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Abstract The advancements made in tissue culture

techniques has made it possible to regenerate various

horticultural species in vitro as micropropagation protocols

for commercial scale multiplication are available for a

wide range of crops. Clonal propagation and preservation

of elite genotypes, selected for their superior characteris-

tics, require high degree of genetic uniformity amongst the

regenerated plants. However, plant tissue culture may

generate genetic variability, i.e., somaclonal variations as a

result of gene mutation or changes in epigenetic marks.

The occurrence of subtle somaclonal variation is a draw-

back for both in vitro cloning as well as germplasm

preservation. Therefore, it is of immense significance to

assure the genetic uniformity of in vitro raised plants at an

early stage. Several strategies have been followed to

ascertain the genetic fidelity of the in vitro raised progenies

comprising morpho-physiological, biochemical, cytologi-

cal and DNA-based molecular markers approaches.

Somaclonal variation can pose a serious problem in any

micropropagation program, where it is highly desirable to

produce true-to-type plant material. On the other hand,

somaclonal variation has provided a new and alternative

tool to the breeders for obtaining genetic variability rela-

tively rapidly and without sophisticated technology in

horticultural crops, which are either difficult to breed or

have narrow genetic base. In the present paper, sources of

variations induced during tissue culture cycle and strategies

to ascertain and confirm genetic fidelity in a variety of

in vitro raised plantlets and potential application of variants

in horticultural crop improvement are reviewed.
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Introduction

Plant tissue culture techniques proffer a substitute method

of vegetative propagation of horticultural crops (Krishna

et al. 2005; Alizadeh et al. 2010). Clonal propagation

through tissue culture (popularly known as micropropaga-

tion) can be realized relatively rapidly within a small space

(Krishna et al. 2008; Eftekhari et al. 2012). The uniformity

of individual plants within a clone population is a major

advantage of clonal cultivars in commercial production

(Krishna and Singh 2013). However, genetic variations do

occur in undifferentiated cells, isolated protoplasts, calli,

tissues and morphological traits of in vitro raised plants

(Bairu et al. 2011; Currais et al. 2013). In 1981, Larkin and

Scowkraft coined a general term ‘‘somaclonal variation’’

for plant variants derived from any form of cell or tissue

cultures.

At present, micropropagated plants, in various crops,

such as strawberry, papaya, banana, grapes, pineapple,

citrus, tomato, cucumber, watermelon, rhododendron,

orchids, etc., are preferred over plants propagated through

conventional means. However, ever since the first formal

report of morphological variants in sugarcane plants pro-

duced in vitro in 1971 (Heinze and Mee 1971), several

instances of somaclonal variations have been reported in
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different horticultural crops. The notable example could be

banana in which occurrence of off-types from tissue cul-

tured plantlets ranged from 6 to 38 % in Cavendish culti-

vars (Sahijram et al. 2003); however, it could be as high as

90 % (Smith 1988). From the point of commercial

micropropagation, variation of any kind, in particular,

genetic variations may be considered obstructive and

worthless; since, such variations may lead to loss of genetic

fidelity. However, plant cell and tissue cultures render

increased genetic variability comparatively faster and

without applying a sophisticated technology. This tech-

nology holds ample scope in crop improvement of horti-

cultural crops, which are largely propagated vegetatively,

partly, due to reasons like longer juvenile phase as in

perennial fruit crops, occasional inbreeding depression, self

and cross incompatibility, narrow genetic base especially in

ornamentals, etc. Further, somaclonal variations require

less space and time for screening of desirable traits in vitro

unlike cross seedlings of perennial crops, which require a

great deal of land area and time. Somaclones may itself

have numerous applications in plant breeding and genetic

improvements and recovery of such novel variants can be

enhanced by applying suitable in vitro selection pressure

(Jain 2001; Lestari 2006).

Sources of variations detected in plant tissue
culture

Tissue culture is an efficient method of clonal propagation;

however, the resulting regenerants often has a number of

somaclonal variations (Larkin and Scowcroft 1981). These

somaclonal variations are mainly caused by newly gener-

ated mutations arising from tissue culture process (Sato

et al. 2011b). The triggers of mutations in tissue culture had

been attributed to numerous stress factors, including

wounding, exposure to sterilants during sterilization, tissue

being incomplete (protoplasts as an extreme example),

imbalances of media components such as high concentra-

tion of plant growth regulators (auxin and cytokinins),

sugar from the nutrient medium as a replacement of pho-

tosynthesis in the leaves, lighting conditions, the disturbed

relationship between high humidity and transpiration

(Joyce et al. 2003; Sato et al. 2011b; Smulders and de

Klerk 2011).

Much of the variability expressed in micropropagated

plants may be the result of, or related to, oxidative stress

damage inflicted upon plant tissues during in vitro culture

(Cassells and Curry 2001; Tanurdzic et al. 2008; Nivas and

DSouza 2014). Oxidative stress results in elevated levels of

pro-oxidants or reactive oxygen species (ROS) such as

superoxide, hydrogen peroxide, hydroxyl, peroxyl and

alkoxyl radicals. These ROS may involve in altered hyper-

and hypo-methylation of DNA (Wacksman 1997); changes

in chromosome number from polyploidy to aneuploidy,

chromosome strand breakage, chromosome rearrange-

ments, and DNA base deletions and substitutions (Czene

and Harms-Ringdahl 1995), which in turn may lead to

mutations in plant cells in vitro (Fig. 1). Somaclonal

variation shows a similar spectrum of genetic variation to

induced mutation as both of them result in qualitatively

analogous gamut of DNA changes (Cassells et al. 1998).

Different factors affect the frequency of development of

somaclones under in vitro conditions.

