S$ 1543.00, found $[M+H]^+ m/z C_{62}H_{75}N_{12}O_{27}P_3S^{2+}$ 772.5.

HPLC elution profile

Line#:1 R.Time:16.533(Scan#:993) MassPeaks:1192 RawMode:Single 16.533(993) BasePeak:772.50(4619733) BG Mode:None Segment 1 - Event 1

SI Figure S12. Reconstitution of peptide biosynthesis from the teicoplanin NRPS proteins Tcp10 and full length Tcp11 using 3T-loaded M3, ATP, 4-Hpg and Cl-Bht (**4**) as the substrate for module 6 as determined by LCMS analysis (positive mode), with solid lines indicating methylamide peptides (PCP-bound) and dashed lines indicating hydrolysed peptides (tripeptide **3T**: black line; tetrapeptide **4T**: dark grey line; pentapeptide: light grey line **5T**; Cl-Bht containing hexapeptide **6T-4**: green line).

SI Figure S13. Evaluation of hexapeptide yield in pentapeptide **5T** extension experiments with Tyr/Cl-Bht (**1/4**) substrate competition using different Tcp39 concentrations. Black column indicates hexapeptide **6T-4** yield in the control reaction for module 6 using Cl-Bht (**4**) only as a substrate; red column indicates hexapeptide **6T-4** yield using a mixture of substrates (Tyr and Cl-Bht) without Tcp39; blue column indicates hexapeptide **6T-4** yield when substrate competition reactions were supplemented with different amounts of the Tcp39 thioesterase.

SI Figure S14. MS^2 spectra of Tyr_6 methylamide hexapeptide (**6T-1**) from NRPS peptide assay annotated with major fragments. i = immonium ion, b = b-ion (N-terminal containing), y = yion (C-terminal containing), MH = singly-charged parent (intact peptide). Subscript number = number of amino acids, for immonium ions = three letter amino acid code. Superscript symbol = neutral loss, as follows: [#]=CO, ^{*}=NH₃, [^]=methylamine (C-terminal group), ^o=H₂O

SI Figure S15. MS^2 spectra of CI-Tyr₆ methylamide hexapeptide (**6T-2**) from NRPS peptide assay annotated with major fragments. i = immonium ion, b = b-ion (N-terminal containing), y = y-ion (C-terminal containing), MH = singly-charged parent (intact peptide). Subscript number = number of amino acids, for immonium ions = three letter amino acid code. Superscript symbol = neutral loss, as follows: [#]=CO, ^{*}=NH₃, [^]=methylamine (C-terminal group), ^o=H₂O

SI Figure S16. MS^2 spectra of Bht_6 methylamide hexapeptide (**6T-3**) from NRPS peptide assay annotated with major fragments. i = immonium ion, b = b-ion (N-terminal containing), y = yion (C-terminal containing), MH = singly-charged parent (intact peptide). Subscript number = number of amino acids, for immonium ions = three letter amino acid code. Superscript symbol = neutral loss, as follows: [#]=CO, ^{*}=NH₃, [^]=methylamine (C-terminal group), ^o=H₂O

SI Figure S17. MS^2 spectra of $Cl-Bht_6$ methylamide (**6T-4**) hexapeptide from NRPS peptide assay annotated with major fragments. i = immonium ion, b = b-ion (N-terminal containing), y = y-ion (C-terminal containing), MH = singly-charged parent (intact peptide). Subscript number = number of amino acids, for immonium ions = three letter amino acid code. Superscript symbol = neutral loss, as follows: [#]=CO, ^{*}=NH₃, [^]=methylamine (C-terminal group), ^o=H₂O

SI Tables

SI Table S1. A domain selectivity code comparison of Tyr-activating A domains from module 6 of different GPAs (including mutant prepared in this study) together with that of module 6 from arylomycin

Protein ^(ref)		A ₆ selectivity code ¹			Description						
A ₆ Teicoplanin ²	D	А	S	Т	I	А	G	V	С	К	Tyr permissive pocket
A ₆ UK-68597 ³	D	Α	S	Т	I	А	G	V	С	К	(tei-type)
A ₆ Balhimycin ⁴	D	Α	S	Т	L	G	А	Ι	С	К	Tyr permissive pocket
A_6 Vancomycin ⁵	D	А	S	Т	L	G	А	Ι	С	К	(bal-type)
A ₆											
Chloroerymomycin ⁶	D	А	S	Т	L	G	Α	1	С	К	
A ₆ Arylomycin ⁷	D	Α	S	Т	V	А	А	V	С	К	Tyr specific pocket
A ₆ A40926 ⁸	D	Α	S	Т	V	Α	А	V	С	К	
A ₆ Complestatin ⁹	D	А	S	Т	V	А	А	V	С	К	
A ₆ Kistamicin ¹⁰	D	А	S	Т	V	А	А	V	С	К	
A ₆ Kistamicin-mut [*]	D	A	S	Т	I	A	G	V	С	К	Tyr permissive pocket

^{*} This study

SI Table S2. Synthetic gene sequences encoding teicoplanin biosynthetic enzymes expressed

