

Chemistry and Introduction to Biochemistry Chemical reactivity

The reactivity of organic compounds

The reactivity of a molecule is the ability to react and therefore to transform into other compounds.

This chemical behavior is related to the structure of the molecule:

- bond type
- bond polarity
- orbitals and geometry

Electrophilic and nucleophilic reagents

An electrophile (a Lewis acid):

• a chemical species bearing a positive (+) or partially positive (δ +) charge and must be capable of *accepting a pair of electrons* to form a covalent bond

A nucleophile (a Lewis base):

• it is a chemical species that reacts by donating an electron pair to another species (electrophile) and forming a covalent bond.

electrophiles

nucleophiles

Reactivity of organic compounds containing simple bonds σ

Organic compounds can be characterized by single covalent bonds of σ type in which a C atom is bound to an atom X (Y or Z) that can be C, H or other atom.

It is possible to foresee at least three different types of cleavage of the single bond that unites the C to another atom that depends on the difference of electronegativity between the C and the atom to which it is linked to

Radical reactions

- a radical or free radical can be a very reactive monoatomic or molecular species and is characterized by the presence of an unpaired electron in the most external orbital.
- radicals are unstable because the species needs to acquire an additional electron to achieve electronic stability: a radical tends to reduce, because it is strongly oxidizing
- radicals are also present in living organisms at very low concentrations and are characterized by a very short average life (half-life: < milliseconds)

Oxygen reaction species (ROS)

Concentrations and $t_{1/2}$ of some ROS

		In vivo concentration (mol/L)	t _{1/2} (s)
O ₂ •-	reductant & oxidant	10 ⁻¹⁰	10 ⁻⁶
HO ₂ *	intermediate reactivity	10 ⁻⁹	10 ⁻⁶
H ₂ O ₂	apolar	10 ⁻⁸	10 ⁻⁵
OH*	the most toxic	10 ⁻¹⁵	10 ⁻⁹

global reaction:
$$O_2 + 4 H^+ + 4 e^- = 2 H_2O$$

Enzymatic defense systems

superoxide dismutase

$$2 O_2^- + 2 H^+ \rightarrow O_2 + H_2O_2$$

pdb: 1hl5

catalase (H₂O₂ dismutase)

$$2 H_2O_2 \rightarrow O_2 + 2 H_2O$$

Endogenous production of radicals

mitochondria

phagocytic cells: NADPH oxidase

FREE RADICAL TOXICITY

An important radical: nitric oxide (NO)

NO is an important cellular signaling molecule:

modulates vascular tone insulin secretion peristalsis angiogenesis neural development.

Nitric oxide synthase

2 L-arginine + 3 NADPH + H⁺ + 4 O₂
$$\rightleftharpoons$$
 2 citrulline +2 NO + 4 H₂O + 3 NADP⁺

Nucleophilic substitution reactions

A reaction in which a C atom in a molecule is bound to a more electronegative X group (hence with a polarized covalent bond) can react with a nucleophile Nu, and expel the X group (leaving group).

in the C-X bond, X is more electronegative than C

chloromethane

methanol

Mechanisms

Some of the most important examples of $S_N 2$ reactions in biochemistry are those catalyzed by S-adenosyl methionine (SAM) – dependent methyltransferase enzymes.

Reactivity of π -bond containing compounds: electrophilic addition

Alkenes are unsaturated hydrocarbons characterized by the presence of at least one double bond in the molecule: the two C-linked atoms are hybridized sp² and the two bonds are of a different chemical nature (σ and π)

Alkenes are planar and rotation around the double bond is not possible.

The two π electrons are accessible both in the upper and lower half-space one with respect to the plane of the molecule: they are thus easily attacked by electrophiles.

Reactions of the main classes of organic compounds

Reactions of the alkanes

combustion

The combustion reaction of a generic alkane C_nH_{2n+2} is as follows:

$$C_nH_{2n+2} + [(3n+1)/2] O_2 = n CO_2 + (n+1) H_2O$$

Reactions of the alkanes

Radical substitution

Lipid peroxidation and ROS

Alkenes reactions: electrophilic addition reaction

The typical reaction that highlights the reactivity of an alkene is a sum reaction of the type A + B = C, defined as an electrophilic addition reaction since it starts with an electrophile attack to the double bond.

The carbocation is such a strong elettrophile to attract the very poor nucleophile chloride

Alkenes reactions: water addition reaction

An hydration reaction in the Krebs cycle

