Corso di Analisi Chimico-Farmaceutica e Tossicologica I (M-Z)

Corso di Laurea in Chimica e Tecnologia Farmaceutiche Facoltà di Farmacia e Medicina Anno Accademico 2013/2014

Dott. Giuseppe La Regina

"Tu, disperato pilota, frangi ora fra gli scogli la mia barca già stanca e squassata per tante tempeste! A te accanto, mio amore! Oh schietto farmacista! Efficace è la tua droga. Con questo bacio io muoio." W. Shakespeare. Giulietta e Romeo, Atto 5, Scena 3.

Saggi Preliminari Saggi speciali

- I saggi speciali comprendono:
 - saggio del mantello blu per la ricerca dello stagno;
 - saggio per la ricerca dell'acido borico;
 - saggio dell'acido carbonico;
 - saggio dell'acido acetico;
 - saggio per la ricerca dello ione ammonio.

Saggi speciali: ricerca dello stagno

- E' questo un saggio assai sensibile ed estremamente specifico, dato da tutti i composti dello stagno.
- Nessun elemento eventualmente presente può interferire, salvo al più l'arsenico, in presenza del quale la sensibilità può diminuire notevolmente.
- Si effettua versando in un becher 4-5 ml di acido cloridrico concentrato ed una punta di spatola della sostanza in esame.

Saggi speciali: ricerca dello stagno

- Si riempie con acqua fredda una provetta cilindrica ben pulita all'esterno e, tenendola con le pinze di legno, la si usa per agitare il contenuto del becher.
- Mentre si agita, si aggiunge un granulo di zinco metallico (avrà luogo un abbondante sviluppo di idrogeno) e si continua ad agitare per qualche secondo.
- Si porta il fondo della provetta sulla fiamma del becco Bunsen.

Saggi speciali: ricerca dello stagno

- In presenza di stagno il fondo della provetta appare avvolto da un caratteristico mantello aderente di fiamma blu, visibilissimo in ambiente poco illuminato.
- Non si conoscono né l'origine della colorazione né il ruolo svolto dall'idrogeno nascente nella reazione.

Saggi speciali: ricerca dell'acido borico

- L'acido borico, H₃BO₃, così come numerosi altri composti del boro, impartiscono alla fiamma del becco Bunsen una caratteristica colorazione verde.
- Lo ione borato come tale non dà però questa colorazione: per ottenerla occorre trattare preventivamente il campione con acido solforico concentrato, il quale libera l'acido borico, assai più debole.

Saggi speciali: ricerca dell'acido borico

- Il saggio può essere effettuato con il filo di platino umettando una piccola quantità della sostanza in esame con acido solforico concentrato su di un vetrino ad orologio.
- Questa tecnica, tuttavia, non è consigliabile, in quanto i sali di rame e di bario possono interferire.
- Ogni interferenza può essere evitata procedendo nel modo descritto di seguito.
- Si pone sul fondo di una provetta cilindrica una punta della sostanza in esame.

Dott. Giuseppe La Regina, Corso di Analisi Chimico-Farmaceutica e Tossicologica I (M-Z)

Saggi speciali: ricerca dell'acido borico

- Si aggiunge, quindi, circa 1 ml di alcool metilico (o etilico) e 7-8 gocce di acido solforico concentrato.
- Si scalda cautamente la provetta sulla fiamma del becco Bunsen.
- Quando il liquido prende a bollire si infiammano i vapori accostando alla fiamma la bocca della provetta e si prosegue cautamente il riscaldamento.
- In presenza di borati i vapori bruceranno con una caratteristica fiamma orlata di verde, dovuta alla combustione del borato di metile (o etile), formatosi attraverso la reazione:

Dott. Giuseppe La Regina, Corso di Analisi Chimico-Farmaceutica e Tossicologica I (M-Z)

Saggi speciali: ricerca dell'acido borico

$$H_3BO_3 + 3CH_3OH + 3H^+ \rightarrow B(OCH_3)_3 + 3H_3O^+$$

Saggi speciali: ricerca dell'acido carbonico

• Il riconoscimento si basa sull'intorbidimento dell'acqua di barite (Ba(OH)₂ 5% soluzione acquosa) ad opera dell'anidride carbonica, per formazione di carbonato di bario.

$$Ba(OH)_2 + CO_2 \implies BaCO_3 + H_2O$$

 Il saggio viene effettuato mettendo una punta di spatola di sostanza da esaminare nel fondo di provetta e aggiungendo circa 10-15 gocce di HCl diluito (o H₂SO₄).