in this study

Synthetic gene names and sequences (restriction sites are underlined)
Tcp11 module 4 (C-A-PCP-E architecture)
<u>CCATGG</u> GTACCCAAGCGCGTATCGAAGATATTTGGCCACTGTCCCCGTTACAGGAAGGA
CGATGACGAAGGCCCGGACGTATACGTTGGGCACTGGATTCTCGATCTGGATGGCCCAGTCGATGCGGCGCGCCTGC
GCGCGGCATGGGAAGCGTTACTGGCACGCCATGCCGCGTTGCGTGCG
GTACAAGTAGTTGCGGGCCGCGTGGAACTCCCGTGGCGCGTCGTTGATCTGGCACATCTGGATGATCCGGAACACGC
GGTTCGTGAATTAGCCGACGAAGATCGCCTCCGCCCATTTGATGTGGCAAAACCGCCGCTGTTACGTCTGACCCTGATT
CGTCTGGCTGATGACCGTCACCGCTTGGTGGTGACCTGCCATCACGCGGTGATGGATG
TTTGACGAACTGACGGCCCTTTATGCTGCAGGCGACGGTCCAGCACAGCTGCCGGCCG
TTGGCCTGGCTTAGTCGCCAGGATAAGCCAAGTGCCCTTGCGGCCTGGGCCGCGGAATTACGCGGCGCCCAGGAACC
CACTTTAGTCGCCCCGGCTGATCCGGGACGCGCACCGGGTATGCCGGAATCTGTCGAAGTGCAGTTGTCTCCGGAACT
GACCCGCAGTCTCGCCGAGCTGGCTCGCGGGCGCGGGCGCGGCGCGCGC
TTCTGGCGCGCTTAACGGGTCGTACCGACGTGGTGTTTGGCGCGACAGTTAGCGCACGCCCGGCCCATCTTCCGGGTG
TCGAGGCGATGGTCGGCCTGTTTCTCAACACTGTGCCAGTGCGTGTTCGGCTGCGCGGGTCAGCTCCCGTCGTTGAGA
TGCTGGCAGAGCTCCAGAAACGCCAATCAGCCTTAATTCCGGAACAGTTCGTCGGCTCTGGCGGACATTCAGAAAGCGG
CGGGTCCTGGCGCGGTGTTCGACACTCTGTTGGTATTCGAAAACTTCCCTCGGGAACTGGACGACTCGCGCAGTGCAG
ATGCGTTCGGCATTCGCGTCCACCAGGGCCGTGAAGCTGCGCATTACCCGCTGACACTGGTAGCCGTGCCGGGCGAG
TCCATGTTGTTTAAGTTGGATTACCTGACCGAACTGTTTGACGCCGCCACAGCGGCCAGTATTCTCGAACGCTTTACCC
GCGTTCTGCGCCGTCTGACCGATGCAGGTGAGCTGACAGTGGCCGCGATTGATGTGACGTCCGCTGCCGAACGCGAC
CGTGTGGCCCGCTGGGGTGCTGCAGTGGGTGCACGTCCGGATCGCCTGGCGCTGGATTTGTTTG
CCAGCGCCCGGATGAGGTGGCCGTGGCAGACGGCGATCGGGTGATGAGCTTCGGCGAACTTGCGGAACGTGCTGAA
CGCCTGGCGGGCCACCTGAGTGCGCGTGGCGTGCGCCGTGGTGATCGGGTAGCGGTTGTAATGGAGCGTTCTGGCG

Synthetic gene names and sequences (restriction sites are underlined) AACTCATCGCGACACTGTTAGCGGTTTGGCGCGCGGGAGCAGCTTTCGTTCCAGTGGACCCGGCCTATCCAGCAGAAC GTGTGAAGTTCCTGTTGACTGACGCGGAACCGGTAGCCGCAGTCTGTACCGCGGCGTTCCGCGCCGCAGTACTGGAC GGAGGACTGGAAGCGATCGTCGTAGATGATCCGGGGACGTGGCCCGCCGTGGCTCCATGTCCTCCCGTTCCGACAGG TCCAGACGATCTGGCCTATGTTATGTACACCAGTGGCAGCACCGGGACTCCGAAAGGTGTTGCTGTGTCGCATGGGGA TGTTGCAGCGCTGGTGGGTGATCCGGGTTGGCGGACGGGTCCAGGTGATACCGTGCTTATGCACGCAAGCCATGCGT TTGATATCTCCTTATTTGAGATTTGGGTGCCCCTGTTAAGCGGCGCACGTGTCATGATTGCGGGTCCGGGCGCCGTGG ACGGTGCAGCACTGGCTGCCCAAGTTGCGGCCGGGGTCACCGCCGCACATCTGACCGCGGGCGCGTTTCGTGTGCTG GCTGAAGAATCGCCGGAGTCCGTGGCAGGGTTGCGTGAAGTCCTGACCGGCGGCGATGCCGTTCCGCTGGCGGCAGT ATGTTTTGGATGCTTTTCTCCGCCCGCCCGCCGGGTACTACGGGCGAATTATACGTGGCCGGCGCTGGTGTGGCCC AAGGTTACCTGGGGCGTCCGGCGCTGACCGCGGAACGTTTTGTTGCGGATCCGTTTGCCCCTGGCGGCCGCATGTACC GTACCGGGGATCTGGCGTATTGGACTGAACAAGGCACTCTCGCTTTTGCGGGTCGTGCCGATGATCAAGTGAAAATCC GTGGCTATCGCGTAGAACCGGGAGAAGTTGAAGCGGTACTGGGAGGGCTGCCAGGTGTTGCACAGGCCGTGGTTTG TGTGCGCGGTGAGCATCTGATTGGATATGTCGTCGCGGAAGCCGGTCGGGATCTGGACCCAGAACGCCTGCGGGCCC GTTTGGCGGCGACCCTGCCGGAGTTTATGGTCCCCGCCGCAGTTCTGGTGCCGACCTGCCGCTGACGGTTAATG GGAAAGTGGATCGCCCTGCTTTACCAGAACCTGACTTTGCAGCGAAATCTACCGGTCGCGCCCCGGCAACGGCTGCAG GCGGGGATTCAATCAGCTCGATGCAGGTCGCGGCACGCGCTCGCCGTGAGGGCATCGCTTTAACCCCGCGCCAAGTC TTTGAACACCGTACTCCAGAACGTCTGGCCGCGTTGGCCCCGGCGGCGGGGTCAGCACGCCCTGATCGCAGTGCCGC GGATGCAGGGTTGGGCGAGATTCCCTGGACCCCTGTCATGCGCGCTCTTGGTGATGCCGTGCGTCCGGGCTTCGC GCAAGCGCGTGTGGTAGTCGCGCCGGCCGGTCTGGACCCCGATGCGCTGACGGGCGCGCCCCGTGCAGTCCTGGATA CGCATGACGTTCTTCGTGCGCGTGTTGAACCGGATCGTCGTCTGATCGTTCCAGAACGTGGTGCGGTAGCGGCCGCTG ATCTGCTGACCCGCGTTGCTGTTGATTCTGACGGTATTGATGCCCGTGCAGAACGCGAAGCTGCGACGGCGGCTGGCA GTACTGGCCGGTGCGACCCCTGCCCTTGAACCTGCTGCGACATCTTATCGCCAATGGGCGCGCCGGTTGACCGAACAG GCTAGCTCACCGTCCACGTTAGCAGAACTGGACCACTGGGTGACCGTGCTGGATGCCGCGGAGCCGCCTCTGGCAGA ACATCACGGCCAGGCACATAGCTGGAGCGCCACTTTAAGCGGTGCCGTTGCTGGACATCTGGTATCCCGCATGCCGGG CCGGCGTTTTGGTGGACGTTGAAGGACACGGTCGGCACGCTGCGGATGGGGAGGACCTGCTTCGTACGGTGGGGTG GTTCACCTCGGTACACCCAGTTCGCCTCGATGTATCGGGAGTGGACTTGGCGGCCGCAGCTGCCGGTGATGCGGCTGC AGGTGAACTCCTGAAAAGCGTGAAAGATCAGGTGCGTGCCGCCCCGGGAGATGGCTTTGGCTTCGGTTTATTACGTCA TCTGAATCCTGATACCGCTGAGCGCTTAGCCGCCCTGCCGGCACCGCAGATTGGCTTCAACTATCTTGGCCGCAGCGG CGTCGCGGCTGAAGCCGTACCCTGGCAGGTGCGCGGCGGTTCGCTCGGAGCAGGAGAAGCAGGTCCCGACCTGGTC CTCGCGCATCCCCTGGAGGCTGGCGCAGATGTTCGTGATACTCCTGATGGTCCACTTTTGCGTCTTACCCTGGACGGTC GCGACCTGGCTCCGGTGACAGTTGAGCTTCTGGGCGAGGCGTGGTTGGAGGCTCCTGACGGGCCTGGCTACTCATGCG GGCGACCCTCGTGCGGGTGGCCATACGCCGGCTGATTTCGACTTGGTGGAAGTAACGCAGCGGGATGTCACAGCCTT AGAAGCAGCGGCCGCAGAGTTTGGTGGCGGGTTAGAACTCGAG

