Chemistry and Introduction to Biochemistry INTERNATIONAL SCHOOL OF MEDICINE (CORSO F)

Academic Year 2018-2019 - 23rd September 2019

Surname and Name	Matriculation No.				
1) The oxidation number of an atom is					
the number of electrons gained or lost upon bond its charge	d formation			[]
its first ionization energy its redox potential				[]
2) Adding fructose to a water solution of calcium chlori	ide causes:			r	1
lowering the boiling point of the solution				L [L I
lowering the osmotic pressure of the solution				ĺ	j
increase of the freezing temperature				[]
3) In the equilibrium $CH_3COOH + H_2O \rightleftharpoons CH_3COO^{-1}$	+ H ₃ O ⁺ the Brönsted-Lowry acids are:				
CH ₃ COOH and H ₃ O ⁺		ļ	ļ		
CH ₃ COOH and H ₂ O CH ₂ COOH and CH ₂ COO ⁺		l	1		
H_3O^+ and CH_3COO^-		Í	i		
4) A solution of glucose and a solution of sodium sulph	ate of the same molel concentration.				
4) A solution of glucose and a solution of solution supply have identical colligative properties	ate of the same motal concentration.	ſ	1		
have the same osmotic pressure		Ì	i		
different colligative properties		ĺ	j		
have the same freezing temperatures		[]		
5) Which of the following compounds is an anhydride?					
CH ₃ CH ₂ –O–COCH ₃		[]		
CH ₃ CO–O–COCH ₃		ļ	ļ		
$CH_3CH_2-O-CH_3$		ļ			
CH ₃ -CO-CH ₃		l	I		
6) A metal is an element that:					
donates electrons		[]		
donates protons		ļ	ļ		
tends to accept electrons		ļ	ļ		
tends to accept protons		L			

7) Draw the chemical formula of each compound indicating all the atoms, bonds and charges (when applicable): phosphatidic acid, phenol, furan, nitric acid (Lewis structure)

8) 10 mL of a 25% (weight/weight) solution of ammonia (density=0,91 g/mL) are diluted with distilled water, reaching a final volume of 500 mL. Calculate the pH of the solution ($K_B = 1.8 \cdot 10^{-5}$ M).

9) Calculate the osmotic pressure at 30 °C of a solution prepared by mixing 150 mL of 0.2 M nitiric acid with 250 mL of 0.12 M Na OH.

10) A 1 liter reactor contains 0.7 M carbon dioxide M and 0.8 M dihydrogen. The following equilibrium is established when the temperature is raised to 400°C (Volume is constant). $CO_2 + H_2 \rightleftharpoons CO + H_2O.$

Calculate the K_C at 400 °C, knowing that when the equilibrium is achieved the concentration of CO is equal to 0.5 M.

11) Bromophenol blue is a weak acid with $pK_A = 3.9$, it is used as pH indicator since it is red in its indissociated form and blue in the dissociated one. After adding bromophenol blue at a very low concentration to a solution of unknown pH, the red form is predominant over the blue one with a ratio equal 6.4 : 1. Calculate the pH of the solution.