Corso di Analisi Chimico-Farmaceutica e Tossicologica I (M-Z)

Corso di Laurea in Chimica e Tecnologia Farmaceutiche Facoltà di Farmacia e Medicina Anno Accademico 2013/2014

Dott. Giuseppe La Regina

"Tu, disperato pilota, frangi ora fra gli scogli la mia barca già stanca e squassata per tante tempeste! A te accanto, mio amore! Oh schietto farmacista! Efficace è la tua droga. Con questo bacio io muoio." W. Shakespeare. Giulietta e Romeo, Atto 5, Scena 3.

- L'energia luminosa assorbita da una sostanza eccita gli elettroni della sostanza stessa, cioè, per esempio, può promuovere il trasferimento di un elettrone (generalmente d) ad un livello superiore dell'atomo.
- Questi trasferimenti, noti come transizioni interatomiche, sono particolarmente importanti nel caso dei metalli di transizione, che hanno orbitali d parzialmente riempiti e i cui ioni sono generalmente colorati.

Catione	Numero di elettroni d	Numero di elettroni d spaiati	Colore
K ⁺ Ca ²⁺ Sc ³⁺ Ti ³⁺	0	0	incolore
Ti ³⁺	1	1	rosa
V ³⁺	2	2	verde
Cr ³⁺	3	3	violetto
Cr ²⁺	4	4	azzurro
Mn ²⁺	5	5	rosa pallido
Fe ³⁺	5	5	violetto pallido
Fe ²⁺	6	4	verde
Co ²⁺	7	3	rosa
Cr ²⁺ Mn ²⁺ Fe ³⁺ Fe ²⁺ Co ²⁺ Ni ²⁺	8	2	verde
Cu²⁺	9	1	azzurro
Cu ⁺ Zn ²⁺ Ga ³⁺	10	0	incolore

Il colore dei composti

- Gli ioni aventi uno strato elettronico completo (K+/Ca²+/Sc³+ e Cu+/Zn²+/Ga³+) sono incolori.
- Gli altri ioni, aventi orbitali d parzialmente occupati, in soluzione acquosa sono variamente colorati, secondo il numero di elettroni d.
- Ad esempio, lo ione $Co(H_2O)_6^{2+}$ (che ha configurazione d^7) è rosa; lo ione $Ni(H_2O)_6^{2+}(d^8)$ è verde.
- Gli ioni Mn²⁺ e Fe³⁺ che hanno lo strato d occupato per metà hanno un colore meno intenso degli altri.

- Dal momento che il colore degli ioni dipende dal numero di elettroni d, esso varierà anche al variare del numero di ossidazione.
- Ad esempio, lo ione $Cr(H_2O)_6^{3+}$ (d_3) è azzurro, lo ione $Cr(H_2O)_6^{2+}$ (d_4) è violetto; lo ione Cu^{2+} è azzurro, lo ione Cu^{+} è bianco.
- Il colore di tali ioni può cambiare notevolmente quando la distribuzione degli elettroni negli orbitali d viene perturbata dalla presenza di un legante, o quando un legante viene sostituito da un altro.

- Ad esempio, lo ione Ni²⁺ idrato è verde, Ni(NH₃)₄²⁺ è blu, Ni(CN)₄²⁺
 è bruno; H₂TiF₆ è incolore, H₂TiCl₆ è giallo, H₂TiBr₆ è rosso,
 H₂Til₆ è nero.
- Talvolta, il cambiamento di legante è accompagnato da una variazione della struttura tridimensionale.
- Così, lo ione $Co(H_2O)_6^{2+}$, che ha geometria ottaedrica, è di colore rosa; lo ione $CoCl_4^{2-}$, tetraedrico, è azzurro.

- Il colore dei composti di natura ionica dipende dal colore dei singoli ioni costituenti.
- Nei rari casi di composti nettamente ionici e costituiti da 2 ioni entrambi colorati, il colore del composto deriva dalla semplice combinazione dei colori dei due singoli ioni.
- Nella maggior parte dei casi, tuttavia, tutti i composti costituiti da 2 ioni colorati derivano da elementi di transizione e non sono completamente ionici, sicché i loro colori non derivano da una semplice combinazione dei colori dei singoli ioni.