Tcp11 module 5 (C-A-PCP-E architecture)

Synthetic gene names and sequences (restriction sites are underlined) CGTCGCCAGGCGAGCGCCTTCAGATCCGCGTCAGCTACCGTCCGGATCGCATCGAACGCGAAACCGCAGCCGAGGCA GCGGGCCAAGTAGTACGTGTTATTGAACGCATTGTCGCTGAGCCGTCTTTGGCGGTCGTCGGCGGTCGGCGGGCCACCGGT GTTTTCGCCGTCGGGCGCGTAGCAGTCCCGACGCTGTGGCAGTATCGGGTGGCGGCCGCACCCTGTCTTATGCCGCGC GATGGAACGCGGTACGGATCTGTTCGTTGCGCTCCTTGCTATTGGTAAAGCGGGTGCCGCGTATGTTCCTGTGAACTT GGATTACCCGCGTGACCGCATTGAACGTATGCTGACCGATGCGGGCGTTAGTGTGGCCGTATGTGTCCAGGCAACCTC GGGTGCGGTTCCGGATGGGCTGGCGCCGGTGGTAATGGACTCGCCAGCAATTGCGGCCGCCCCTTCGGAAGCGCCGC CAATTACGGTCGGGGCGCATGACCTGGCGTACGTTATGTACACGTCCGGTTCGACCGGCGTGCCTAAAGGCGTTGCCG TTCCGCACGGTTCCGTTGCCGCCTTGGCCGGTGATCCGGGCTGGTCCGGGGCGATGGAGTCTTAATGCATG CGCCGCACGCCTTTGACGCCTCATTATTGGAAATCTGGGTACCGTTGCTTTCGGGAGCGCATGTGGTGGTAGCGGACC CCGGCGCGGTGGATGCACAACGTCTGCGGGAAGCCATTGATCGCGGTGTTACCACCGTACATCTGACGGCGGGGAGT TTCCGGGTTTTGGCGGAGGAAAGCCCGGATGCGTTTCGCGGACTTCGCGAGGTGCTGACCGGTGGTGACGCAGTTCC CTCTGTGCGCCACTTGGCATCTGATCGAGCCTGGCGTTGCGACAGGTGATACGTTACCAATTGGACGTCCGCTGGCGG GGCGTCGTGCGTATGTACTGGATGCCTTCCTGCAGCCTGTGGCTCCGAATGTAACCGGTGAACTGTACCTGGCCGGGG CGGGCCTGGCGCGCGGTTATCTTGGCGCTGCGGCGGCCACCGCCGAACGGTTTGTCGCCGATCCCTTTGCTGCGGGC GAACGTATGTATCGTACTGGTGATCTGGCTCGTTGGACGGAACAAGGGGAACTGCTGTTTGCAGGCCGTGCCGATGC GCAGGTCAAGATTCGTGGCTACCGCGTCGAACCGGCTGAAATCGAAGCTGCGCTGACGGCGATTCCGGAAGTCGCAC AAGCAGTTGTGGTAGCCCGTGAAGATGGCCCGGGAGAGAAACGTTTAATTGCTTATGTTACCGCCGCTGGCCAACCG GGCCCAGATCCGGCAGCCGTACGCGAACATCTGGGTGAGCGCCTGCCGGAGTTTATGGTACCAGCGGCAGTGGTCGT GGCGGGACGGGAACCGCGTACGGAAGTTGAACGGGTTCTGTGCGACTTATTCGCGGATCTGCTGGGCCTGGATCGTG GAAGGGGTAGTGTTTGGCGCAAAAGATGTGTTCGAACAGAAAACGCCGGCAGCGATTGCGGCTGTCGCCGTCCGCG GAGGCCAACGCCCAGCGGGCCCAGACGATGGGGTAGGTGAAGTCGCGTGGACGCCAGTCATGCGTGGTCTGTTAGA TCGCGACCCGGGAACGATGAATCGTTCTGCAATGGCGCAGTGGGTAACAGTGGGTGCACCTGATACCCTGTCCCGTG ATGTGCTGGCTGCCGGTCTGGGTGCGGTTCTTGACGCGCATGACATGCTCCGTAGCCGTGTAGTCGCGGCGGGTACTG AGGTGAGGTGGATGACCTGACCGAACGTAGTGCTGCAGAAGCTGCGACACGCTTAGATCCAGGTGCCGGTGTTATGG TACGTGCAGTGTGGGTTGATGCTGGGCCAGGTCGCGTGGGACGTTTAGTGGTTGTAGCTCACCACCTGGTCGTTGACG CTGTCTCATGGCGTATTCTGCTGCCAGATCTGCGCGCTGCCTGTGAGGCTGTGGCGGCGGGGGCGCGAGCCGGCCCTC GATCCGGTGGATGTGAGCTTTCGCCGTTGGGCCCGTACCTTAACCGATCAGGCAGCCACCCGCACTGCGGAACTTGCG ACGTGGACTCGCATCCTGGGTGGAGCCCAACCCCGCTTCGGCGCACTGGACCCGGGACGGGACACTATCAGTACGGC TGGCCGTCGCACCTGGACCGTCCCGCAGGATCGCGCAGGTGTGCTGGTCGAACGTGTCACTTCCGCGTTTCACTGTGG TGCGCCTGGACGTTACGGGGATTGACACCGCGGAAGTCATTGCGGGTGGTGGCGCGGCGGGCCGGCTCCTCAAAACC GTGAAGGAGAATGTGCGTGCAGTACCCGATGGCGGTTTGGGGTATGGGATGCTGCGCCATCTGAATGCTGAGACTGG CCGGGTACTCGCAGCGCAGCCTGCGGCCGAAATTGGTTTCAACTATCTTGGTCGCTTTTCTGAAGGCCCGGGCGGCGA TGTGCAGCCGTGGCAACAGCTCGGAACCATTGGCGGCACGGCCGAGCCGGACATGCCGCGCGTCATGCCGTGGAAA GCTGCGGAAGCCGAATCGCTCGGCCGCGCGTGGCAGGATGTGTTGGCCGGACTGGCCGTCCACGCCGGCGATGTCCG TCGATGACGACCTCGAG

