Quantitative trait loci (QTLSs)

Quantitative trait locus (QTL): is a genomic confidence
interval associated with a trait of interest, which varies in
degree of effect size and physical length, and includes at
least one causal gene or other functional element.

QTLs determine the genetic component of variation in
guantitative traits.

Quantitative traits are usually encoded by many genes

(polygenes).

QTLs exert main, epistatic, and interaction with the
environment effects, while the main effects can be
additive or dominant.
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Goals of QTL analysis

» Detect genetic effects

* QTL mapping: inference of the QTL
location on chromosome



QTL mapping
INn experimental crosses

Experimental crossing creates associations
between genetic marker loci and traits to allow
localization of QTL.

Covariates
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QTL Mapping Procedure

Donor Screening

Population Development S __g

Phenotypic Data . Genotypic Data

Data Analysis

Marker Identification
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R298331 | 8.753 [0.378
R347577 | 6.972 |0.315
R296495 | 6.766 |0.307

Marker Implementation

Molecular Breeding

SNP markers

QTL analysis: Single
marker test, interval
mapping (IM),
composite interval
mapping (CIM), and
multiple-interval
mapping (MIM)
analysis are
performed using
Windows QTL Cart
V2.5 and QGene and
QTLNetworkv2.1.




Objectives of QTL analysis

To identify genomic regions
containing QTLs (Mapping QTLs)

To estimate the genetic effects of the QTL: 5

* How much variation is caused by the QTL?
*» The gene action associated with the QTL?
* Which allele is associated with favorable effect?

To identify markers tightly-linked to OTL '

to be used for MAS in breeding programs




Mapping population

F, and Backcrosses

(BC, & BC,)

Advanced segregating

populations

Near-isogenic lines

(NILs)

Recombinant Inbred

Lines (RILs)

F, or F, families

Doubled Haploid Lines

(DHLs)




Intercross




Data structure
for a backcross experiment

* Phenotypes:
y; = quantitative measurement of trait
* Genotypes:
X; = 0/1 coded for AA/AB at marker |
» Covariates:
Z. = environmental factors, demographics, etc.
wherei=1,....n; |=1, ..., M.



Model and assumptions

No interference in the recombination
Process

Independence
Normal distribution

YiIX ~ N(uy, ox?)
Homoscedasticity (constant variance)
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Single-Marker Analysis (SMA)

Q ’ M
N
QTL Marker
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Studying single markers one at a time.
The simplest method for QTL analysis.
Can be done by t-tests or ANOVA.

Does not require a complete linkage map.




Limitations of SMA:

1) The effect is affected by the distance
distance between the marker and the QTL

2)If several loci with positive and negative
effects were linked to the marker, a global
confounding QTL effect would be estimated
instead of individual effects for each QTL



Simple-Interval Mapping (SIM)

Using flanking markers

M1 rl Q I M;

» Two markers at a time (flanking markers).

o,

» Based on linkage mapping of markers.

» More accurate than single-marker analysis.



Simple-Interval Mapping (SIV)

Maximum likelihood estimation of QTL position

Log ,, of the odds ratio ( LOD score ):

Likelihood of (there is a QTL in the marker interval)

Odds ratio =
Likelihood of (there is no QTL in the marker interval)

* ALOD score greater than 3.0 is considered evidence for linkage.



LOD curve

 Likelihood profile
* A clear peak is taken as the QTL
* 1.5-LOD support interval

efI# OF RECOMBINANTS) (‘l _e)l'dOF NONRECOMBINANTS)
LOD score = Z = log,,

(1/2)(9 OF RECOMBIN;\NTSI(‘VZ) (# OF NONRECOMBINANTS)



probabilita di nascita con un certo valore di linkage (1-0)VE x gR
= 19810 T ) 5(NR+R)

LOD = Z = logy, —~ e .. .
probabilita di nascita con linkage assente

NR = numero di prole non-ricombinante,
R = numero di prole ricombinante.

0.5 al denominatore -> ogni allele completamente unlinked (e.g. alleli su cromosomi
distinti) ha il 50% di possibilita di ricombinare
Teta = frazione ricombinante, ed € uguale a R/ (NR + R)

LOD > 3.0 linkage (probability 1000:1 that linkage is not casual).
LOD < -2.0 sufficient to rule out linkage.



LOD SCORE

* |(ogarithm) of od(ds) score is used to
calculate linkage and probability of
recombination between two markers.

« Compare the probability of the observed
values if two loci are on the same
chromosome compared to the probability
of observing those values by chance

» Positive LOD scores imply the presence
of linkage



LOD SCORE

 Construction of pedegree;
 Estimate of frequency of recombination;
» calculation of LOD score for each estimate;

* The estimate with highest LOD score will be considered
the best one



LOD Score Mapping

The lod score method is an example of a maximum
likelihood procedure.

The point of the maximum likelihood procedure is to
estimate the value of a parameter that can’t be directly
observed, in this case the recombination fraction.