Saggi speciali: ricerca dell'acido carbonico

- In presenza di carbonato si vedrà una effervescenza più o meno vivace (può essere talvolta necessario scaldare leggermente alla fiamma del becco Bunsen o a bagnomaria).
- Con una pipetta pasteur asciutta dotata di tettarella si aspira l'aria (tenendo la punta verso la metà della provetta e facendo in modo di non toccare il liquido e le pareti) e la si fa gorgogliare, immergendo la punta della pipetta, in una soluzione di acqua di barite.

Saggi speciali: ricerca dell'acido carbonico

- In presenza di anidride carbonica si ha intorbidimento bianco evidente.
- Il precipitato e l'intorbidimento dell'acqua di barite deve scomparire per acidificazione con HCI (presenza di carbonato e non di solfato).
- Se l'acqua di barite è poco diluita e la quantità di CO₂ introdotta molto alta, il precipitato che in un primo momento si forma di BaCO₃ si può ridisciogliere per formazione di bicarbonato solubile:

Saggi speciali: ricerca dell'acido carbonico

$$BaCO_3 + H_2CO_3 \implies Ba(HCO_3)_2$$

 Riscaldando, tuttavia, la provetta il bicarbonato decompone e precipita il carbonato.

Saggi speciali: ricerca degli acetati

 Il saggio si basa sulla formazione di acido acetico, di odore caratteristicamente pungente, a partire da sali contenenti lo ione acetato per effetto dell'aggiunta di bisolfato di potassio, secondo la reazione:

 Il saggio si effettua triturando una punta di spatola di sostanza in mortaio con pestello insieme a 3-4 volte il proprio peso di bisolfato potassico (KHSO₄).

Saggi speciali: ricerca degli acetati

 In presenza dello ione acetato si svolge odore di acido acetico, riconoscibile attraverso il caratteristico odore.

Saggi speciali: ricerca dello ione ammonio

- Il saggio si basa sulla formazione di ammoniaca a partire da sali di ammonio in presenza di una base.
- L'ammoniaca può essere riconosciuta attraverso il caratteristico odore oppure per colorazione basica di una cartina indicatrice di pH bagnata con alcune gocce di acqua.
- Si tratta una piccola porzione della sostanza in esame con alcune gocce di NaOH 2N in un tubicino da saggio e si scalda il contenuto del tubicino sulla fiamma del becco Bunsen.

Saggi speciali: ricerca dello ione ammonio

- Il problema analitico di individuare i componenti di una miscela non esisterebbe se potessimo disporre di una serie di reagenti ognuno dei quali fosse reattivo verso una particolare specie chimica.
- La difficoltà di disporre di un tale campionario di reagenti specifici rende preferibile, se non indispensabile, condurre l'analisi mediante una serie di operazioni che permettono di separare i vari componenti della miscela in gruppi, ciascuno dei quali contenente un numero esiguo di specie chimiche da identificare.

- In questo modo, è più facile trovare reattivi capaci di reagire con un definito componente contenuto in quel gruppo.
- Talora è opportuno suddividere anche le specie presenti in uno stesso gruppo in più sottogruppi in modo da ottenere sistemi ancora più semplici.
- La separazione in gruppi viene eseguita ponendo in soluzione il campione da analizzare e trattandolo con un reagente, detto reagente di gruppo, che permetta di isolare solo alcuni degli ioni portati in soluzione.

Dott. Giuseppe La Regina, Corso di Analisi Chimico-Farmaceutica e Tossicologica I (M-Z)

- Sono note diverse tecniche utili al raggiungimento di questo di questo risultato finale, come ad esempio estrazioni con solventi, eluizioni su resine scambiatrici di ioni, ecc.
- La tecnica che si è meglio affermata è quella che fa uso di reazioni di precipitazione, che sono di semplice esecuzione.
- In considerazione del fatto che le sostanze inorganiche in soluzione sono di norma sotto forma ionica, una prima semplificazione viene fatta analizzando separatamente i componenti cationici da quelli anionici.

- Nello schema classico di analisi dei cationi, il campione viene portato in soluzione mediante una tecnica appropriata.
- Dalla soluzione così ottenuta i differenti cationi vengono separati progressivamente in gruppi analitici, attraverso reazioni di precipitazione che sfruttano le differenze di solubilità dei loro cloruri, solfuri, idrossidi e carbonati.
- Il riconoscimento dei singoli cationi può così venire effettuato, attraverso saggi appropriati, nell'ambito di ciascun gruppo analitico, riducendo la possibilità di interferenze.