Explant/explant source

Differences in both the frequency and nature of somaclonal

variation may occur when regeneration is achieved from

different tissue sources (Sahijram et al. 2003). Highly

differentiated tissues such as roots, leaves, and stems

generally produce more variations than explants with pre-

existing meristems, such as axillary buds and shoot tips

(Duncan 1997). In general, the older and/or the more

specialized the tissue is used for regeneration, the greater

the chances that variation will be recovered in the regen-

erated plants (Table 1) as under such conditions, adventi-

tious shoot regeneration (shoot organogenesis) takes place

from atypical points of origin directly or indirectly through

a callus stage (e.g., from leaves, petioles, shoot internodes,

root segments, anthers, hypocotyls, cotyledons, etc.; Pijut

et al. 2012). Somaclonal variation can also arise from

somatic mutations already present in the donor plant, i.e.,

presence of chimera in explants (Karp 1994).

Mode of regeneration

Both culture initiation and subsequent subculture expose

explants to oxidative stress (Krishna et al. 2008), which

may result in mutations (Cassells and Curry 2001). It seems

evident that ‘extreme’ procedures such as protoplast cul-

ture and also callus formation impose stress (Smulders and

de Klerk 2011). Magnitude of this stress depends on the

tissue culture technique. Therefore, the production of

plants via axillary branching does not normally result in the

production of variants, while cultures that go through a

callus phase are the ones that theoretically promote a

higher mutation rate (Zayova et al. 2010).

Investigations indicate more chromosome variability in

the callus phase than in adventitious shoots (Saravanan

et al. 2011), indicating a loss of competence in the more

seriously disturbed genomes. This could be explained by

the different grade of disturbance with which the cells are

confronted. In the first case, cells follow a pattern of

division which is the normal one in the developing plant.

On the other hand, callus formation implies a
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dedifferentiation phase followed by uncontrolled cell

divisions (Vázquez 2001). Some types of tissue culture

mimic, in some aspects, other stressful situations as, for

example, protoplast preparation in which cell wall degra-

dation resembles the infective process of some pathogens.

Therefore, the type and magnitude of the stress imposed on

cultured cells varies according to the technique used. In

contrast to popular belief that the growth of unorganized

callus is necessary for induction of genetic variation,

variability could be noticed in plants regenerated from

explants adventitiously (Farahani et al. 2011; Bhojwani and

Dantu 2013).

Sometimes for regeneration under in vitro conditions,

somatic embryogenesis is the preferred pathway for gen-

erating propagules. It has been suggested that regeneration

via embryogenesis has better chance of obtaining geneti-

cally uniform plants than through organogenic differenti-

ation (Vázquez 2001). This is so, because DNA in the

initial stages of development in somatic embryogenesis

contains lower levels of methylation than in the later stages

(Sahijram et al. 2003). Variation in in vitro cultures raised

through somatic embryogenesis has been reported in sev-

eral horticultural crops like hazel nut (Diaz-Sala et al.

1995), Citrus paradisi (Hao et al. 2004), oil palm (Jaligot

et al. 2004), rose (Xu et al. 2004), potato (Sharma et al.

2007), grapevine (Schellenbaum et al. 2008), coffee

(Menéndez-Yuffá et al. 2010), olive (Leva et al. 2012),

tamarillo (Currais et al. 2013) and brinjal (Naseer and

Mahmood 2014).

Effect of length of culture period and number

of subculture cycles

The longer a culture is maintained in vitro, the greater the

somaclonal variation is (Kuznetsova et al. 2006; Gao et al.

2010; Farahani et al. 2011; Jevremović et al. 2012; Sun

et al. 2013). Variant karyotypes are found to amass with

increasing age of callus and as a result the chances of

Fig. 1 Mechanism of

somaclonal variation in

micropropagated plants as a

result of oxidative burst upon

in vitro culture
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Table 1 Occurrence of somaclonal variations as affected by the choice of explants

S.

no.

Crop species Explants/explants source Presence or absence of

somaclonal variations (?/-)

References

1 African violet (Saintpaulia sp.) Leaf segments ? Matsuda et al.

(2014)

2 Almond (Prunus dulcis) Axillary branching - Martins et al.

(2004)

3 Chimeric ‘Maricongo’ banana Vegetative and floral axis tip ? Krikorian et al.

(1993)

Cavendish group of bananas (Musa sp.) Chimeric shoot tip ? Israeli et al. (1995)

Banana cv. Martaman Shoot tip - Ray et al. (2006)

4 Brinjal (Solanum melongena) Hypocotyl - Mallaya and

Ravishankar

(2013)

Callus induction on leaves, nodes

and intermodal explants

? Naseer and

Mahmood (2014)

5 Chrysanthemum (Dendranthema grandiflora) Callus from leaves and internodes ? Miler and Zalewska

(2014)

6 European violet (Viola uliginosa Besser) Leaf and petiole fragments ? Slazak et al. (2015)

7 Gerbera (Gerbera jamesonii Bolus) Capitulum - Bhatia et al. (2009,

2011)

8 Gloxinia Leaf explants ? Hu and Xu (2010)

9 Hedychium coronarium Koen. Axillary bud explants - Parida et al. (2013)

10 Hop (Humulus lupulus L.) Meristem tissue - Patzak (2003)

11 Kaempferia galanga Buds of rhizomes - Mohanty et al.

(2011)

12 Kiwifruit (Actinidia deliciosa

(Chev.) Liang and Ferguson) cv. ‘Tomuri’

Leaf blades and petioles ? Prado et al. (2007)

13 Oil palm (Elaeis guineensis Jacq.) Mature zygotic embryos ? Rival et al. (2013)

Immature zygotic embryo ? Sanputawong and

Te-chato (2011)

Immature leaves ? Lucia et al. (2011)

14 Papaya (Carica papaya L.) Axillary shoot tips underwent

cryopreservation

? Kaity et al. (2009)

15 Patchouli (Pogostemon patchouli) Callus induction on internodal and

leaf explants

? Ravindra et al.