Tcp11 module 6 (C-A-PCP architecture)

Synthetic gene names and sequences (restriction sites are underlined) GTCGTCTGGTCCGCTTTACCCGTCGTCACGGGGTGACAATGAACACACTGTTCCAAGGCATTTGGTCGCTGCTGTTAGC CCGTTTAACTGGTCGCGATGACGTTGTGTTCGGGTCAGCGGTTGCAGGTCGCCCGGCTGAGATCCCGGGCGTTGGTTC TGTTGTGGGGTTGTTCATGAATACTCTGCCGGTACGTGTTCGCCTGGATGGCGCGGAGCCATTTCTGGACATGCTCAC GGATTTGCAGCGTCGTCAGGTAGCTATGATGGCGCATCAGCACTTAGGCCTGTCAGAAATCAAGCAGGTAGCGGGCC CGGGTGCAGCATTTGACACGCTTGTGGTCTTTGAAAACTATCCTCGGCCACCTCGCCCTAGCGACGATCCGGATGCCGT TTCATGGTGAATTTATCTTTCGCCCCGATGCCTTCGACCGGGCGGAAGCTGAAGGAATGCTGGCCGCCATTATTGAGG CGCTGCGGCAGGTGGTGGCAGAACCAGGTATTGCGGTTGGCCGTATCGGACTGGTAGGCGCGGCAGAACGCCGCCA AGTGGTCCGCGAATGGAACGAAACAGATGCGCCGCTCACGGCACAACCGCTTCCCATGTTGTTCCGTCGTCAAGCTCA GCGTTCGCCGGATGCGGTCGCAGTCCGCGATGCAGCACGCAGTCTGTCATTCGGAGCCCTGTTAGGTGAAGCGGAAG GCCTTGCGCGTCGCCTTGTCGCAAGTGGCGTGCGCCGTGAAACTCGCGTAGCAGTCCTGGTCGAGCGGAGCGCTGAG CTGGTAGTGGCCCTGCTGGGCGTAAGCCTGGCCGGTGGCGTTTTCGTGCCGGTGGATCCGGATTATCCGGGCGATCG CATCGCTCTGATGCTCGCAGATGCGGCTCCGCAGGTCCTGGTGTGCACGGCACGTACCCGCTCTGTCGTGCCTGGCGA TTTTGCCGGCGCCGTGCTTGCTCTGGACGAACCGAGCGCTGCCGGACCGCAGGTGAGCCTTCCACGCGTTGCCGCGCG CGATGGTGCGTACGTAATCTACACCTCCGGCTCGACGGGTGTACCGAAAGGCGTTCTGGTGACCCATGCCGGTCTGGG TAATCTGGCTTCGGCGCAGATTGAGCGCTTTGGTGTGACCTCGTCCAGTCGTGTTCTCCAATTTGCAGCTCTCGGCTTT GACGCGGCGATCAGCGAGGTTTGCATGGCGCTGTTGTCTGGCGGATCCATTGTTCTGGCGGATGCCGAACACATGCC GAGGATGACCTGCCGGATGATCTCACACTGATTGTTGCAGGGGAAGCCTGTCCTCCGGCTCTGGTGGATCGCTGGAGT GCCACCAGGGATGACCGGTGAATTATACGTCACCGGCGTGGGTCTGGCACGCGGATACTTGGGTCGTCCCGGTCTGA GGCGATGGTGAACTGGTTTTCGCGGGGCGCGTTGATGCTCAGGTCAAAGTGCGTGGGTATCGCATTGAACCCGGGGA GATTGAAGCCGTGTTGGCAGAACATCCCGGCGTCGCGCAGGTTGTAGTAGTCGCGCGTCAAGACGGTCCGGGTGAGA AACAGCTGGTGGCCTACGTAGTACCTGCCGCCGGTCCTACCGCCGAGGCGAGCACTCTGATCTCGGCGTTACGCGAAG CTGCAGCAGCCCGGCTGCCGGAGCACATGGTACCGGCGGCCTTTGTGCCTTTGGACGCCATGCCGCTTACGCCCAATG GGAAAGTTGATCACCGTGCCTTACAGGCGCCGGATTTCGCCGGGATGTCTGCAGGGCGTGATCCTCGGACAGCGTTG GGCGGGGGACAGCATCACGAGTATGCAGCTGTCCACGCGCGCCGCGCGAAGGGTTGGAACTGACCCCGTGGCAGG TGTTCGACGAGAAAACCCCCGGAACGTCTGGCGGCGTTAGTCAAGGAGATTCCAGCTGATGGCGGCGCAACGGGCGC AACTCGAG

Tcp39

<u>CCATGG</u>CGATGCCTGTTCCGTGGTTCTCGGCACCACGTCCGTTAGCGGCGCCACGTTTACGCCTGGTGTGCTTTCCGTA TGCTGGTGGGAACGCAGCTACCTACCGCAGTTGGGCGGGGACTGCTGCCTCCTGGTGTCGAGTTAGTCGCGGCGCTCCT GCCGGGTCGTGCAGAACGGTTAGACGAACCACCGCTGGTCGACCTCGACGTGTTGCTGAGCGAACTGGTGGCCGCGG CTGGTCCGCTGTTGGGCCCGGTTCCGCTGATCCTGTTTGGCCATTCCCTTGGGGCCACCGTAGCGTACGAGTTTGGTCG CGCCTTGGCGACGGAACATGGGTGTGTGCCCCGCAGCGCTTCTGGTTTCGGGTGCGCCCGCACCACCCGTTCGCCGCCG CCGTACTGGTCGCGGACTTAGCGATGACGATCTGGAACGCATCTTGGGCAAACGCACCGATCTGCCGGCAGGATGGC TGACGGCAGAGCTCAAACCGTTCGTCTTTCCGGCTCGCGGCGATCTGCGGCCGCCGCACCACCCGTCGCGCGC TGGCCCTTTACCGGGCGTTCCGGTAGTGGCCTTTGGCGGATGCGGATCAGATGTGTCTGCGGGCTGATCTGCGGCG CTGGCAACGCTGCACAACTGGCCCCGCTCGTACCCACGTACTGCGCGATCACGATGTGTCTGCCGGCTGATCTGCGTGC CTGGCAACGCTGCACAACTGGCCCGCTCGTACCCACGTACTGCCGCGATCACTTCTTCATTGCCCATCAGCCGTTT CGGGAACTGCTTGCCGCCACGGTGGGCGAATTCGCGGCGTCACCGATTGCCCGC<u>CTCGAG</u> **SI Table S3**. Primer sequences and template DNA used for cloning of Tcp11 modules with altered architecture, Tcp11 4-5 di-module and full length Tcp11