Introduzione

Gruppi Analitici dei Cationi

Gruppo Analitico	Reattivo Precipitante	Cationi identificabili
Primo	HCI 2N	Ag ⁺ , Pb ²⁺ , (Hg-Hg) ²⁺
Secondo	H ₂ S in ambiente acido	a) As ³⁺ , Sb ³⁺ , Sn ²⁺ b) Hg ²⁺ , Bi ³⁺ , Pb ²⁺ , Cu ²⁺ , Cd ²⁺
Terzo	NH₃ in presenza di NH₄Cl	Al ³⁺ , Cr ³⁺ , Fe ³⁺ , Mn ²⁺
Quarto	H ₂ S in ambiente ammoniacale	Mn ²⁺ , Zn ²⁺ , Ni ²⁺ , Co ²⁺
Quinto	(NH ₄) ₂ CO ₃	Ca ²⁺ , Sr ²⁺ , Ba ²⁺
Sesto	_	Mg ²⁺ , Li ⁺ , Na ⁺ , K ⁺

- Una delle tecniche più utilizzate per la dissoluzione del campione è quella dell'attacco solfonitrico, consistente in un trattamento con acidi solforico e nitrico concentrati all'ebollizione.
- Questa tecnica quando sia correttamente eseguita assicura la distruzione delle sostanze organiche e di numerosi anioni (nitrati, nitriti, solfuri, tiosolfati, tiocianati, bromuri, ioduri) che potrebbero interferire in vario modo nel corso dell'analisi sistematica.

- Ad esempio, gli ioduri, i tiocianti ed alcune sostanze organiche possono complessare numerosi cationi; i nitrati ossidano l'acido solfidrico usato come reattivo precipitante del secondo gruppo, ecc.
- Degli anioni capaci di interferire restano inalterati i cromati e i fosfati, la cui eliminazione verrà effettuata a parte.
- L'acido solforico usato nell'attacco solfonitrico trasforma in solfati insolubili i sali di bario e di stronzio.

- Questi 2 elementi andranno, pertanto, ricercati nel residuo insolubile che si ottiene al termine dell'attacco, e non al quinto gruppo analitico.
- Inoltre, l'acido nitrico ossida quantitativamente i sali mercurosi a mercurici.
- Pertanto, la ricerca del mercurio andrà effettuata esclusivamente al secondo gruppo analitico.

- Alcuni ossidi metallici (Al₂O₃, Fe₂O₃, Cr₂O₃, SiO₂, SnO₂, TiO₂) non vengono solubilizzati dall'attacco solfonitrico quando siano stati calcinati.
- Per effettuare l'attacco solfonitrico si pongono in una capsula di porcellana 2 punte di spatola di campione, e si aggiungono cautamente circa 10 gocce di H₂SO₄ concentrato e altrettante di HNO₃ concentrato.
- Si scalda la capsula alla fiamma del Bunsen e si agita di frequente con una bacchetta di vetro, operando sotto cappa.

- Il riscaldamento va proseguito sino a che si svolgono abbondanti fumi bianchi di anidride solforica.
- Si lascia raffreddare la capsula e si aggiungono con cautela altre 10 gocce di HNO₃ concentrato, avendo cura di spingere verso il fondo con la bacchetta le particelle di campione rimaste aderenti alle pareti.
- Si scalda quindi nuovamente e si lasciano sviluppare i fumi bianchi, evitando, tuttavia, di calcinare.

- Al termine dell'operazione il contenuto della capsula dovrà essere appena umido.
- In assenza di sostanze organiche, questo trattamento è di solito sufficiente; ove siano presenti, può essere talvolta necessario ripetere il trattamento con HNO₃, in modo da assicurarne la completa distruzione.

Eliminazione dello ione cromato

- Se al termine dell'attacco solfonitrico il contenuto della capsula è fortemente colorato in giallo-arancio è probabile che sia presente lo ione cromato.
- Quest'ultimo può interferire nella precipitazione del secondo gruppo analitico in quanto ossida il reattivo precipitante H₂S.
- Il colore giallo-arancio dello ione cromato può, tuttavia, essere mascherato dalla presenza di cationi fortemente colorati, quali Cu²⁺, Fe³⁺, Co²⁺.

Eliminazione dello ione cromato

- Se lo ione cromato è presente occorre procedere alla sua riduzione a ione cromico.
- A tale scopo si versano nella capsula circa 3 ml di una soluzione satura di anidride solforosa e si scalda dolcemente per circa 15 minuti.
- Ha luogo la seguente reazione:

$$Cr_2O_7^{2-} + 3SO_2 + 2H^+ \rightarrow 2Cr^{3+} + 3SO_4^{2-} + H_2O$$
 (arancio) (verde)

Eliminazione dello ione cromato

 Si concentra quindi la soluzione e si lascia svolgere i fumi bianchi di anidride solforica sino a che il contenuto della capsula è appena umido.