(2012)

16 Potato (Solanum tuberosum) Callus cultures of stem explant ? Thieme and Griess

(2005)

Callus induction via fresh sprouts ? Munir et al. (2011)

17 Sweet cherry (Prunus avium) Shoot apical portions ? Piagnani and

Chiozzotto

(2010)

18 Rootstock Mr.S 2/5, selected from a half-sib

progeny from Prunus cerasifera Erhr

Leaf ? Muleo et al. (2006)

19 Swertia chirayita Axillary multiplication - Joshi and Dhawan

(2007)

20 Turmeric (Curcuma longa L.) Latent axillary buds of rhizome - Nayak et al. (2010)

Axillary buds of unsprouted

rhizome

- Panda et al. (2007)

Callus cultures established from

rhizome segments

? Kar et al. (2014)

21 Vitis spp. Nodal segment - Alizadeh et al.

(2008)
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variant plants produced during successive subculture also

increases, in general (Zayova et al. 2010). Furthermore, the

rapid multiplication of a tissue, during micropropagation,

may affect its genetic stability. Khan et al. (2011) reported

that after the eighth subculture, the number of somaclonal

variants increased with a simultaneous decrease in the

multiplication rate of propagules in banana.

Similarly, Clarindo et al. (2012) suggested a limit of less

than 4 months storage of coffee cell aggregate suspensions

for true-to-type mass propagation as ploidy instability was

noticed in long-term in vitro culture. Similarly when

Farahani et al. (2011) raised olive cultivars, under in vitro

conditions, through internode cuttings, significant differ-

ence was observed in morphological characters among the

regenerated plants after seventh subculture, which was later

confirmed by RAPD analysis. However, C-value analysis

showed that no significant change has occurred during

subculturing in both olive genotypes. This indicates that the

genetic changes accompanied by somaclonal variation

could be due to the changes in the nucleotide content of the

genome, probably, owing to mutations (insertions/dele-

tions) and not due to quantitative changes.

Not only the number of subculture but their duration

also contributes to enhancing the rate of somaclonal vari-

ations, especially cell suspension and callus cultures (Bairu

et al. 2006; Sun et al. 2013). Studies have shown that

somaclonal variation is more apparent in plants regenerated

from long-term cultures (Etienne and Bertrand 2003). Rival

et al. (2013) noticed that in vitro proliferation induces

DNA hypermethylation in a time-dependent fashion and

changes in DNA methylation is involved in modulating the

expression of embryogenic capacity of oil palm during

tissue culture.

Culture environment

External factors like growth regulators, temperature, light,

osmolarity and agitation rate of the culture medium are

known to influence the cell cycle in vivo in plants, con-

siderably, which indicates that inadequate control of cell

cycle in vitro is one of the causes of somaclonal variation

(Karp 1994; Nwauzoma and Jaja 2013). Normal cell cycle

controls, which prevent cell division before the completion

of DNA replication, are presumed to be disrupted by tissue

culture, resulting in chromosomal breakage (Phillips et al.

1994). Chromosome breakage and its consequences (dele-

tions, duplications, inversions, and translocations) cause

aberrations in vitro (Duncan 1997). Plant growth regulators

can affect the rate of somaclonal variation both directly and

indirectly by increasing the multiplication rate and induc-

ing adventitious shoots (Gao et al. 2010). According to

D’Amato (1985), it cannot be excluded that some plant

growth regulators (PGRs) at certain concentrations or in

combination with other growth regulators and/or particular

constituents of a culture medium, may act as mutagens.

Several growth regulators, such as 2,4-dichlorophenoxy

acetic acid (2,4-D), naphthalene acetic acid (NAA) and

BAP (6-benzylaminopurine), synthetic phenylurea deriva-

tives (4-CPPU, PBU and 2,3-MDPU) have been most fre-

quently considered to be responsible for genetic variability

(Siragusa et al. 2007; Sun et al. 2013; Sales and Butardo

2014).

Prolonged cultivation in medium containing 2,4-D

influences higher DNA ploidy levels in callus cells (da

Silva and Carvalho 2014). In their experiment with banana,

Sales and Butardo (2014) observed that addition of syn-

thetic auxin 2,4-D in culture medium led to high level of

methylation events, particularly, cytosine methylation

either at the internal or external cytosine end, which largely

resulted in variations in tissue cultured plants. Alteration in

genomic DNA methylation rate is being attributed for the

development of ‘mantled’ somaclonal variant in oil palm

(Eeuwens et al. 2002; Jaligot et al. 2011). Similarly, Arn-

hold-Schmitt (1993) observed that indole-3-acetic acid

(IAA) and inositol in the growth medium induced DNA

rearrangements and methylation changes in carrot (Daucus

carota) callus cultures. Matsuda et al. (2014) observed that

percentage of somaclonal variations dramatically increased

when PGRs (0.5 ppm BA and 0.1 ppm NAA) were added

to the medium inoculated with leaf/leaf segments explants

of African violet.

Kinetin has been shown to cause extensive hypomethy-

lation of DNA in proliferating cultures of carrot root

explants within 2 weeks (Arnhold-Schmitt 1993), and aux-

ins, including NAA, have the opposite effect and cause

hypermethylation (LoSchiavo et al. 1989). Moreover, there

is evidence that differential expression in chromatin

remodeling genes and histone methylation genes happens

during tissue culture, which leads to disruption in the

methylation pathway in a non-specific manner and hypo/

hypermethylation patterns of DNA induced in tissue culture.

This can be stabilized and transmitted to plants regenerated

from these cultures (Shearman et al. 2013). Not only the

concentration, but also the ratio of different growth regula-

tors affects the occurrence of variations in vitro. Eeuwens

et al. (2002) observed that, in general, a relatively high

auxin/cytokinin ratio resulted in the lowest incidence of

variant ‘mantled’ flowering in oil palm, while using media

supplemented with relatively high cytokinins/auxin ratio

resulted in a high incidence of mantled flowering. The role of

cytokinin was further confirmed by Ooi et al. (2013), who

noticed that the mantled inflorescences of oil palm contained

higher levels of cytokinins like isopentenyladenine 9-glu-

coside and lower levels of trans-zeatin 9-glucoside, dihy-

drozeatin riboside, and dihydrozeatin riboside 50-
monophosphate compared with normal inflorescences.