Final	Drimore	Insert template	Vector
construct	Primers	DNA	template DNA
	M4CATEC-fwd AGAAGGAGATATACCATGAAACATCACCAT	pET-GB1-1d, encoding Tcp11 di-module 45	-
Module 4	M4CATEC-rev CCAAGCACTCTCGAGTCCTGCGGCCACGCCTGT	protein (C-A-PCP-E-C-A- PCP-E architecture)	
C-A-PCP-E-C	Vector-M4CATEC-fwd		
	CTCGAGAGTGCTTGGAGTCATCC Vector-M4CATEC-rev GGTATATCTCCTTCTTAAAGTTAAACAAAATTATTTCTAGA	-	pET-GB1-1d series
	GGG		
	M5ATEC-Fragment1.fwd AATCTTTATTTTCAGGGGAGCAGCGTATTGACAGG M5ATEC-Fragment1.rev	pET-GB1-1d, encoding Tcp11 module 5 (C-A-PCP-E	-
	AGGTCTGGTACTGCTGCCTCGATCTGAG	architecture)	
Module 5 A-PCP-E-C	M56Fragment 2.fwd AGCAGTACCAGACCTGCTGGATATTTGG	pET-GB1-1d, encoding Tcp11	
	M56Fragment 2.rev CCAAGCACTCTCGAGCGTGAGCGGCGCATC	module 6 (C-A-PCP architecture)	-
	Vector-M5ATEC.fwd CTCGAGAGTGCTTGGAGTCATCC Vector-M5ATEC.rev	-	pET-GB1-1d
	CTGAAAATAAAGATTCTCAGAACCACTGCCA		series
	M6-AT.fwd	pFT-GB1-1d	
		encoding Tcp11 module 6 (C-A-PCP	-
Module 6	GCAGCCGGATCAAGCTTACTTCTCGAA	architecture)	
A-PCP	Vector-M6.fwd		
	GCTTGATCCGGCTGCTAACAAAG	-	pET-GB1-1d
	Vector-M6.rev		series
	CTGAAAATAAAGATTCTCAGAACCACTGCCA		
Tcp11 di- module 4-5 (C-A-PCP-E- C-A-PCP-E)	45Fr_1-rev TCAGGCCTGGGGCCGCTGCTTCTAAGG	pET-GB1-1d, encoding Tcp11 module 4	_
	45Fr_1-fwd	(C-A-PCP-E	
	GCAGCCGGATCAAGCTTACTTCTCGAA	encoding Tcp11 module 5	-
	45Fr_1-fwd	(С-А-РСР-Е	
	GGCCCCAGGCCTGACGGATATCTGGCC	architecture)	

Final	Primore	Insert template	Vector
construct		DNA	template DNA
	Vector-45-rev GGTATATCTCCTTCTTAAAGTTAAACAAAATTATTTCTAGAGGG Vector-45-fwd GCTTGATCCGGCTGCTAACAAAG	-	pET-GB1-1d series
	Fragm_4CATEC.FOR CTTTAAGAAGGAGATATACCATGAAACATCACCAT Fragm_4CATEC.REV CGCTGCTCCCTCCTGCGGCCACGCC	pET-GB1-1d, encoding Tcp11 module 4 (C-A-PCP-E-C architecture)	-
Full length Tcp11	Fragm5-ATEC.FOR GGCCGCAGGAGGGAGCAGCGTATTGACAGG Fragm_5ATEC_REV GCGGTTGTGCCGTGAGCGGCGCATCTGTTTCG	pET-GB1-1d, encoding Tcp11 module 5 (A-PCP-E-C architecture)	-
(C-A-PCP-E- C-A-PCP-E-C- A-PCP)	Fragm_6AT.FOR GCCGCTCACGGCACAACCGCTTCCCAT Fragm_6AT.REV TGTTAGCAGCCGGATCAAGCTTACTTCTCGAA	pET-GB1-1d, encoding Tcp11 module 6 (A-PCP architecture)	-
	Vector_Tcp11.REV GGTATATCTCCTTCTTAAAGTTAAACAAAATTATTTCTAGA GGG Vector Tcp11.FOR GCTTGATCCGGCTGCTAACAAAG	-	pET-GB1-1d series

SI Table S4. Synthetic gene sequences of BpsB module 6 (A-PCP), balhimycin MbtH protein and Bhp, as well as primer sequences and template DNA used for cloning of wild type BpsB module 6 and MbtH-like protein

Synthetic gene names and sequences (restriction sites are underlined)
BspB module 6 (A-PCP architecture)
GTCGAATCTGCGGTTGGTCTGTTCATGAATATGTTACCGGTACGTGCTCGTTTGACCGGCGCCGAACCTGTAGTTGATA
TGCTGAAAGATCTGCAGGAGCGCCAGGTGGCGATGATGGCGCACCAACACATTGGACTCCCAGAAATTAAACAACTG
ACGGGGCCCGGCGCTGCCTTTGATACCATCGTGGTATTTGAAAACTATCCGCCGGCGCCGCCTCGTAGCGATGATCCG
GATGCCTTGGTGATCCGCCCTGTGGGAATTCCAAACGATACCGGTCATTACCCGCTGTCTATGCGTGCG
GCCGGTCCTGTGCGCGGAGAATTCATTTATCGCCCTGACGTGGTTGACCGCACCGAAGCCGGCGAGATGGTAGCAGC
GATCCTCCGCGCGCTGGAACAGGTGGTCGCGGAACCTTGGACCCCAGTTGGGCAGGTTGGTCTGATTGGCCCGGAAC
AGCGCCGCCTGGTTGTCGATGAGTGGAATCGCACGGATGTTCCGTTAGCGGCTGAAACCCTGCCTG
GCCAGGCTGAACGCAGCCCGGATGCTGTGGCTGTTGAGGACGGTGCACGCAGTCTGACATTCGGCGGTCTGTTAGGG
GAGGTGGAGGCACTTGCACGCCTGCTTGTGGGCGCCGGGGTGCGCCGCGAACATCGTGTGGGCGTGTTGGTGGAAC
GCAGCGCTGAACTGGCCGTTACCATGATGGCCGTGAGCTTCGCGGGAGGTGTATTTGTACCCGTTGACCCGGACTACC
CACGCGAACGCGTTGAATTTATGCTGGCGAATAGCGCGCGGGGGTTATGGTTTGTACTAAAACCACCCGTGCAGCG
GTTCCTGCGGAGTTCGCGGGTACTGTTCTGGTGCTGGACGAGTTACCGGCAGCCGACCCGGATGTGGAACTCCCACCG
GTTGCCCCGGAGGACGCGGCGTATGTCATTTACACTTCTGGCTCCACTGGCGTACCCAAAGGCGTACTCGTCACGCATT
CCGGCCTGGCCAACCTGGGGTATGCTCACATTGAACGTATGGCCGTAACCTCGTCGTCACGCGTGCTGCAGCTGAGTG
CTACTGGCTTTGATGCTATTGTTAGCGAACTGTATATGGCCCTGCTGGCGCGCTACCCTGGTGCTCCCAGATGCTGC
CTCCATGCCACCGCGGGTGACCCTGGGTGAAGCCATCCGCCGGGCGGG
TTCTCGCCAGCGAGGACGACCTTCCGGACACTCTTCGTACCGTCTTAACAGGTGGTGAGGCGCTGCCGCCGGCCCTTG
TAGACCGCTGGTCGCCTGGCCGTCGTGTGATTCAGGCCTACGGCCCGACAGAAACTACCATTTGCTCCACCATGTCCGC

