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1 Introduction

In the following, the results of a simple Monte-Carlo simulation in the NVT ensemble will be
presented.
The system under consideration consists of N monoatomic molecules in a cubic box of length L
and volume V = L3 that interact via the following potential:

V (r) =
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Periodic boundary conditions were applied. In the simulation, that was carried out in reduced
units, A

kBT
was set to 0.8. The reduced density of the system ρσ3 was set to 0.5, which is equivalent

to choosing a reduced box length L
σ of (2N)

1
3 .

The simulations started from random initial configurations. Each Monte-Carlo cycle consisted of
performing a trial move upon every particle, one after another. Such a move consisted of possibly
changing every coordinate ri of the considered atom:

ri,new = ri,old + ∆(qi − 0.5) (2)

qi are random numbers generated with uniform probability between 0 and 1. The choice of the
value ∆ is discussed in section 2. The decision upon the acceptance of a move was made according
to the Metropolis rule.
The dimensionless pressure P ∗ was calculated from the virial:
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rij is the distance between the particles i and j that is obtained using the minimum-image conven-
tion. The derivative of the potential energy is given below.
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∆ Nequi E∗/N τE∗/N error(E∗/N) P ∗ τP ∗ error(P ∗) acceptance ratio

σ
4 50 3.2172 7.3347 0.0048 2.5282 5.3020 0.0024 0.8766
σ
2 20 3.2282 2.4165 0.0027 2.5335 1.8219 0.0014 0.7616
σ 15 3.2241 1.5027 0.0022 2.5314 1.2030 0.0011 0.5674
2σ 10 3.2240 1.1573 0.0019 2.5315 0.9676 0.0010 0.3417
3σ 3 3.2230 1.1768 0.0019 2.5309 0.9741 0.0010 0.2592
L 3 3.2233 1.2443 0.0019 2.5312 0.9957 0.0010 0.2211

Table 1: For different values of ∆ the number of necessary iterations for equilibration Nequi was esti-
mated. Furthermore, the reduced energy per particle E∗/N and pressure P ∗ and the corresponding
autocorrelation times τ and errors obtained with Nequi = 100 are given.

To correct for the fact that the potential was set to zero for distances beyond rc tail corrections
∆E∗tail and ∆P ∗tail were applied. The following expressions are derived under the assumption that
rc is chosen to be bigger than σ, which in general is recommendable and is also true for all the
calculations carried out here:

∆E∗tail/N =
2πρ
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The effects of changing the cut-off radius and turning off tail corrections are discussed in section 3.

2 Role of ∆

To investigate the effect of different values of ∆ simulations on a system of 60 particles each
consisting of 5000 Monte-Carlo cycles and using a cut-off radius rc of L

2 were carried out while
using different ∆. By visual investigation of the potential energy per molecule plotted against the
number of cycles the number of iterations necessary to reach equilibrium Nequi was estimated and
is given in table 1. An exemplary plot of the change in energy during the first iteration cycles is
given in graphic 1.
As expected Nequi decreases with rising ∆. In all future simulations it will be set to 100: Like this,
it is considerably bigger than the rough estimates obtained here, so that one can safely consider
the other data points in the analysis. There is no need to keep Nequi as low as possible since there
are still many data points left to calculate the desired averages. Additionally, the computational
cost for performing more iterations is very low here so that it could be easily afforded.
In addition to the average pressure and energy per particle the acceptance ratios of the moves
performed after equilibration are given. As expected they monotonously decrease with rising ∆,
from 88 % for ∆ = σ

4 to 22 % for ∆ = L. Furthermore, an autocorrelation analysis was performed
on the data points received after equilibration. The error only slightly (i.e. in the 5th digit) changes
for ∆ between 2σ and L. Still, the lowest value is obtained for ∆ = 3σ and thus this ∆ will be
used in the following calculations.
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Figure 1: Evolution of the adimensional energy per particle over the first 100 iteration cycles for
∆ = 0.25σ. The horizontal line indicates the energy that was finally obtained.

3 Role of the cut-off radius rc

To get an impression about the influence of the choice of the cutoff radius rc the simulation was
repeated for rc = 3L/8 and rc = L/4 with the optimal ∆ obtained in paragraph 2. Both calculations
were then repeated without employing tail corrections. The results are summarized in table 2.
As expected the tail corrections for both, the energy and the pressure, increase with a decreasing
cutoff radius. It is worth to point out that while the final results including tail corrections are
similar for rc being 0.5L and 0.375L, those for rc = 0.25L differ considerably. This indicates that
a cutoff of 0.25L is too short for obtaining a reliable description of the system.

4 Size Effects

Finally, the influence of the size of the simulated box was investigated by changing the number of
particles N . The optimal ∆ obtained in section 1 and a cutoff radius of 0.5L were applied. The
results are given in table 3. The influence of the number of particles on the final results including
tail corrections is sufficiently small to consider the system size large enough to obtain reliable
results. The decreasing contribution of the tail corrections with rising N is due to the fact that if
a larger box with equal density is chosen, within a cutoff radius given in terms of the box length
more interactions are considered explicitly. For N = 200 also the pair distribution function g(R)
was calculated by using gε(R), the average of g(R) over a spherical shell with a width of 2ε around
radius R, as an estimate. The value of ε was chosen to be the smallest one for which fluctuations due

rc E∗/N E∗without/N ∆E∗tail/N P ∗ P ∗without ∆P ∗tail

0.5 L 3.2258 2.6447 0.5812 2.5323 2.0033 0.5290
0.375 L 3.2217 2.1439 1.0777 2.5294 1.6594 0.8700
0.25 L 3.1056 1.1180 1.9877 2.4707 1.0677 1.4029

Table 2: Results for the dimensionless average energy per particle and pressure for different cutoff
radii. The index ”without” labels values that were obtained without tail corrections.
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N E∗/N E∗without/N ∆E∗tail/N P ∗ P ∗without ∆P ∗tail

60 3.2258 2.6447 0.5812 2.5323 2.0033 0.5289
100 3.2274 2.8604 0.3669 2.5334 2.1711 0.3623
200 3.2314 3.0584 0.1730 2.5356 2.3438 0.1918

Table 3: Results for the dimensionless average energy per particle and pressure for different N .
The index ”without” labels values that were obtained without tail corrections.

Figure 2: Pair distribution function g(r) for N = 200

to statistical errors seemed acceptably small. The resulting pair distribution function is displayed
in graph 2.
Due to the fact that the system is very dilute there is only one peak and no higher order shells
visible. As expected g(R) is zero for low R and approaches 1 for big distances.