3 Biotech (2016) 6:54 Page 5 of 18 54

123



Genotype and ploidy

Though, the in vitro morphogenesis seems to be highly

dependent on plant growth regulators and media used for

culture, it is again genotype specific (Alizadeh et al. 2010;

Eftekhari et al. 2012). Among factors affecting somaclonal

variation, plant genotype is probably the most important

determinant of variation (Shen et al. 2007; Tican et al.

2008; Nwauzoma and Jaja 2013). Earlier, Eeuwens et al.

(2002) characterized oil palm clones as low/moderate risk

and high risk with regard to ‘mantle’ flowering (wherein

anther primordia in both male and female flowers turn into

fleshy supplementary carpels), on the basis of terminal

inflorescence data generated under in vitro conditions.

Clones classified as high risk at the outset gave a signifi-

cantly higher incidence of mantled flowering in the field

than low/medium risk clones, confirming that data on ter-

minal inflorescences produced in vitro allows effective

screening of material with regard to the risk of mantled

flowering. It is likely that this result from a combination of

differences in genotype and differences in epigenetically

inherited changes are induced during the pre-embryogenic

stages of the culture process, i.e., callus initiation and

maintenance.

Identification of variation in tissue culture

Both genetic and epigenetic alterations are associated with

in vitro propagation, which may have phenotypic conse-

quences, and are collectively called somaclonal variation

(Larkin and Scowcroft 1981; Guo et al. 2007). As a result,

somaclonal variation is characterized by the intricacy of the

changes, which are exhibited at various levels, including

phenotypic, cytological, biochemical and genetic/epige-

netic (Kaeppler et al. 2000). Therefore, the strategy for the

detection of somaclones should be based on such

manifestations.

A wide variety of tools are available for the detection

and characterization of somaclonal variants which are

primarily based on the differences in morphological traits

(Pérez et al. 2009, 2011; Nhut et al. 2013), cytogenetical

analysis for the determination of numerical and structural

variation in the chromosomes (Clarindo et al. 2012; Currais

et al. 2013; Abreu et al. 2014), biochemical (Vujovic et al.

2010; Kar et al. 2014), molecular DNA markers (Krishna

and Singh 2007; Pathak and Dhawan 2012; Hossain et al.

2013; Bello-Bello et al. 2014) or their combinations

(Horáček et al. 2013; Dey et al. 2015; Stanišić et al. 2015).

The best test for assessing somaclonal variation is to fruit

out the plants and conduct an extensive horticultural

evaluation, which is unfortunately a long-term endeavor

with woody fruit crops, particularly (Grosser et al. 1996).

Every tool has its own advantages and limitations in

assessment of the variations (Table 2), which govern their

use for restricted or large-scale application. The choice of

technique for any given application depends upon the

material used and the nature of the question being

addressed (Karp 2000).

Molecular basis of somaclonal variation

How a single plant genotype can result in a variety of

phenotypic outcomes under the same in vitro culture con-

ditions is still far from being completely understood.

Several bases for somaclonal variation have been proposed,

which include changes in chromosome number (Mujib

et al. 2007; Leva et al. 2012), point mutations (D’Amato

1985; Ngezahayo et al. 2007), somatic crossing over and

sister chromatid exchange (Duncan 1997; Bairu et al.

2011), chromosome breakage and rearrangement (Czene

and Harms-Ringdahl 1995; Alvarez et al. 2010), somatic

gene rearrangement, DNA amplification (Karp 1995;

Tiwari et al. 2013), changes in organelle DNA (Cassells

and Curry 2001; Bartoszewski et al. 2007), DNA methy-

lation (Guo et al. 2007; Linacero et al. 2011), epigenetic

variation (Kaeppler et al. 2000; Guo et al. 2006; Smulders

and de Klerk 2011), histone modifications and RNA

interference (Miguel and Marum 2011), segregation of pre-

existing chimeral tissue (Brar and Jain 1998; Vázquez

2001; Ravindra et al. 2012; Nwauzoma and Jaja 2013) and

insertion or excision of transposable elements (Gupta 1998;

Sato et al. 2011b). In particular, transposable elements are

one of the causes of genetic rearrangements in in vitro

culture (Hirochika et al. 1996; Sato et al. 2011a).

Tissue culture is reported to activate silent transposable

elements, resulting in somaclonal variations. Insertions of

transposable elements and retrotransposons can function as

insertional mutagens of plant genomes, whereas wide-

spread activation may result in a wide gamut of chromo-

somal rearrangements (Tanurdzic et al. 2008). In turn,

these rearrangements can lead to misregulation of genes,

aneuploidy and new transposon insertions (Smulders and

de Klerk 2011).

However, many aspects of the mechanisms, which result

in somaclonal variations, remain undefined. It is therefore,

inevitable to explore the genome-wide change through

sequencing of whole-genome of the concerned crop. Next-

generation sequencing technology has enabled the whole-

genome sequencing of individual plants (Miyao et al.

2012). A new generation of sequencing technologies, from
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Illumina/Solexa, ABI/SOLiD, 454/Roche, and Helicos, has

provided unprecedented opportunities for high-throughput

functional genomic research (Morozova and Marra 2008;

Metzker 2010).

Somaclonal variations vis-à-vis crop improvement

Genetic variation is an essential component of any conven-

tional crop breeding program. The typical crop improvement

cycle takes 10–15 years to complete and includes germplasm

manipulations, genotype selection and stabilization, variety

testing, variety increase, proprietary protection and crop

production stages. Plant tissue culture is an enabling tech-

nology from which many novel tools have been developed to

assist plant breeders (Karp 1992; Mathur 2013). Tissue cul-

ture-induced somaclonal variation is akin to variations

induced with chemical and physical mutagens (Jain 2001) and

offers an opportunity to uncover natural variability for their

potential exploitation in crop improvement.

Like any other technology, in vitro induced somaclonal

variation has its own merits and demerits, like the two sides

of the same coin.

Advantages

The advantages comprise: (1) it is cheaper than other

methods of genetic manipulation and does not require

‘containment’ procedures. (2) Tissue culture systems are

available for more plant species than can be manipulated

by somatic hybridization and transformation at the present

time. (3) It is not necessary to have identified the genetic

basis of the trait, or indeed, in the case of transformation, to

have isolated and cloned it. (4) Novel variants have been

reported among somaclones, and evidences indicate that

both the frequency and distribution of genetic recombina-

tion events can be altered by passage though tissue culture.