Synthetic gene names and sequences (restriction sites are underlined)

Balhimycin MbtH-like protein

<u>CATATG</u>TCGAATCCGTTCGACAACGAAGATGGCAGCTTCTTTGTGCTGGTGAACGATGAAGGGCAACACTCTCTGTGG CCAACGTTTGCGGAAGTTCCTGCCGGTTGGACTCGTGTACATGGCGAAGCTGGTCGTCAGGAATGCTTGGCGTATGTC GAGGAGAATTGGACCGATTTACGCCCGAAATCCCTGATTCGCGAAGCAAGTGCCTAA<u>CTCGAG</u>

Bhp

Final construct	Primers	Insert template DNA	Vector template DNA
BpsB module 6 (A-PCP)	F-BpsB-AT.FOR CTTTATTTTCAGGGCCCAGTTGGGCAGGTTGG F-BpsB-AT.REV	Synthetic gene encoding BpsB module 6 (A-PCP)	-
	V-MBP.REV GCCCTGAAAATAAAGATTCTCAGAACCACT V-MBP.FOR CTCGAGAGTGCTTGGAGTCATCC	-	pET-MBP- 1d series
	Fragm_balH.FOR GGAGATATACCATGGATGTCGAATCCGTTCGACAACG Fragm_balH.REV TTTACCAGACTCGAGTTAGGCACTTGCTTCG	Synthetic gene encoding protein from balhimycin biosynthesis	-
MbtH_BalH (non-tagged)	V_pCDF.REV CCATGGTATATCTCCTTATTAAAGTTAAACAAAATTATTTCTACA GG V_pCDF.FOR CTCGAGTCTGGTAAAGAAACCGCT	-	pCDF (Novagen)

SI Table S5. Synthetic gene sequences of KisK module 5 (A-PCP-E-C), module 6 (A-PCP) and KisM protein, as well as primer sequences and template DNA used for cloning of wild type KisK module 6, the A domain KisK module 6 double mutant and MbtH-like protein

Synthetic gene names and sequences (restriction sites are underlined) KisK module 5 (A-PCP-E-C architecture)* <u>CCATGG</u>gAGCAGCAGCAACCGCGACCCTGCCTCCGGTACCGGTCTTGTTGCACCGTCAAGCCGAACGTCACCCGGGTG CGGTGGCCGTGACAGAAGATGGCCGCGATCTGAGTTACGCCGAGCTTGATGAAAGCGCAGGCCGCCTGGCTGCGTAT CTGGCCGGCCGCGGAGTGCGCCGTGGCGATCGCGTAGCGGTTGCGCTGGGTCGCTCAGCAGATCTCGTGGTTGCATG GCTGGGCGTATGGCGTGCGGGTGCAGTGTTCGTTCCGATCGACCCGGAATATCCGGCCGCTCGCGTGGCTTTTATGAT CCAGGACTCACGCCCAGCGGCAGTGTTGTGTAGCGGACAGACGCGCAACTTAGTACGTGATCGTGACCCTATCGTAGT AGATGACCCAGCCATCCGTGCGGCAATTGCACAGGCAGATCCGCTTAGTGTACCGTGTGGTGGTGATGATCTTGCGTA TGTTATGTACACAAGCGGCTCGACCGGTACACCAAAAGGCGTGGGTGTTCCTCATGGCGCCGTTGCGGCACTGGTCG GCGAGCCGGGTTGGCATGTCGGTCCGGGTGATACGGTCCTGGCCCATGCCAGTCATAGCTTTGATATTAGCTTATATG ATGCAGTCGCGCAGGGTGCGACCGCCGTCCATCTGACTGCCGGTGCTTTCCGGGTTTTAGCGGATGCCGCCCCTGATT GCTTTGCAGGCCTGCGCGAAGTTCTGACAGGTGGAGATGTGGTCCCGCTTGACGCTGTCGAACGTGTGCGTCTGGCGT AACCCGGTTCCGCCGGGAATGATCGGTGAATTGTACTTGGGTGGCGCCGGCGTTGCGCGTGGTTATCTTGGCCGCCCA GGTCTGACGGCTGAGCGTTTCGTTGCCGCACCGGGAGGTCAGCGTCTGTATCGCACTGGGGACCTGGCGAAATGGAC TCGGGATGGCGAATTGATCTTTGCCGGGCGTGCCGACGCGCGGGGCAAAATTCGCGGCCACCGCGTCGAACCCGGGG AAGTGGAGGCTGTCTTAGCAGCACATCCGGCAGTTCGCACCGCAGTGGTTGTCGCGGATGATGGTCGCCTGATTGCCT ATGTGCTGCCCCGCGACCAGGAAGATTCCGCCCTGACCACGGCGCTGCTGGATCACGCTCGCAAAGAATTGCCTGAAT ATATGGTCCCTGCCGTAGTGGTTCTCGATACGCTTCCGCTTACCGTTAATGGGAAAGTCGACCGCGCAGCATTACC GGCACCGCGTTTTGCCGCTCAGGCGACCGGGGATCTGCCGGGTCGCGCATACGGTAACGAAACGGAACGCGTCTTAT GCGAACTGTTCGCCGAGGTTCTGGGTCTGCCGGCAGCGGTCGGGGCTGAGGACAGCTTCTTTACGCTGGGAGGTGAC TCAATCACTAGCATGCAGCTGACGGCTCGTGCACGCCGCCGGCCTGCTTCTGCGTGTCGAGGACGTGTTTGAGCAC GCGACACCTGCAGGCATTGCTGCAGTGAGCCGTCGCGCGGATGAAGGCTCGGGTGGAGGCGAAGATGGCGCAGGTG TGACATGCTTCGGTCGCGCGTGGAGCCTGATGGGCGCCTTAGTGGCGGCCCCGGTTGGGGCCGCCTCCGCGC AGATCGAACGCATTGAGGTAGATACCGCGGTTACAGGTGATGACCTGGATGCGTTAGCTCGTCGTCAAGCTCACGAA GCAACTGGCCGTCTGGACCCCGCCGCAGGCGTAATGGCGCGCCTGGTATGGGTCGTGGGCGCTGCGGGGCTCGGAAA CGTGTGAATCGCGGCAAGCCGGCCGCGCCCCAGATTTGGCGCCGGTTCCGACCTCCTTTCGCCGCTGGGCACGCTTGT TGACCGAGCAAGCATCCGAACGCGCCGGTGAATTAGAAGCATGGCGCAGTATTTTGGCGGACACGGACAGCCCGCTT AAGCTGTCAGCCTGGTGGACACGGCGACTGCCGCCTTTCACTGCGGCGTGCATGAGGTTCTCTTAGCGGCGTTTGCGG GTGCGGTAGCGATGGTTCGCGGTGCGGCGGTAACGGTAGAAGTCGAAGGCCACGGACGCCGCCCCGTAGGGGAAGC CGATCTGACGCGCACTGTAGGTTGGTTCACGAGTGTTCATCCGGTGCGTTTGGATGCTACAGGGCTGGATCACGGGCA GTTTGGGGTTCGGGCTGCTGCGTCATCTGAACCCCGAGACGGCTCCCGTACTGGCAGCGTTACCGCGCCCACGTGTGG CGTTTAATTACATGGGGCGGTCCGCGGCGGCGAAAGCCGGTATGTGGCAGCCGGTAGACGCGATTGGCGGCAATGC CCATCCGGACATGCCACTCCGCCATGTCCTGGAAGTAGGGGCAGCAGTTCAGGATGGAGCCGACGGCCCAGCTATGC ATCTGACGCTGACCTGGGCAGGCGATCTGCTCGAAGAGGCTGAAGCCTTGGCATTGGGCCAGGCATGGCTTTCTCTCC TGTCCGGTATCGCTGCGCATGCCGCGGCGCCCGGGCGCCGGTGGTCACACCCCGAGTGATTTCCCCGATGGTTGAGTTAG ACCAGGCGGAGGTCGACGAAGTGGATGAAGTGTCCGGGCCCGCACTGGCGGATGTCTGGCCGCTCTCACCACTGCAG GAAGGTTTACTGTTTCACGCAGCGTATGACGCTTCTGCCCGGGACGTCTACGAGTCGCAGCGCGTCCTCGATCTGACA CCACCAGTTGGGCTCTGGCCGTGCGGTGCAGGTAGTTGCAGATCGTGTCGAACTGCCGTGGCGTACCGTTGATGCCG GCTCTCTGGCGGAAGCCGAACGTGCCGCCGCGGAAGAACTGACCGAACGTTTCGATCTGAGCGAGGCTCCGTTGCTT CGTGTGCTCCTCATCCGTCTGGCGGAGCGCCGGCATCGTCTGGTGGTGACGTCTCACCATATTATTGCGGATGGCTGG