Analisi Sistematica dei Cationi Preparazione della soluzione cloridrica

- Dal momento che molti cationi sono più solubili come cloruri che come solfati è opportuno iniziare l'analisi partendo da una soluzione cloridrica.
- Per prepararla si riprende il contenuto della capsula con 3-4 gocce di HCl 2N, si trasferisce con un contagocce la soluzione unitamente all'eventuale residuo in una provetta da centrifuga e la si porta a bagnomaria bollente per 10 minuti.
- Per favorire il recupero del residuo può essere utile lavare la capsula con alcune gocce di HCI 2N.

Analisi Sistematica dei Cationi Preparazione della soluzione cloridrica

- Si noti come il trattamento con HCl 2N provochi la precipitazione del primo gruppo analitico prima ancora che sia stato separato il residuo insolubile dell'attacco solfonitrico.
- Ciò porta alla necessità di esaminare insieme residuo insolubile e primo gruppo analitico.
- Dopo raffreddamento, indispensabile per favorire la precipitazione del cloruro di piombo, si centrifuga e si separa la soluzione dall'eventuale residuo.

Analisi Sistematica dei Cationi Preparazione della soluzione cloridrica

- Il residuo va trattato a freddo con 1-2 ml di HCl 2N, agitando per qualche minuto.
- Dopo centrifugazione, la soluzione va unita a quella precedente.
- La soluzione cloridrica verrà utilizzata per ricercare i gruppi analitici dal secondo al sesto, mentre l'eventuale residuo costituisce il primo gruppo ed il residuo insolubile.

Primo gruppo analitico e residuo insolubile

- Il I gruppo analitico comprende Ag⁺, Pb²⁺ e ⁺Hg–Hg⁺, i quali vengono precipitati come cloruri insolubili:
 - AgCI, Kps = $2,1\cdot10^{-11}$;
 - PbCl₂, Kps = $1 \cdot 10^{-4}$;
 - Hg_2CI_2 . Kps = $2 \cdot 10^{-18}$.

Analisi Sistematica dei Cationi Primo gruppo analitico e residuo insolubile

• Se la dissoluzione del campione e la preparazione della soluzione sono state effettuate secondo le modalità descritte (attacco solfonitrico e soluzione cloridrica), l'eventuale residuo insolubile potrà contenere AgCl (bianco), PbCl₂ (bianco), BaSO₄ (bianco), SrSO₄ (bianco), Cr₂O₃ (verde), Fe₂O₃ (rosso sangue) e SnO₂ (bianco).

Primo gruppo analitico: ricerca dell'argento

- Si lava il residuo insolubile con acqua distillata a freddo, in porzioni da circa 3-4 ml.
- Si aggiunge 1 ml di ammoniaca concentrata e 1 ml di acqua distillata ed si agita a lungo con una bacchetta di vetro.
- L'argento, se presente, passa in soluzione sotto forma di ione complesso diamminoargento(I):

$$AgCI + 2NH_3 \rightarrow [Ag(NH_3)_2]^+ + CI^-$$

Primo gruppo analitico: ricerca dell'argento

- Dopo centrifugazione, si decanta la soluzione (l'eventuale residuo verrà utilizzato per la ricerca degli altri componenti del gruppo) e la si divide in 3 porzioni.
- Porzione A: saggio con acido nitrico concentrato. Su di una porzione di soluzione ammoniacale si aggiunge goccia a goccia, con cautela, acido nitrico concentrato, sino a che l'ambiente è nettamente acido.

Primo gruppo analitico: ricerca dell'argento

 In tali condizioni, lo ione diamminoargento(I) viene distrutto e l'argento, se presente, precipita nuovamente sotto forma di cloruro (precipitato bianco caseoso):

$$[Ag(NH_3)_2]^+ + 2H^+ + CI^- \rightarrow 2NH_4^+ + AgCI$$

 Porzione B: saggio con ioduro potassico. Ad un'altra porzione di soluzione ammoniacale si aggiungono 2-3 gocce di soluzione di ioduro potassico.

Primo gruppo analitico: ricerca dell'argento

• In presenza di argento ha luogo la formazione di un precipitato bianco di ioduro di argento, che per diluizione della soluzione sovrastante con acqua distillata si colora in giallo pallido:

$$[Ag(NH_3)_2]^+ + I^- \rightarrow AgI + 2NH_3$$

 Porzione C: saggio con cloruro stannoso. Ad una terza porzione di soluzione ammoniacale si aggiungono 2-3 gocce di soluzione di cloruro stannoso.