This implies that variation may be generated from different

locations of the genome than those, which are accessible to

conventional and mutation breeding (Karp 1992). (5) There

Table 2 Strengths and weaknesses of different marker systems for the assessment of clonal fidelity

Advantages Disadvantages

Morphological traits

Visual differentiation Sensitive to ontogenic changes and other environmental factors

Does not require any laboratory facility Limited in numbers

Suitable for preliminary detection Time-consuming

Cytological markers (flow-cytometry)

Sample preparation and analysis is convenient

and rapid in case of in flow-cytometry

Cytosolic compounds may interfere with quantitative DNA

staining in flow-cytometry

Rapid and efficient method for routine

large-scale studies of ploidy level

Absence of a set of internationally agreed DNA reference

standards in case of in flow-cytometry

Unfailing detection of even the smallest

modifications in chromosome number

Time-consuming chromosome counting

Isozyme markers

Codominant expression Sensitive to ontogenic changes and other environmental factors

Ease of performance Limited in numbers

Not all of these reagent systems work efficiently with all plant species

Tissue-specific expression

DNA markers

Codominant expression

Any source DNA can be used for the analysis

Phenotypically neutral

Not sensitive to ontogenic changes and other

environmental factors

Capability to detect culture-induced variation

both at the DNA sequence and methylation

pattern levels

RAPD markers are dominant and do not permit the scoring of heterozygous individuals.

Besides, they exclusively identify sequence changes

Possible non-homology of similar sized fragments as ISSR is a multilocus technique

Disadvantages of AFLPs include the need for purified, high molecular weight DNA, the

dominance of alleles and the possible non-homology of comigrating fragments belonging

to different loci

Involvement of high development costs in SSR markers if adequate primer sequences for the

crop species of interest are unavailable. Further, mutations in the primer annealing sites

may result in the occurrence of null alleles (no amplification of the intended PCR product),

which may lead to errors in scoring
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is no possibility of obtaining chimeric expression if

somaclones are raised through cell culture (Evans 1989).

Somaclonal variation has been most successful in crops

with limited genetic systems (e.g., apomicts, vegetative

reproducers) and/or narrow genetic bases. In ornamental

plants, for instance, the exploitation of in vitro-generated

variability has become part of the routine breeding practice

of many commercial enterprises.

Disadvantages

One of the serious limitations of somaclonal variation

which makes it comparatively difficult to use is that,

despite the identification of factors affecting the variation

response of a given plant species, it is still not possible to

predict the outcome of a somaclonal program (Karp 1992)

as it is random and lacks reproducibility. Further, as a large

number of genetic changes are based on point mutations or

chromosome rearrangements, most R1 segregate. Therefore

for quantitative traits such as yield, it is virtually impos-

sible to select individuals with improvements in the R1

generation. Though techniques for selection of somaclones

resistant to various biotic and abiotic stresses had been

worked out in many horticultural crops, unfortunately, no

in vitro selection methods exist for complicated traits such

as yield, soluble solids, sweetness, texture or shelf life

(Evans 1989).

Somaclonal variation can become a part of plant

breeding provided they are heritable and genetically stable.

Only a limited numbers of promising varieties so far had

been released using somaclonal variations. This is perhaps

due to the lack of interaction between plant breeders and

tissue culture scientists, and non-predictability of soma-

clones (Jain 2001). Further, though the new varieties have

been produced by somaclonal variation, in a large number

of cases improved variants have not been selected due to

(1) the variations were all negative; (2) positive changes

were also altered in negative ways; (3) the changes were

not novel, or (4) the changes were not stable after selfing or

crossing (Karp 1992).

Recovery of somaclonal variants

The recovery of variants can be improved by promoting the

factors which are responsible for the development of

somaclonal variations such as protoplast culture (Kothari

et al. 2010) and employing callus and cell suspension

culture for several cycles and regeneration of large number

of plants from long-term cultures (Barakat and El-Sammak

2011). Indirect organogenesis is an important means of

retrieving genetic variation through somaclones with useful

traits of agronomic or industrial use. Besides, plant

genotype is a major factor, which determines the type and

frequency of somaclonal variation. For instances, Solana-

ceous plants like potato (Sharma et al. 2007) and tomato

(Bhatia et al. 2005) produce a gamut of somaclonal vari-

ation than many other commercial horticultural crops.

However, to be of practical value, the frequency of

somaclonal variation should be sufficient enough to select

desirable traits, and the selected lines should perform well

under multiple environments (Duncan 1997). The effi-

ciency of recovering variants in vitro can further be

enhanced by applying selection pressure through screening

of desirable traits, e.g., in vitro selection for tolerance

against abiotic and biotic stresses (Barakat and El-Sammak

2011). This attains more significance in view of the fact

that the selection of desirable traits takes several years and

many generations under field conditions. In vitro selection

can shorten considerably the time for the selection of

desirable traits under in vitro selection pressure with min-

imal environmental interaction, and can complement field

selection (Jain 2001).

The recovery of somaclones can be increased by

combining micropropagation with induced mutagenesis

in vitro (Afrasiab and Iqbal 2010). Kuksova et al. (1997)

noted that somaclonal variation and mutagens can be

combined to increase the frequency of induced mutation.

Likewise, irradiation followed by adventitious bud

regeneration has been reported to have allowed the

recovery of mutants with useful agronomic traits in

Gypsophila paniculata L. (Barakat and El-Sammak 2011).

Yang and Schmidt (1994) treated in vitro leaves of the

cherry rootstock ‘209/1’ (Prunus cerasus 9 P. canescens)

with X-rays with LD50 close to 20 Gy. Among plants

regenerated from leaves with 20 Gy, one was phenotyp-

ically different, and was subsequently isolated and cloned.