- Ad esempio, $Fe_3(Cr_2O_7)_3$ è rosso bruno, $Cu_2[Fe(CN)_6]$ è bruno, $Co_2[Fe(CN)_6]$ è grigio-verde.
- L'energia luminosa, oltre che per le transizioni intraatomiche finora considerate, può servire a produrre trasferimenti di carica, cioè scambi di elettroni tra i diversi atomi o tra i diversi orbitali di una molecola.
- Nel caso di AgI, se esso avesse una struttura cristallina a reticolo prettamente ionico sarebbe probabilmente incolore.

Il colore dei composti

- Ciò sarebbe dovuto al fatto che Ag^+ avrebbe una configurazione a strato completo (d^{10}) e lo ione I^- quella completa di un gas raro.
- Tuttavia, poiché fra I e Ag non vi è una grande differenza di elettronegatività, il legame Ag–I ha un carattere non semplicemente ionico (Ag⁺I⁻), ma anche covalente (Ag:I).
- Poiché la differenza di elettronegatività tra queste 2 configurazioni corrisponde ad un'energia di lunghezza d'onda compresa nello spettro visibile, il composto assorbe la luce e quindi è colorato (giallo).

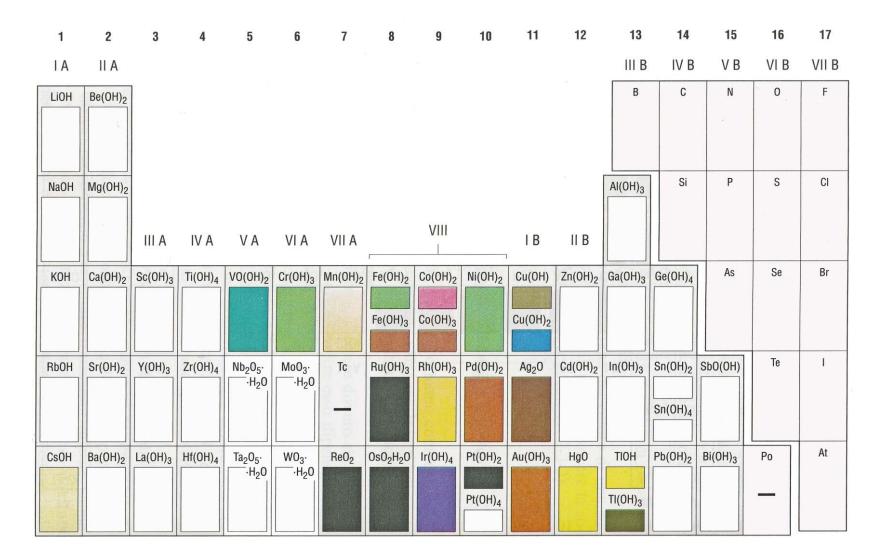
- Le sostanze covalenti, dunque, possono risultare colorate anche se costituite da ioni originariamente incolori.
- Ad esempio, CdS è giallo anche se formato da ioni Cd²⁺ e S²⁻ entrambi incolori; Bi₂S₃ è bruno e PbS è nero, ma risultano anch'essi dalla combinazione di ioni incolori.
- L'intensità del colore in tali casi sembra dipendere dal grado di covalenza, benché sia impossibile fare confronti quantitativi.