Primo gruppo analitico: ricerca dell'argento

 In presenza di argento ha luogo la formazione di un precipitato nero di argento metallico (mescolato ad un precipitato bianco gelatinoso di idrossido stannoso):

$$2[Ag(NH_3)_2]^+ + Sn^{2+} + 6OH^- \rightarrow 2Ag + [Sn(OH)_6]^{2-} + 2NH_3$$

Primo gruppo analitico: ricerca del piombo

- Si lava con acqua distillata il residuo proveniente dal trattamento con ammoniaca, avendo cura di decantare il liquido dopo ogni lavaggio.
- Si aggiungono 2-3 ml di soluzione di acetato di ammonio, e si tiene a bagnomaria per circa 10 minuti, agitando di frequente.
- Il piombo, presente come cloruro, viene solubilizzato sottoforma di acetato, sale poco dissociato:

$$PbCl_2 + 2CH_3COO^- \rightarrow [Pb(CH_3COO)_2] + 2CI^-$$

Primo gruppo analitico: ricerca del piombo

- Dopo centrifugazione, si decanta la soluzione e la si divide in 2 porzioni.
- Porzione A': saggio con cromato potassico. Si aggiunge ad una porzione della soluzione una goccia di soluzione di cromato potassico.
- In presenza di piombo si forma un precipitato giallo pulverulento di cromato di piombo:

$$[Pb(CH_3COO)_2] + CrO_4^{2-} \rightarrow PbCrO_4 + 2CH_3COO^{-}$$

Primo gruppo analitico: ricerca del piombo

- Porzione B': saggio con acido solforico. Si addiziona all'altra porzione alcune gocce di acido solforico 2N.
- In presenza di piombo si forma un precipitato bianco pulverulento di solfato di piombo:

$$[Pb(CH_3COO)_2] + SO_4^{2-} \rightarrow PbSO_4 + 2CH_3COO^-$$

Primo gruppo analitico: ricerca del mercurio

 Se nel residuo è presente mercurio(I) questo ha reagito con l'ammoniaca concentrata aggiunta durante la ricerca dell'argento formando un prodotto nero, costituito da cloroammidomercurio(II) (bianco) e mercurio elementare (nero), che conferma la presenza di mercurio:

$$Hg_2Cl_2 + 2NH_3 \rightarrow Hg + HgNH_2Cl + NH_4Cl$$

 Ciò avviene soltanto se, nella solubilizzazione del campione, è stato effettuato l'attacco cloridrico (dissoluzione a caldo con HCI 2N) e non solfonitrico.

Residuo insolubile: ricerca del bario e dello stronzio

- Si lava il residuo proveniente dal trattamento con acetato ammonico con altro acetato ammonico, avendo cura di decantare accuratamente il liquido dopo ogni lavaggio.
- Si effettuano quindi almeno altri 3 lavaggi, sempre a caldo, con abbondante acqua distillata.
- Sul residuo così lavato si ricercano alla fiamma il bario e lo stronzio.

Residuo insolubile: ricerca del bario e dello stronzio

- Poiché questi elementi sono presenti come solfati, assai poco solubili, è opportuno portare l'estremità del filo di platino nella zona di riduzione della fiamma, in modo da ridurre il solfato a solfuro.
- Umettando successivamente il filo con HCl 2N la colorazione della fiamma apparirà assai più netta.

Residuo insolubile: ricerca degli ossidi di cromo e ferro

- La presenza di tali ossidi nel residuo insolubile è immediatamente segnalata dal colore, verde per Cr₂O₃, rosso sangue per Fe₂O₃; tutti gli altri componenti sono, infatti, bianchi.
- La conferma degli ossidi di cromo e di ferro potrà essere effettuata con un saggio alla perla o saggio al tubicino.
- La presenza degli ossidi di cromo e di ferro nel residuo insolubile è in molti casi associata alla presenza dei cationi Cr³⁺ e Fe³⁺ al terzo gruppo analitico.

Residuo insolubile: ricerca degli ossidi di cromo e ferro

 Si deve, inoltre, tener presente che l'eliminazione dello ione cromato al termine dell'attacco solfonitrico può comportare la formazione dell'ossido Cr₂O₃.

Residuo insolubile: ricerca del biossido di stagno

- La ricerca dello stagno può essere effettuata mediante saggio del mantello blu.
- La presenza del biossido di stagno (SnO₂) nel residuo insolubile, inoltre, può essere associata alla presenza del catione Sn²⁺ al secondo gruppo analitico.