The likelihood (probability) of an observed set of data
(the phenotypes seen in a family, in this case) is
calculated as a function of that parameter.

The parameter value that gives the maximum likelihood
Is taken as the best estimate of the parameter.




Simple-Interval Mapping (SIM)

LOD curve Maximum likelihood QTL
between M-3 and M-4

LOD
Score
QTL
position Threshold Level
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Breeders’ QTL mapping ‘checklist’

« LOD & R? values will give us a good initial idea
but probably more important factors include:

1. What is the population size used for QTL mapping?
2. How reliable is the phenotypic data?

— Heritability estimates will be useful

— Level of replication

Any confirmation of QTL results?

Have effects of genetic background been tested?
Are markers polymorphic in breeders’ material?

How useful are the markers for predicting
phenotype? Has this been evaluated?

S O A®




Reliability of QTL mapping is
critical to the success of MAS

Reliable phenotypic data critical!

— Multiple replications and environments
Confirmation of QTL results in independent
populations

“Marker validation” must be performed

— Testing reliability for markers to predict phenotype
— Testing level of polymorphism of markers

Effects of genetic background need to be
determined



Confirmation of QTL mapping

» QTLs stability across environments

» Using different segregating populations

» Using Near-lsogenic Lines (NILs)

(differing only in the QTL of interest)



ERECTA receptor-like kinase and heterotrimeric G protein
from Arabidopsis are required for resistance to the
necrotrophic fungus Plectosphaerella cucumerina

Francisco Llorente1, Carlos Alonso-Blanco2, Clara Sanchez-
Rodriguez1, Lucia Jorda1 andAntonio Molina1,*

The Plant Journal
Volume 43, Issue 2, pages 165-180, July 2005




Plectosphaerella cucumerina

Fungo ascomicete necrotrofico che causa marciumi di frutti,
foglie e del colletto in molte specie ortive




Diversa suscettibilita a Plectosphaerella
cucumerina in accessioni di Arabidopsis
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Risposta differenziale di accessioni di Arabidopsis ad altri funghi necrotrofi

Fusarium oxysporum)
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QTL likelihood maps for Plectosphaerella cucumerina
resistance in a Ler/Cvi RIL population

- Full quantitative trait locus analysis in a RIL population
derived from the cross between the moderately
susceptible Cvi and the highly susceptible Ler (Alonso-
Blanco et al., 1998).

- Plants from 72 RILs Ler/Cvi, as well as the parental
accessions Ler and Cvi, were inoculated with a spore
suspension of the fungus and their mean DRs were
estimated.
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QRP1 (sul chr 2, vicino al gene ERECTA, o ER) € il locus
con l'effetto piu forte

Ler porta una mutazione loss-of-function (allele er-7) nel
gene ER (Torii et al., 19906).

Stesso QTL osservato anche in una popolazione RIL
Ler/Col

-> |[POTESI: il gene ERECTA e responsabile per il QTL
QRP1



ERECTA: receptor-like kinase coinvolta in numerose funzioni
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Tre mutanti nel pathway di trasduzione a valle di ERECTA sono
piu suscettibili al fungo
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Table 1 Five high-throughput genotyping methods

HIGH-THROUGHPUT GENOTYPING

Exon-sequencing-

Microarray-based | Sequencing-based Genotyping by RNA-seq-based based
genotyping genotyping sequencing genotyping genotyping
Preliminary Comprehensive None A suitable None Exon array
requirement SNPs available restriction enzyme developed
Density Alterable Alterable Modest Modest Modest
Cost Alterable Alterable Low High High
Experimental Low Medium Medium High High
workload
Marker Well distributed Well distributed Notwell distributed | Not well distributed | Not well distributed
distribution
Application Most species Most species Species with a large | Species with a large | Species with a large
genome size genome size genome size
Additional None Identifying novel None Identifying novel Identifying novel
uses mutation variants mutation variants mutation variants

and eQTL analysis

Abbreviations: eQTL, expression quantitative trait locus; SNP, single-nucleotide polymorphism.



Resequencing di genomi di specie coltivate -> marcatori (SNPs, indels,
presenza/assenza di geni espressi)

Quality

Finished Lineage specific biology

Noncontiguous
finished

Improved high
quality draft

High quality draft

Standard draft

Long read technologies
(e.g. Sanger, {Roche 454 FLX)
Pacific Blosclences®)

Short read technologies
(e.g. lllumina Solexa, SOLID)

o
Throughput
TRENDS in Plan! Scignce




Bulked segregant analysis for QTLs
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Figure 5. Expression pmfi.ling of a mapping popu]ation at the mRNA level via microarray malvns
to identify expression QTLs (eQTLs) for specific cDNAs. Correspondence between an eQTL peak
for a specific cDNA (e.g. cDDNA-2) and a QTL peak for a trait causally linked to the function of the
protein encoded by the cDNA ptm'idu circumstantial evidence supporting the role of the cDNA as
a candidate gene for the target trait.
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GENOME-WIDE ASSOCIATION STUDIES
(GWAS)



Since the concept was first applied in maize in 2001 (Thornsberry et al., 2001),
association mapping studies in crop species have revealed links between
tens of thousands of genomic regions and various traits.