Il colore dei composti

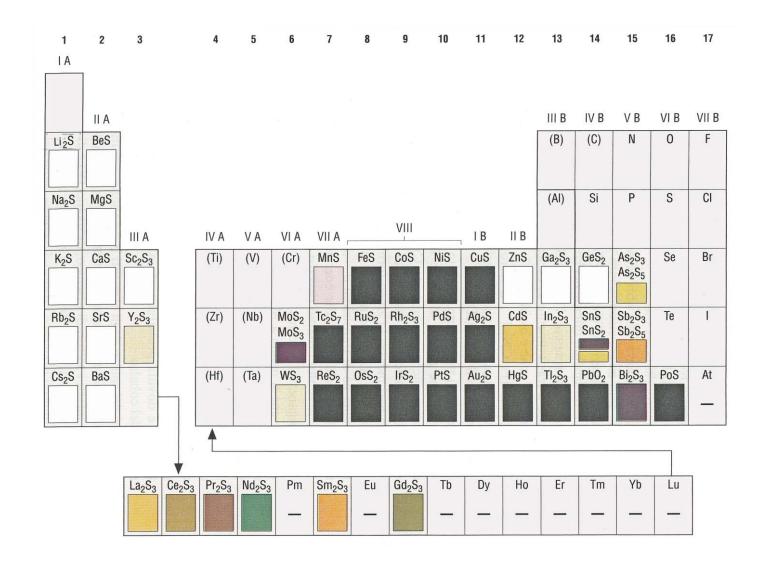
- Ad esempio, AsCl₃ è incolore, AsBr₃ è giallastro, Asl₃ è rosso bruno; AgCl è bianco, AgBr è giallastro, AgI è giallo.
- Analogamente, Znl₂ è incolore, Gal₃ è giallo, Gel₄ è rosso.
- Gli assorbimenti dovuti a trasferimenti di carica spiegano il colore di numerosi ossidi, di molti solfuri metallici e persino quello di composti come il cromato ed il permangato di potassio.
- Infatti, K₂CrO₄ è giallo, KMnO₄ è violetto, benché il cromo(VI) ed il manganese(VII) abbiano la configurazione elettronica del gas che li precede.

- Assorbimenti dovuti a trasferimenti di carica si hanno anche in composti che contengono atomi dello stesso elemento in 2 diversi stati di ossidazione.
- E' questo il caso dell'esacianoferrato di potassio (blu di Prussia), che può essere considerato sia come KFe^{||}[Fe^{||}(CN)₆] sia come KFe^{||}[Fe^{||}(CN)₆].
- Entrambe le forme presentano il ferro negli stati di ossidazione +2 e +3.

Il colore dei composti


- Alcune sostanze presentano colori diversi secondo il loro stato di associazione.
- Ad esempio, lo iodio:
 - allo stato solido è grigio;
 - allo stato di vapore è violetto;
 - le sue soluzioni alcoliche o eteree sono rosso-brune;
 - le soluzioni in cloroformio o in benzene sono viola.
- In queste ultime, la molecola di iodio è biatomica come allo stato di vapore.

- Nella riflessione della luce, sono interessati strati più o meno profondi della sostanza.
- Se lo strato che prende parte alla riflessione è sottile, la sostanza ha aspetto metallico.


Il colore degli ossidi

Il colore degli idrossidi

Il colore dei solfuri

- Nell'analisi qualitativa, le reazioni in cui si formano composti colorati sono molto utilizzate per riconoscere i vari ioni.
- Infatti, un composto colorato generalmente è più caratteristico e più facilmente riconoscibile di un composto incolore.
- Come detto, il colore può essere dovuto sia a transizioni d-d sia a trasferimenti di carica.
- Lo stesso, inoltre, dipende molto dal tipo di legante unito al catione.

- Il colore dovuto a transizioni *d-d* dipende dalla forza con cui il legante agisce sugli orbitali *d* del catione.
- D'altro canto, il colore dovuto a trasferimenti di carica dipende dalle proprietà ossido-riduttive del legante.
- I cationi dei metalli di transizione possono essere colorati sia per transizioni *d-d* che per trasferimenti di carica.
- I cationi dei metalli di post-transizione (metalli B) sono colorati solo per trasferimenti di carica.

Il colore dei composti e l'analisi qualitativa

- Gli elementi alcalini e alcalino-terrosi non danno molte reazioni cromatiche per 2 principali motivi.
- In primo luogo, i loro ioni non subiscono cambiamenti di stato di ossidazione, cioè non sono in grado di dare colorazioni per trasferimenti di carica.
- In secondo luogo, i loro ioni non presentano transizioni interne, come fanno gli ioni dei metalli di transizione.
- I pochi composti colorati di tali elementi debbono il loro colore soltanto all'anione.

- Il potassio si riconosce mediante la formazione del composto $K_3[Co(NO_2)_6]$ di colore giallo.
- Il colore di questo complesso è dovuto a transizioni d-d del cobalto verso l'anione, transizioni che non sono molto influenzate dal catione alcalino; il complesso (NH₄)₂Na[Co(NO₂)₆] è ugualmente giallo.
- Il magnesio forma un idrossido bianco, che può legare a sé alcuni coloranti organici, formando composti caratteristici, noti come lacche.