This somaclone was extremely dwarfed and was stable in

both greenhouse and field tests. Employing more than one

mutagen results in further improvement in recovery of

somaclones in vitro. Murti et al. (2013) exposed the

strawberry ‘DNKW001’ to the doses of 0, 30, 80, 130,

180, 230, 280, 300 and 325 Gy and similar doses of

gamma rays ? EMS 7 lM treatments. Their results

showed that Gamma ray irradiation ? EMS was more

effective to generate more type and magnitude of variants.

Purwati and Sudarsono (2007) regenerated four variant

lines in abaca banana from (1) embryogenic calli; (2)

ethyl methyl sulphonate (EMS)-treated embryogenic calli;

(3) EMS-treated embryogenic calli, followed by in vitro

selection on Foc (Fusarium oxysporum f.sp. cubense)

culture filtrate (EMS ? CF line) and (4) EMS-treated

embryogenic calli, followed by in vitro selection on

fusaric acid. The Foc resistance abaca variants were

successfully identified from four tested abaca variant

lines, although with different frequencies. However, more
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Table 3 In vitro selection of desirable traits and development of some commercially exploited varieties through somaclonal variation in

different horticultural crops

S. no. Horticultural crop Characteristic of somaclone References

1 Aglaonema Cultivar ‘Moonlight Bay’ and ‘Diamond
Bay’ from ‘Silver Bay,’ and ‘Emerald
Bay,’ from ‘Golden Bay’

Henny et al. (1992, 2003)

2 Apple (Malus 9 domestica Borkh.) Resistance to Erwinia amylovora Chevreau et al. (1998)

3 Apple rootstocks M 26 and MM 106
(Malus pumila Mill.)

Resistance to Phytophthora cactorum Rosati et al. (1990)

4 Apple rootstock Malling 7 Resistance to white root rot (Dematophora
necatrix)

Modgil et al. (2012)

5 Anthurium sp. ‘Orange Hot’ derived from ‘Red Hot’ clone Henny and Chen (2011)

6 Banana (Musa acuminata L.) Semi-dwarf and resistant to Fusarium wilt
TC1-229

Tang et al. (2000)

Larger bunch size var. TC2-425; Resistant to
Fusarium oxysporum f. sp. cubense (Foc)
race 4; bunch 40 % heavier than cv.
Formosana

Hwang (2002)

Fusarium wilt-resistant somaclonal variants
of banana cv. Rasthali

Ghag et al. (2014)

Var. CIEN-BTA-03, resistant to yellow
Sigatoka

Giménez et al. (2001)

10 somaclones; GCTCV215-1 released for
commercial planting

Hwang and Ko (1992, 2004)

Var. CUDBT-B1, reduced height and early
flowering

Martin et al. (2006)

Var. Tai-Chiao No. 5, superior horticultural
traits and resistance to Fusarium wilt

Lee et al. (2011)

7 Begonia (Begonia 9 elatior) Plant morphology, number of flowers per
plant, and flower size

Jain (1997)

8 Brinjal (Solanum melongena L.) Stress-tolerant somaclone selection Ferdausi et al. (2009)

9 Blackberry Thornless var. ‘Lincoln Logan’ Hall et al. (1986)

10 Capsicum (Capsicum annuum L.) Yellow fruited var. Bell sweet Morrison et al. (1989)

11 Calthea roseopicta Developed common cultivars like Angela,
Cora, Dottie, Eclipse and Saturn

Chao et al. (2005)

12 Carrot (Daucus carota L.) Resistance to leaf spot (Alternaria dauci) Dugdale et al. (2000)

Resistant to drought Rabiei et al. (2011)

13 Carnation (Dianthus caryoplyllus L.) Resistant to Fusarium oxysporum f. sp.
dianthi

Esmaiel et al. (2012)

14 Celery (Apium graveolens L.) Fusarium resistant var. UC-TC Heath-Pagliuso and Rappaport (1990)

Multiple-resistant (insect resistance against
Spodoptera exigua and disease resistance
against Fusarium yellow) somaclones
K-26, K-108 and K-128

Diawara et al. (1996)

15 Celosia argentea L. Resistance to nematode Opabode and Adebooye (2005)

16 Cereus peruvianus Shoots with different areoles characteristics Resende et al. (2010)

17 Chili pepper (Capsicum annuum L.) Early flowering and increase of yield
components

Hossain et al. (2003)

18 Chrysanthemum (Dendranthema
grandiflora)

Variation in leaf, flower shape and petal size Ahloowalia (1992)

Daisy type chrysanthemum Jevremović et al. (2012)

Attractive variants with changed
inflorescence colors

Miler and Zalewska (2014)

19 Citrus spp. Resistant to Phoma tracheiphila Deng et al. (1995)

Salinity tolerance Ben-Hayyim and Goffer (1989)

20 Cuphea viscosissima Jacq. Significantly superior over the parents for
mean plant height, leaf area, seed yield,
per cent caprylic acid and lauric acid
contents

Ben-Salah and Roath (1994)
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Table 3 continued

S. no. Horticultural crop Characteristic of somaclone References

21 Cymbopogon winterianus Jowitt Aromatic grass var. CIMAP/Bio-13 with
50–60 % increased oil yield

Mathur et al. (1988)

Increased total oil yield and quality with
high geraniol content

Nayak et al. (2003)

Cymbopogon martinii Increased oil content Patnaik et al. (1999)

22 Dieffenbachia sp. Novel and distinct foliar variegation with
taller, larger canopy and longer leaves
than ‘Camouflage’ parental plants

Shen et al. (2007)

23 Garlic (Allium sativum L.) Consistently higher bulb yield than the
parental clone

Vidal et al. (1993)

Resistance against the pathogenic fungi
‘Sclerotium cepivorum’

Zhang et al. (2012)

24 Geranium spp. Vigourous and attractive flower Skirvin and Janick (1976)

Isomenthone-rich somaclonal mutant Gupta et al. (2001)

Cv. ‘CIM Pawan, a somaclone of the
Bourbon type variety Bipuli, with more
herbage and essential oil yield than Bipuli

Saxena et al. (2008)

