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ABSTRACT

In this report the error analysis of numerical data generated in a computer simulation is pre-
sented. The approaches that were followed are: independence assumption, blocking analysis,
autocorrelation analysis and the Jackknife method. The data analyzed were downloaded from
http://elearning2.uniroma1.it/course/view.php?id=2878.

1 INDEPENDENT DATA

Five data sets, denoted by Ui ,with i = 1, ...,5, were analyzed in the first part of this assignment.
In this section, the estimate of the averages 〈Ui 〉, and their corresponding errors are computed
under the assumption that data are independent. The estimator of the mean value is given by
the sample mean

Ui ≡Ui (t ) = 1

N

N∑
n=1

Ui (tn). (1.1)

In the case of independent data, the error is simply

σi =
√

Var(Ui )

N
, (1.2)

where the variance can be approximated by the unbiased estimator

[Var(Ui )]unbiased = N

N −1

[ 1

N

N∑
n=1

U 2
i (tn)−Ui

2
]

. (1.3)

The results obtained appliying these formulas are shown in Table 1.1.
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Table 1.1: Average and error of the data sets assuming statistical independence.

Quantity Average Error

U1 3.897 0.008
U2 6.808 0.006
U3 2.029 0.002
U4 1.253 0.012
U5 -0.074 0.005

2 BLOCKING ANALYSIS

Here we employ the blocking technique. The blocked variables are defined as

U (1)
i (t ) = 1

2
[Ui (2t −1)+Ui (2t )],

U (k)
i (t ) = 1

2
[U (k−1)

i (2t −1)+U (k−1)
i (2t )],

(2.1)

Note that every time we block the data, the original number of data points is reduced by a
factor of 1/2k , where k indicates the number of blocking operations. For instance, if we have N
values of the quantity Ui (t ), after the first blocking operation we will get N /2 new blocked data
points. If we repeat the procedure once more, the size of the new data set will be N /4, and so
on. If N is odd we can just discard the last point in the data set, provided that the number of
measurements is large enough.
If the averages of the blocked data were uncorrelated, we would have that

Var(Ui ) ≈ 21Var(U (1)
i ) ≈ ·· · . (2.2)

However, if this is not the case, the following chain of inequalities holds

2k Var(U (k)
i ) > 2(k−1)Var(U (k−1)

i ) > ·· · > Var(Ui ). (2.3)

Thus the idea of the method is to look for a block size sufficiently large, such that the averages
of the blocks generated are more or less independent. At that point, we will observe that the
error stabilizes, namely

2( j−1)Var(U ( j−1)
i ) ≈ 2 j Var(U ( j )

i ) ≈ ·· · , (2.4)

for some j . This is reflected in the appearance of a plateau in the plot of 2k Var(U (k)
i ) vs. k. If the

value of this plateau is σ?, then the statistical error we are interested in can be approximated
as

σ2 = σ?

N
. (2.5)

Of course, as the number of blocking operations rises, the number of samples will decrease.
Therefore, some fluctuations may appear after the plateau, that is for large values of k. The
plots of the variance as a function of the number of block operations are shown in Fig. 2.1. We
can see that in some of these graphs it is possible to identify a plateau (data U3 and U4), which
will define the estimator of the error we wish to compute (red dashed line). However, in some
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Figure 2.1: Variance of the quantities 〈Ui 〉 as a function of the number of block operations k.
The red dashed lines determine the values of σ?(see Eq. (2.5) and Table 3.1.) The
notation ∆k (Ui ) stands for 2k Var(U (k)

i ).

other cases (data sets U1, U2, and U5) there is no formation of a plateau. This indicates that for
the determination of such quantities the simulation was probably too short. Nevertheless, in
those cases we have considered the highest value obtained as an estimator for the variance we
are interested in. The errors that we get by taking the squared root of Eq. (2.5) are summarized
in Table 3.1, where they are compared to the results obtained using the autocorrelation analysis.
The discussion of such compirison is made in the following section.