- Anche l'alluminio, che non presenta trasferimenti di carica nei suoi complessi, può essere riconosciuto mediante coloranti organici.
- Tale elemento ha, infatti, la capacità di formare caratteristiche lacche, il cui colore è dovuto a transizioni interne del colorante.
- Il ferro(III) forma con l'anione SCN⁻ un complesso il cui colore rosso è dovuto a trasferimento di carica dall'anione riducente al catione ossidante.

- Con lo ione [Fe(CN)₆]⁴⁻, il ferro(III) forma un composto di colore blu, dovuto a trasferimento di carica dell'anione riducente verso il catione.
- Il cromo(III) può essere ossidato a cromato CrO₄², che è giallo.
- Lo stesso elemento è in grado di formare anche un perossido CrO₅, il cui colore blu è dovuto a trasferimento di carica dall'ossigeno al metallo.

Il colore dei composti e l'analisi qualitativa

- Il cobalto ed il nichel formano solfuri neri mentre lo zinco forma un solfuro bianco ed il manganese un solfuro rosa.
- Lo zinco non dà molte reazioni cromatiche perché non ha possibilità né di transizioni d-d né di trasferimenti di carica.
- II manganese(II) forma un idrossido bianco che diventa facilmente bruno perché si ossida a Mn^{III} e Mn^{IV}.
- Per ossidazione più spinta si arriva al color verde del manganato e al violetto del permanganato, i cui colori sono dovuti probabilmente a trasferimenti di carica.

- Il nichel si riconosce per un composto caratteristico che esso forma con la dimetilgliossima, e il cui colore rosso-fragola è dovuto a trasferimenti di carica del nichel(II) verso il legante.
- Con il cobalto la dimetilgliossima dà solo una colorazione giallastra.
- Tale differenza è dovuta probabilmente alle diverse strutture elettroniche del nichel e del cobalto.

- I colori dei solfuri degli elementi B che sono dovuti a trasferimenti di carica, non sono abbastanza caratteristici per distinguere tra loro i vari elementi.
- I solfuri di arsenico, stagno(IV) e cadmio sono gialli, mentre i solfuri di rame, piombo e mercurio sono neri.
- Tuttavia, molto spesso il cadmio si riconosce proprio dal colore giallo del suo solfuro (CdS).

- Il rame si può riconoscere per il colore azzurro dello ione complesso cuproamminico $Cu(NH_3)_4^{2+}$, colore dovuto a transizioni d-d.
- Altro metodo di riconoscimento è quello del composto Cu[Fe(CN)₆], il cui colore bruno è dovuto a trasferimento di carica.

Il colore dei composti e l'analisi qualitativa

- Il piombo ed il mercurio si possono riconoscere mediante i rispettivi ioduri: Hgl₂ (rosso) e Pbl₂ (giallo).
- Il loro colore è dovuto a trasferimento di carica dall'anione riducente al catione ossidante.
- Si deve aggiungere che il Pb^{II} ha un'affinità per l'elettrone più bassa di Ag⁺ e Hg²⁺.
- L'argento, pertanto, non dà precipitati molto colorati con anioni polarizzabili come lo ioduro: il suo assorbimento cade nella zona ultravioletta.

- Un saggio per la ricerca del molibdeno si ha nella formazione del cosiddetto blu di molibdeno, che si ottiene per riduzione dei molibdati.
- Il colore blu che si forma è dovuto ad un trasferimento di carica tra 2 differenti stati di ossidazione del medesimo elemento (Mo^V→Mo^{VI}).
- Un'analoga reazione si ha con il tungsteno.

- L'analisi chimica è un insieme di operazioni che si eseguono per riconoscere, separare, dosare i costituenti di una sostanza o di una miscela.
- Essa si suddivide in analisi qualitativa e analisi quantitativa.
- L'analisi qualitativa ha per scopo il riconoscimento dei costituenti della sostanza o della miscela.
- L'analisi quantitativa ha per scopo la determinazione dei rapporti quantitativi dei singoli costituenti.

- In base alla natura della sostanza da analizzare, e cioè, secondo che si tratti di sostanze inorganiche o organiche, si distingue l'analisi chimica inorganica dall'analisi organica.
- L'analisi delle sostanze gassose segue criteri e metodi particolari.
- Nell'analisi qualitativa delle sostanze inorganiche, se si escludono i gas, il caso più generale è che la sostanza da analizzare sia solida.