25 Gerbera (Gerbera jamesonii Bolus) Novel cultivars Minerva and Kumar (2013)

26 Ginger (Zingiber officinale Rosc.) Tolerant to wilt pathogen (Fusarium
oxysporum f.sp. zingiberi Trujillo)

Bhardwaj et al. (2012)

27 Grapevine (Vitis vinifera L.) Resistant to Botrytis cinerea and
Plasmopara viticola

Kuksova et al. (1997)

28 Haemerocallis spp. Dwarf, short flowers, male sterile var.
Yellow Tinkerbell

Griesbach (1989)

29 Hedychium (ornamental ginger) Ramata, dwarf and variegated cultivar Sakhanokho et al. (2012)

30 Java citronella (Cymbopogon winterianus) Somaclonal variant variety CIMAP/Bio-13,
which yields 37 % more oil and 39 %
more citronellon than the control variant

Mathur (2010)

31 Kiwi fruit (Actinidia deliciosa) 5 somaclones, derived from cv. Tamuri,
tolerant to NaCl

Caboni et al. (2003)

32 Mango (Mangifera indica L.) Resistant to Colletotrichum gleosporiensis Litz et al. (1991)

33 Mint (Mentha arvensis) Increased herb and oil yield Kukreja et al. (1991; 2000)

34 Myrobolan (Prunus cerasifera Erhr) Water logging-tolerant clone variant (S.4) of
myrobolan rootstcock Mr.S 2/5 for peach
cv. Sun Crest

Iacona et al. (2013)

35 Olive (Olive europea) Bush olive somaclone (BOS), columnar
olive somaclone (COS)

Leva et al. (2012)

36 Patchouli (Pogostemon patchouli) Higher herb yield and essential oil content Ravindra et al. (2012)

37 Pea (Pisum sativum L.) Resistance to Fusarium solani Horáček et al. (2013)

38 Peach (Prunus persica L.) Somaclones S156 and S122 resistant to leaf
spot, moderately resistant to canker in cvs.
Sunhigh and Red haven

Hammerschlag and Ognjanov (1990)

Resistant to root-knot nematode
(Meloidogyne incognita Kofoid and
White)

Hashmi et al. (1995)

Somaclone S 122-1 was found resistant to
bacterial canker (Pseudomonas syringae
pv. syringae)

Hammerschlag (2000)

39 Pear (Pyrus sp.) Resistant to Erwinia amylovora Viseur (1990)

Pear rootstock (Pyrus communis L.) ‘Old
Home 9 Farmingdale (OHF 333)’

Tolerance to the fire blight Nacheva et al. (2014)

40 Philodendron Cultivars ‘Baby Hope’ from ‘Hope’ Devanand et al. (2004)

41 Picrorhiza kurroa Higher glycoside contents including
kutkoside and picroside I in somaclone
14-P derived through Agrobacterium
rhizogenes mediated transformed hairy
root cultures of P. kurroa

Mondal et al. (2013)
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Foc resistance abaca plants were identified from

EMS ? CF line than the others. Earlier, Bidabadi et al.

(2012) suggested that the subjecting of shoot tips cultures

of banana to EMS (200 mM) treatments could provide an

alternative strategy for inducing variants. Recently, Iuli-

ana and Cerasela (2014) suggested irradiation of in vitro

raised plants with ultraviolet radiations (UV-C) for

induction of somaclones in potato.

Table 3 continued

S. no. Horticultural crop Characteristic of somaclone References

42 Pineapple (Ananas comosus L., Merr.) Spineless variant Jaya et al. (2002)

Cvs. P3R5 and Dwarf, variation in fruit
color, growth habit, fruit size and length
of plant generation cycle

Pérez et al. (2009, 2012)

43 Potato (Solanum tuberosum L.) Non-browning var. White Baron Arihara et al. (1995)

Somaclones for heat tolerance Das et al. (2000)

Somaclones IBP-10, IBP-27 and IBP-30,
derived from cultivar Desiree, showed
higher resistance to Alternaria solani and
Streptomyces scabiei

Veitia-Rodriguez et al. (2002)

Improved size, shape, appearance, starch
content and starch yield

Thieme and Griess (2005)

Superior processing attributes than cv.
‘Russet Burbank’

Nassar et al. (2011)

High-yielding genotype SVP-53 Hoque and Morshad (2014)

Increased phytonutrient and antioxidant
components over cv. ‘Russet Burbank’

Nassar et al. (2014)

44 Quince A (Cydonia oblonga) High soil pH Dolcet-Sanjuan et al. (1992), Marino et al. (2000)

45 Stevia rebaudiana High glycoside contents (steviol, stevioside,
and rebaudioside)

Khan et al. (2014)

46 Strawberry (Fragaria sp.) Resistant to Fusarium oxysporum f. sp.
fragariae

Toyoda et al. (1991)

Resistant to Alternaria alternate Takahashi et al. (1993)

Resistant to Phytophthora cactorum Battistini and Rosati (1991)

Improved horticultural traits Biswas et al. (2009)

Resistant to Verticillium dahliae Kleb Zebrowska (2010)

‘Serenity’, a paler skin-colored, late season,
resistant to powdery mildew and
Verticillium wilt somaclonal variant of the
short-day cv. ‘Florence’

Whitehouse et al. (2014)

47 Sweet potato (Ipomea batatas L. Lam.) Tolerant to salinity Anwar et al. (2010)

48 Sweet orange (Citrus sinensis (L.) Osb.) Somaclone of OLL (Orie Lee Late) sweet
orange; late maturing; suitable for fresh
market or processing, exceptional juice
quality and flavor

Grosser et al. (2015)

49 St. Augustine grass [Stenotaphrum
secundatum (Walt.) Kuntze]

Freeze-tolerant somaclonal variant SVC3 Li et al. (2010)

50 Syngonium podophyllum Schott 22 cultivars, derived from original ‘White
Butterfly’ clone, with distinct and
stable foliage characteristics

Henny and Chen (2011)

