

Potentiome	ter		CAUTION
	Conductive plastic	Wirewound	Hybrid
Resolution Power rating Temperature stability Noise Life	Infinitesimal Low Poor Very low 10°–10° cycles	Quantized High Excellent Low, but degrades with time 10 ⁵ –10 ⁶ cycles	Infinitesimal Low Very good Low 10°–107 cycles
HYBRID: elements feature combining wirew of the more desir abilities in exchar wirewounds, hyb excellent choice fe	a wirewound cor round and conducti able attributes of bo nge for low noise, lo rids offer excellent or precision measure	e with a conductive plast ve plastic technologies to re th. The plastic limits power ong life, and unlimited resol temperature stability. The ement.	ic coating, ealize some dissipation ution. Like y make an

Potentiometer	CAUTION
	Specification Summary:
	GENERAL Full Stroke Ranges 0-3 and 0-5 inches, min. Output Signal voltage divider (potentiometer) Accuracy ±0.15 % full stroke Repeatability ±0.02% full stroke Resolution essentially infinite Potentiometer Cycle Life .50 x 10° cycles* Measuring Cable 0.024-in. dia. nylon-coated stainless steel Enclosure Material anodized aluminum Sensor conductive plastic potentiometer Weight (maximum) 3-inch: 0.10 lbs., 5-inch: 0.26 lbs. ELECTRICAL Input Resistance Input Resistance 5K ohms (±10%) Power Rating, Watts 1.0 at 40° C (derated to 0 @ 110°C) Recommended Maximum Input Voltage 30V (AC or DC) Temperature coefficient of voltage dividing ratio < 2 ppm/°C -50+75°C ±200 ppm/°C +75+100°C ±300 ppm/°C Output Signal Change Over Measurement Range 94% ±4% of input voltage
	31

Electrical resistance strain gages

73

LIQUID STRAIN GAGE:

LOWER BODY NEGATIVE PRESSURE THIRD MANNED SKYLAB MISSION

Additional measurements carried out during preflight and postflight tests included respiratory excursions from a mercury strain gage across the lower thorax,

Mercury Strain Gage Adaptor: for Interfacing Mercury and other Single Element Low Resistance Transducers with Grass Polygraph and EEG DC Amplifiers

Currently, one of the primary technical factors limiting the advancement of the study of human movement is the measurement of skeletal movement from markers or sensors placed on the skin. The movement of the markers is typically used to infer the underlying relative movement between two adjacent segments (e.g. knee joint) with the goal of precisely defining the movement of the joint. Skin movement relative to the underlying bone is a primary factor limiting the resolution of detailed joint movement using skinbased systems.

Ideally, the measurement system/protocol should be neither invasive nor harmful and only minimally encumber the subject.

Furthermore, it should allow measuring subjects in their natural environment such as their work place, home, or on sport fields and be capable of measuring natural activities/motion over a sufficiently large field of view.

 Markerless optical methods

 Cuttor

 The development of markerless motion capture methods is motivated by the need to address contemporary needs to understand normal and pathological human movement without the encumbrance of markers or fixtures placed on the subject, while achieving the quantitative accuracy of marker based systems.

 Systems are typically divided into two categories:

 • Active vision systems

 • and passive vision systems.

76

CAUTION

75