- Per l'analisi di un solido, la scelta dipende dagli elementi presenti.
- Quando non si ha alcuna indicazione in proposito, è necessario procedere ad una ricerca sistematica, affinché non sfugga nessun costituente.

- La maggior parte dei metodi analitici richiedono che la sostanza da analizzare si trovi in soluzione.
- I composti inorganici in soluzione risultano di regola dissociati in ioni.
- L'analisi qualitativa inorganica si limita generalmente a riconoscere i vari ioni presenti nella sostanza in esame, indipendentemente da come essi erano originariamente combinati.

- Si consideri una sostanza costituita da una miscela di sali di zinco, sodio e potassio, in forma di cloruri, nitrati e carbonati.
- In base all'analisi qualitativa si può stabilire che la sostanza è costituita dai cationi Zn²⁺, Na⁺, K⁺ e dagli anioni Cl⁻, NO₃ e CO₃.
- Non è semplice dedurre la costituzione originaria dei singoli sali, cioè, se il sodio era presente in forma di cloruro, nitrato o di carbonato, e così via.

- L'analisi di una sostanza si può eseguire mediante *reazioni* specifiche oppure mediante un *procedimento sistematico*.
- Una reazione è specifica per un determinato ione se può essere usata, in determinate condizioni sperimentali, anche in presenza di altri ioni, senza che questi interferiscano.
- Ad esempio, lo ione NH₄⁺ si ricerca scaldando la sostanza in esame con alcali.

Reazioni specifiche e procedimenti sistematici

 Se nella sostanza sono presenti sali di ammonio si ha la reazione:

$$NH_4^+ + NaOH \rightarrow NH_3 + H_2O + Na^+$$

 Dal momento che solo i sali di ammonio reagiscono in questo modo, la reazione di ricerca dello ione ammonio con alcali si può considerare una reazione specifica.

- Le reazioni specifiche non sono molte.
- Esistono reazioni che, pur non essendo specifiche di per sé, possono essere rese tali operando in opportune condizioni sperimentali.
- Ad esempio, la reazione della dimetilgliossima con il nichel(II) diventa specifica dopo l'eliminazione del ferro (II).
- Il ferro in questo caso costituisce uno ione interferente.

- Le reazioni che danno un medesimo risultato soltanto con pochi ioni sono dette *selettive*.
- Quanto minore è il numero degli ioni che reagiscono nello stesso modo, tanto più selettiva è una determinata reazione.
- Quando è impossibile o poco conveniente usare reazioni specifiche, la ricerca dei vari ioni si esegue solo dopo aver ricercato ed eliminato tutti quegli altri ioni che potrebbero interferire.

- In questo caso, è necessario, il più delle volte, procedere in un ordine ben definito, ossia mediante analisi sistematica.
- Nell'analisi sistematica gli ioni vengono separati non singolarmente ma in gruppi, cioè si approfitta del medesimo comportamento di un certo numero di ioni rispetto a determinati reattivi, detti reattivi di gruppo.
- Ad esempio, gli elementi As, Sb, S, Hg, Pb, Bi, Cu e Cd presenti in forma di ioni in una soluzione di acido cloridrico, reagiscono con H₂S formano solfuri poco solubili.

- L'impiego dei reattivi di gruppo è molto vantaggioso in quanto permette di suddividere il complesso procedimento dell'analisi in varie operazioni più semplici.
- Infatti, se un determinato reattivo di gruppo aggiunto alla soluzione in esame, non dà luogo ad alcun precipitato, si esclude senz'altro la presenza di tutti gli ioni di quel gruppo.

- I metodi di analisi per riconoscimento individuale evitano le suddivisioni in gruppi e le relative separazioni, che in alcuni casi possono non risultare perfette.
- Ogni ione viene, invece, ricercato direttamente con reazioni di riconoscimento che sono specifiche per esso o che tali vengono rese con l'adozione di precise condizioni operative (pH, aggiunta di complessanti, ecc.).

- Il procedimento per gruppi è molto vantaggioso nel caso di analisi di sostanze la cui composizione sia assolutamente sconosciuta.
- Se però, come accade spesso, la composizione della sostanza da analizzare è approssimativamente nota ed è necessario stabilire soltanto la presenza o l'assenza di determinati elementi, allora l'analisi per riconoscimento individuale risulta più conveniente e più rapida.