Synthetic gene names and sequences (restriction sites are underlined)

KisK module 6 (A-PCP architecture)

CCATGGgACCACGTGCAGCTGGGGAAGCGCCGTTAGGGGAGTTAATTCGCCGCATTGCCACGGAACGTCCCGAGGCG GTGGCAGTAGTGGATGGCGATGGGGAACTCACGTACGCCGAGCTCCTGACACGTGCGACGGGATTAGCACGCCACTT GGTGCGTCGTGGTGGTGGCCCGGAACGTCGCGTCGGAGTCCTGGTTGAACGGGGCGCCGCATGGGTCACCGCCGTAC TGGGCGTTGCCCTGGCGGGCGGTGCTGCAGTGCTGCTGGAACCAAGCTATCCGCCTGAACGCTTAGGCTGGATGCTG AGTGATAGTGCGCCCACAGTCGTGGTTTGCTCTGCAGCGACGCGTTTTCGTGTCCCGGCTGGGGTGGATACCGTTGTA GTCGATGCGGGCGTAGCCGACGGGCTCACCAGCGAGGCCCGCCTGCCCGAAGTGACCCCTGAACACGCGGCCTATGT GGTGTACACGTCGGGCTCTACCGGGTTACCTAAGGGCGTTGTGGTCAGCCATGCCGGGTTGGCCAATCTTGCTACTGC TCAGATTGATCGCTTTGGGGTCACTCCGAGCTCGCGTGTACTCCTGATGGCTGCGCTCGGATTCGATGCGGTGATGTC GGAACTGCTGATGGCCCTGCTGAGCGGTGGAACCGTGGTTGCACTGCCGGGGTATGAACTGCCACCGCGTACCGGTC TGGCTGAAACGCTGCGCTGGGGTATCACCCACGTTACCGTGCCGCCGAGTGTGCTCGCCACCGTTGCAGAAGATC TGCCGGAAACGGTCGAGACAATCGTTGTTGCCGGAGAAGCGTGTGGTCCAGACTTGGTCGAGCGCTTCTCACCTCGCC ATCGGATGGTCAACGCGTATGGACCGTCAGAGGCCACTGTCTGCTCGACCATGTCCGGACCATTGGCGCCCCGGCGCG GAAGTACCGATTGGAACTCCGATTGCAGGCGGGCGCTGCGAAGTCCTTGATCAGTTTCTGCGTCCGCTTCCTCCCGGT GTTACCGGGGAGCTGTATGTAGCGGGCGCCGGCCTGGCGCGCGGGTTACCTGAATCGCCCGGGTCTGACGAGTGCACG CTTTGTGGCGGCAGCCGATGGTCGCCGTCGTTATCGCACTGGTGATCTGGCCTACTGGACACCTGGTGGTGAACTGGT GTTCGTAGGCCGCGCGGACGAACAGGTCAAAGTGCGCGGGTTTTCGCGTGGAACCGGGCGAGATCGAAGCCGCGATT ACGGCACATCCGCATGCGGCGCAGGCCGCGGTGGTGATGTGGCCGCGCGCCTGGTTGGCTACGTTGTACCAGCTCC GGTACTGGAAGCACTGCCGCTCACCCCAAACGGCAAAGTGGACCGGAAAGCGCTTCCGGAGCCGGAATTCGCAGCAG GCGGCGGCGATGCTGAACGGGCCGCAGGTGCGCCAGCGACCGAAACGGAACGTGCGTTGTGTGAGCTGTTTGCAGA GGCGTTGGGCGTTGATCGCGTGGGTGCTGACGATAACTTCTTTGACCTGGGCGGCGACTCCATCATCTCCATGCGGTT AGCTGCCCGTGCACGCCGCAGCGGCCTGACACTGTCTCCCCGCCAAGTGTTCGAGGAGAAAACCCCACGTCGCTTAGC GCGCCGCTTGTGGACTTGACTGGCGACCAACTGGCGGAATTGGAAGCGGCGCTGGGTGCCGGTCCTGGTCATGATGA TGCGCCGGGTGCAGGTCCGGGTCATGACGATGCGCCAGATGAAGGTGCACAGCGCCTCGAG