51 Tomato (Lycopersicon esculentum L.) High solid contents var. DNAP9 Evans (1989)

52 Tulip (Tulipa sp.) ‘‘Bs6’’, selected from among the
micropropagated plants of the cultivar
‘Blue Parrot’ with red-violet colored
longer flower and stem

Podwyszynska et al. (2010)

53 Torenia (Torenia fournieri) Flower color somaclonal variants Nhut et al. (2013)

54 Turmeric (Curcuma longa L.) High essential oil yielding somaclones Kar et al. (2014)

Turmeric somaclone resistant to Fusarium
oxysporum f.sp. Zingiberi

Kuanar et al. (2014)

55 Indian ginseng (Withania somnifera (L.)
Dunal)

Withanolide (12-deoxywithastramonolide)-
rich somaclonal variant

Rana et al. (2012)
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Application of somaclonal variations

It is well accepted that somaclonal variations arising out of

unique tissue culture environment are very often noticed

phenomenon in clonally propagated plants, which can

advantageously be utilized as a source of new variation in

horticultural crops (Karp 1995). However, suitable tools for

detection, evaluation, identification and improvement of

resistant clones should be designed in order to realize the

benefits of such variations (Sahijram et al. 2003). Crop

improvement through somaclonal variation enables breed-

ers to obtain plants tolerant to the biotic or abiotic stress,

such as drought, high salinity, high or low soil pH and

disease tolerance (Yusnita et al. 2005). A number of cul-

tivars have been developed through somaclonal variation in

different horticultural crops for a range of useful traits,

which are presented in Table 3.

Conclusions

Several strategies have been followed to ascertain the

genetic fidelity of the in vitro produced progenies in view

of the fact that the commercial viability of micropropaga-

tion technology is reliant upon maintenance of genetic

fidelity in the regenerated plants. Therefore, a thorough

assessment of micropropagated plants becomes very criti-

cal, especially, for perennial crops such as fruit species,

which have a long pre-bearing growth period. The effi-

ciency and sensitivity of new molecular tools has enabled

us to detect somaclonal variation at an early stage. These

tools have become very useful for the rapid detection and

accurate identification of variants. Nevertheless, the mor-

phological and cytological assays should continue to

remain as the primary and essential assay for the sustained

success of fidelity tests associated with production of clo-

nal plants. Though, on one hand, tissue culture-induced

variations pose a major threat to the genomic integrity of

regenerated plants, they provide tools for improvement to

plant breeders, particularly for crops with a narrow genetic

base, i.e., self pollinated and vegetatively propagated.

Irrespective of our goal either for production of true-to-the

type planting material or creation of variability, a multi-

disciplinary approach (involving concerned sciences of

horticulture, genetics and plant breeding, physiology,

cytology and molecular biology) with all our previous

knowledge and experience should be followed to achieve

the desideratum.
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Ooi SE, Novák O, Doležal K, Ishak Z, Ong-Abdullah M (2013)

Cytokinin differences in in vitro cultures and inflorescences from

normal and mantled oil palm (Elaeis guineensis Jacq.). J Plant

Growth Regul 32(4):865–874

Opabode JT, Adebooye OC (2005) Application of biotechnology for

the improvement of Nigerian indigenous leaf vegetables. Afr J

Biotechnol 4(3):138–142

Panda MK, Mohanty S, Subudhi E, Acharya L, Nayak S (2007)

Assessment of genetic stability of micropropagated plants of

Curcuma longa L. by cytophotometry and RAPD analysis. Int J

Integr Biol 1(3):189–195

Parida R, Mohanty S, Nayak S (2013) In vitro propagation of

Hedychium coronarium Koen. through axillary bud proliferation.

Plant Biosyst 147(4):905–912

Pathak H, Dhawan V (2012) ISSR assay for ascertaining genetic

fidelity of micropropagated plants of apple rootstock Merton

793. In Vitro Cell Dev Biol Plant 48:137–143

Patnaik J, Sahoo S, Debata BK (1999) Somaclonal variation in cell

suspension culture-derived regenerants of Cymbopogon martinii

(Roxb.) Wats var. Motia. Plant Breed 118:351–354

Patzak J (2003) Assessment of somaclonal variability in hop

(Humulus lupulus L.) in vitro meristem cultures and clones by

molecular methods. Euphytica 131(3):343–350
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Tican A, Câmpeanu G, Chiru N, Ivanovici D (2008) Using of

unconventional methods for obtaining somaclonal variations,

having as goal making of new potato varieties with resistance at

diseases and pests. Rom Biotechnol Lett 13:3791–3798

Tiwari JK, Chandel P, Gupta S, Gopal J, Singh BP, Bhardwaj V

(2013) Analysis of genetic stability of in vitro propagated potato

microtubers using DNA markers. Physiol Mol Biol Plants

19:587–595

Toyoda H, Horikoshi K, Yamano Y, Ouchi S (1991) Selection of

Fusarium wilt disease resistance from regenerant derived from

callus of strawberry. Plant Cell Rep 10:167–170

3 Biotech (2016) 6:54 Page 17 of 18 54

123

http://dx.doi.org/10.1371/journal.pone.0023541


Vázquez AM (2001) Insight into somaclonal variation. Plant Biosyst

135:57–62

Veitia-Rodriguez N, Francisco-Cardoso J, Perez JN, Garcia-Ro-

driguez L, Bermudez-Caraballosos I, Garcia-Rodriguez L,

Padron-Montesinos Y, Orellana-Perez P, Romero-Quintana C,

Hernandez N (2002) Evaluations in field of somaclones of Irish

potatoes (Solanum tuberosum Lin.) of the variety Desiree

obtained by somaclonal variation and in vitro mutagenesis.

Biotechnol Veg 2:21–26

Vidal BC, Mello MLS, Illg RD, de Campos Vidal B, Campos De,

Vidal B (1993) Chromosome number and DNA content in cells

of a biotechnologically selected somaclone of garlic (Allium

sativum L). Rev Bras Genet 16(2):347–356

Viseur J (1990) Evaluation of fire blight resistance of somaclonal

variants obtained from the pear cultivar ‘Durondeau’. Acta

Hortic 273:275–284
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