Association mapping is a quantitative approach for determining if a genomic
variant is associated with a trait of interest using a natural population or a
collection of diverse individuals.

The main hypothesis states that a particular phenotype shared by a subset of
individuals will be highly linked to neighboring genetic variations (linkage
disequilibrium, LD) in their recent ancestor, where the causal mutation and
corresponding phenotype arose.

Recent advances in high-throughput genotyping technologies and increases in
computational power have made it possible to carry out association studies on
genome-wide sets of genetic variants, an approach known as genome-wide
association study (GWAS)
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GWAS IN CROP PLANTS

Identitying genes with significant traits for agricuiture |

Materials: Crossed-population between
2 cultivars (F2, recombinant inbred lines

etc)
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GWAS provides an opportunity to discover genes or regions associated
with given traits in a relatively high resolution and unbiased manner in
broad-based and diverse populations.

GWAS can also reveal the global landscape of a trait, known as its
genetic architecture, a term used to describe the genetic basis of a trait
based on information regarding the number of causative genes or
alleles, their interactions, and the distribution and patterns of their
effects (Hansen, 2006).



GWAS IN CROPS

A single population of different varieties (preferentially homozygous) is
genotyped once and subjected to multiple phenotypic analyses (cheaper
than in humans!)

Main models: maize (high diversity — high resolution, even to single
genes) and rice (small genome)

Even in maize, tens of milions SNPs required -> elevated costs because
the genome is big!

High calculation power required

GWAS applied with success to different species (mllet, Brassica napus,
barley)



Crop GWAS has ushered a transition to ’omics-wide
association mapping (OWAS), promising a  Dbetter
understanding of genetic architecture of complex traits.

The large number of studies provides an unprecedented
opportunity to increase in-depth understanding of the classical
concepts of epistasis and pleiotropy.

Phenotypic plasticity is largely ignored and requires intensive
data collection and general statistical modeling.

Synthetic association exists frequently in GWAS and is
considered to result from the presence of multiple independent
alleles within a locus.

Emerging novel technologies such as genome editing can be
used for further GWAS validation.



FACTORS COMPLICATING GWAS

Epistasis represents a non-linear interaction between two or
more segregating loci with different alleles across genetic
backgrounds. This type of interaction between segregating loci
IS expected to contribute to phenotypes by biologically plausible
mechanisms.

Synthetic association (or ‘ghost association’) occurs when the
non-causative loci show more significant associations in GWAS
than the causative ones (the causative genes are located away
from the GWAS peaks).

Pleiotropy, in which one allele or gene affects multiple
phenotypes, is crucial for understanding genetic mechanisms
and for simultaneous breeding of multiple complex traits.

Phenotypic plasticity is the ability to respond to environmental
change by expressing variable phenotypes without genotypic
change
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Complex principles of genetic architecture. (a) Demonstration of additive and dominant effects for a two-locus model.
Locus A only presents an additive effect, and dominance of locus B occurs as the phenotype of the heterozygous
allele deviates from the average of the two homozygous alleles. These two loci show no epistatic effects with each
other, as displayed in (b) and (c). (b) The different alleles of locus A show distinct effects on trait variance among
different states of locus B, with the same direction. (c) The alternative alleles of locus A express similar effects on trait
variance with opposite direction under different backgrounds of locus B.

(d) Presence of pleiotropy in red quantitative trait loci (QTLs) or genes as these show effects on at least two
non-correlated traits; blue QTLs or genes represent non-pleiotropic loci as they only contribute to one trait. (e)
Absence of plasticity. No phenotypic difference exists under different environments (E1 and E2); each colored point
represents a different genotype. (f) Presence of phenotypic plasticity without existence of a genotype—
environment interaction (G x E), as all genotypes alter their phenotypes in parallel under different environments. (g)
Co-existence of phenotypic plasticity and G x E, as all genotypes alter their phenotypes but to distinct extents or/and
in distinct directions under different environments.
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Current status of molecular breeding
o

* A literature review
indicates thousands of _‘
QTL mapping studies
but not many actual
reports of the

application of MAS in
breeding

* Why is this the case?



Some possible reasons to explain the
low impact of MAS In crop
Improvement

* Resources (equipment) not available
* Markers may not be cost-effective
* Accuracy of QTL mapping studies

 QTL effects may depend on genetic background
or be influenced by environmental conditions

* Lack of marker polymorphism in breeding
material

* Poor integration of molecular genetics and
conventional breeding



Cost of MAS in context: Example 1.
Early generation MAS
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USD $640 to screen 2000 plants with a
single marker for one population