KisM (MbtH-like protein)

Final construct	Primers	Insert template DNA	Vector template DNA
Module 6 (WT) A-PCP	M6AT-Kis-fwd TATTTTCAGGGCGCCACAGTAAGCAGAATAGGACTAGACGGACCA GGAGTAGAACCAGCATGGACAAGCGGAGgACCACGTGCAGCTGG G M6AT-Kis-rev CCAAGCACTCTCGAGGCGCTGTGCACC	Synthetic gene encoding KisK module 6 (A- PCP architecture)	-
	Vector-M6AT-fwd CTCGAGAGTGCTTGGAGTCATCC	-	pET-GB1- 1d series

Synthetic gene names and sequences (restriction sites are underlined)					
	Vector-M6AT-rev				
	GGCGCCCTGAAAATAAAGATTCTCAG				
	F1-M6A(x2aMu)T-Kis-fwd				
	AGAAGGAGATATACCATGAAACATCACCAT				
	F1-M6A(x2aMu)T-Kis-rev				
	GATTGTCTCGACCGTTTCCGGCAGATC	pET-GB1-1d,			
		encoding KisK			
Module 6	F2-M6A(x2aMu)T-Kis-fwd	module 6	-		
(A-PCP, A	ACGGTCGAGACAATCATAGTAGCAGGAGAAGCATGCGGACCAGA	(A-PCP			
domain	CCTAGTAGAAAGATTCAGCCCAAGACACAGAATGGTAAACGGATA	architecture)			
double	TGGACCGTCAGAGGCC				
mutant)					
	F2-M6A(x2aMu)T-Kis-rev				
	GCAGCCGGATCAAGCTTACTTCTCGAA				
	Vector- M6A(x2aMu)T-fwd				
	GCTTGATCCGGCTGCTAACAAAG		pET_GB1_		
		-	1d series		
	Vector- M6A(x2aMu)T-rev		iu series		
	GGTATATCTCCTTCTTAAAGTTAAACAAAATTATTTCTAGAGGG				
	MbtH-Kis-fwd	Synthetic gene			
	GGAGATATACCATGGATGACCAATCCGTTTGACGACG	encoding KisM			
		protein from	-		
KisM (non- tagged)	MbtH-Kis-rev	kistamicin			
	TTTACCAGACTCGAGTTACGCACGTGCATCTGGACTG	biosynthesis			
	Vector-pCDF-fwd				
	CTCGAGTCTGGTAAAGAAACCGCT				
			pCDF		
	Vector-pCDF-rev	-	(Novagen)		
	CCATGGTATATCTCCTTATTAAAGTTAAACAAAATTATTTCTACAGG		(

*KisK module 5 (A-PCP-E-C) synthetic gene was used for Tcp11 module 5 hybrid construction.

See SI Table S6.

Final construct	Primers	Insert template DNA	Vector template DNA
Tcp11 module 5 hybrid (A-PCP-E-C*)	F1-Tcp11M5ATE-fwd AATCTTTATTTTCAGGGGAGCAGCGTA F1-Tcp11M5ATE-rev ACCATCGGGAAATCGCTTGGGGTATG F2-KisKM6C-fwd CGATTTCCCGATGGTTGAGTTAGACCAG F2-KisKM6C-rev GCAGCCGGATCAAGCTTACTTCTCGAA	pET-GB1-1d, encoding Tcp11 module 5 (A-PCP-E-C architecture) Synthetic gene encoding KisK module 5 (A-PCP-E-C) (See Supplementary Table 4)	-
	V-M5Hybrid-fwd GCTTGATCCGGCTGCTAACAAAG V-M5Hybrid-rev CTGAAAATAAAGATTCTCAGAACCACTGC CA	-	pET-GB1-1d series

SI TableS6. Primer sequences and template DNA used for cloning of Tcp11 module 5 hybrid

*C domain was replaced with analogous KisK C domain.

SI References

- 1. T. Stachelhaus, H. D. Mootz and M. A. Marahiel, *Chemistry & Biology*, 1999, **6**, 493-505.
- M. Sosio, H. Kloosterman, A. Bianchi, P. de Vreugd, L. Dijkhuizen and S. Donadio, *Microbiology*, 2004, **150**, 95-102.
- 3. G. Yim, L. Kalan, K. Koteva, M. N. Thaker, N. Waglechner, I. Tang and G. D. Wright, *ChemBioChem*, 2014, **15**, 2613-2623.
- 4. S. Pelzer, R. Sussmuth, D. Heckmann, J. Recktenwald, P. Huber, G. Jung and W. Wohlleben, *Antimicrobial Agents and Chemotherapy*, 1999, **43**, 1565-1573.
- L. Xu, H. Huang, W. Wei, Y. Zhong, B. Tang, H. Yuan, L. Zhu, W. Huang, M. Ge, S. Yang,
 H. Zheng, W. Jiang, D. Chen, G.-P. Zhao and W. Zhao, *BMC Genomics*, 2014, **15**, 363.

- A. M. A. Van Wageningen, P. N. Kirkpatrick, D. H. Williams, B. R. Harris, J. K. Kershaw,
 N. J. Lennard, M. Jones, S. J. M. Jones and P. J. Solenberg, *Chemistry & Biology*, 1998,
 5, 155-162.
- 7. W.-T. Liu, R. D. Kersten, Y.-L. Yang, B. S. Moore and P. C. Dorrestein, *Journal of the American Chemical Society*, 2011, **133**, 18010-18013.
- M. Sosio, S. Stinchi, F. Beltrametti, A. Lazzarini and S. Donadio, *Chemistry & Biology*, 2003, 10, 541-549.
- 9. H.-T. Chiu, B. K. Hubbard, A. N. Shah, J. Eide, R. A. Fredenburg, C. T. Walsh and C. Khosla, *Proc Nat Acad Sci USA*, 2001, **98**, 8548-8553.
- A. Greule, T. Izoré, D. Iftime, J. Tailhades, M. Schoppet, Y. Zhao, M. Peschke, I.
 Ahmed, A. Kulik, M. Adamek, R. J. A. Goode, R. B. Schittenhelm, J. A. Kaczmarski, C. J.
 Jackson, N. Ziemert, E. H. Krenske, J. J. De Voss, E. Stegmann and M. J. Cryle, *Nature Communications*, 2019, **10**, 2613.