Chemistry and Introduction to Biochemistry

INTERNATIONAL SCHOOL OF MEDICINE (CORSO F)
Academic Year 2018-2019 - 23 ${ }^{\text {rd }}$ September 2019
Surname and Name
Matriculation No.

1) The oxidation number of an atom is
the number of electrons gained or lost upon bond formation
its charge
its first ionization energy
its redox potential
2) Adding fructose to a water solution of calcium chloride causes:
lowering the vapor pressure of the solution
lowering the boiling point of the solution
lowering the osmotic pressure of the solution
increase of the freezing temperature
3) In the equilibrium $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$the Brönsted-Lowry acids are:
$\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{H}_{3} \mathrm{O}^{+}$[]
$\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{H}_{2} \mathrm{O}$
4) A solution of glucose and a solution of sodium sulphate of the same molal concentration: have identical colligative properties
5) Which of the following compounds is an anhydride?
6) A metal is an element that:
7) Draw the chemical formula of each compound indicating all the atoms, bonds and charges (when applicable): phosphatidic acid, phenol, furan, nitric acid (Lewis structure)
8) 10 mL of a 25% (weight/weight) solution of ammonia (density $=0,91 \mathrm{~g} / \mathrm{mL}$) are diluted with distilled water, reaching a final volume of 500 mL . Calculate the pH of the solution $\left(\mathrm{K}_{\mathrm{B}}=1,8 \cdot 10^{-5} \mathrm{M}\right)$.
9) Calculate the osmotic pressure at $30^{\circ} \mathrm{C}$ of a solution prepared by mixing 150 mL of 0.2 M nitiric acid with 250 mL of 0.12 M Na OH.
10) A 1 liter reactor contains 0.7 M carbon dioxide M and 0.8 M dihydrogen. The following equilibrium is established when the temperature is raised to $400^{\circ} \mathrm{C}$ (Volume is constant).
$\mathrm{CO}_{2}+\mathrm{H}_{2} \rightleftharpoons \mathrm{CO}+\mathrm{H}_{2} \mathrm{O}$.
Calculate the K_{C} at $400^{\circ} \mathrm{C}$, knowing that when the equilibrium is achieved the concentration of CO is equal to 0.5 M .
11) Bromophenol blue is a weak acid with $\mathrm{pK}_{\mathrm{A}}=3.9$, it is used as pH indicator since it is red in its indissociated form and blue in the dissociated one. After adding bromophenol blue at a very low concentration to a solution of unknown pH , the red form is predominant over the blue one with a ratio equal $6.4: 1$. Calculate the pH of the solution.