3 AUTOCORRELATION ANALYSIS

The error of the sample mean, Eq. (1.1), can also be expressed in terms of the autocorrelation
function c(m,n; x0), which is defined as

ci (m,n; x0) = 〈(Ui (tm)−〈U 〉)(Ui (tn)−〈U 〉)〉, (3.1)
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Figure 3.1: Plot of the data set U1. The data fluctuate around the mean value, so the system
under study has already thermalized. Similar results are obtained for the other data
sets.

where x0 is the initial condition. The error can then be written as

σ2
i =

1

(N +1)2

N∑
m=0

N∑
n=0

ci (m,n; x0). (3.2)

In particular, if we are dealing with equilibrium calculations, as it is case with the data analyzed
(see Fig. 3.1), the autocorrelation function depends only on |k| ≡ |m −n| (time-translation in-
variant). One can then prove that the expressions above become

ci (k) = 1

N −k

[N−k∑
n=1

(Ui (tn)−Ui )(Ui (tn+k )−Ui )

]
(3.3)

and,

σ2
i =σ2

i ,ind ·2τi ,int, (3.4)

with σ2
i ,ind = Var(Ui )/N , and τi ,int being the so-called integrated autocorrelation time:

τint = 1

2
+

∞∑
k=1

ci (k)

ci (0)
. (3.5)

The latter expressions give reliable results for small values of k. Moreover, in order to compute
the error we have to truncate the sum in Eq. (3.5). This is done by looking at the plot of the
partial sum Ai (n):

Ai (n) =
n∑

k=1

ci (k)

ci (0)
. (3.6)

The plots of the partial sums Ai (n), are shown in Fig.3.3. We can observe that in all cases Ai (n)
reaches a "maximum" value Amax

i ≡ Ai (nmax), before some noise (oscillations) arise. This max-
imum value is taken as an approximation to the right end side of Eq. (3.5). The errors that are
obtained in this way are shown in Table 3.1 along with the errors of the blocking method. In
general, the agreement is very good. The greatest discrepancies are found in the cases of U1, U2

and U5, in which the blocking error is larger than the one computed in this section. The reason
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Figure 3.2: Autocorrelation functions.

for this might be related to a point stressed in the previous section, namely that for these data
sets no plateau was found in the plots of the variance against the number of bolcking opera-
tions, meaning that perhaps the simulations were not large enough to analyze those data sets
using the blocking approach.

Table 3.1: Estimates of the error on the samples means of Ui . σBlocking gives the error using
blocking analysis, whereas στint represents the estimate described in the present sec-
tion.

Quantity σBlocking στint

U1 0.061 0.056
U2 0.041 0.038
U3 0.007 0.007
U4 0.046 0.047
U5 0.038 0.035

4 THE JACKKNIFE METHOD

Now we address a different problem. Suppose we have blocked the data sets in blocks of length
2500. The averages of the blocked variables can then be regarded as independent. Indeed, from
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Figure 3.3: Partial sums.

Fig. 2.1, we can see that the error stabilizes after 10 or 11 blocking operations, which correspond
to blocks of size 1034 and 2068, respectively. Next, we define the quantities

Ri = 〈Ui 〉
〈U1〉

, with i = 2,3,4,5. (4.1)

We use the Jackknife method to get an estimate of Ri as well as its error. This is done as follows:
first, we define the Jackknife averages

U JK
i ,α = 1

N −1

N∑
β 6=α

Ui ,β,

U JK
1,α = 1

N −1

N∑
β 6=α

U1,β,

(4.2)

with α= 1, · · · , N . Then, we form the ratios

R JK
α =U JK

i ,α

/
U JK

1,α, (4.3)

and get a first estimate, namely

R JK
est =

1

N

N∑
α=1

R JK
α . (4.4)

Note that R JK
α differs from Rest = Ui

/
U 1, in that the former involves only N − 1 data points,

whereas the latter is computed using N points. Lastly, we calculate the final estimate

R̂ JK
est = N Rest − (N −1)R JK

est . (4.5)

6



The error is then computed through the following equation

σJK =
√

(N −1)Var(R JK ), (4.6)

where

Var(R JK ) = 1

N

N∑
α=1

(R̂ JK
est −R JK

α )2. (4.7)

Two other alternative methods that are, however, worse than the Jackknife technique, are the
independent error approximation and the worst-error formula. The error on the estimation of
(4.1) in these two approaches is given by

σI E =
[(

Ui

U1

)2( σ2
i

Ui
2 + σ2

1

U1
2

)]1/2

, (4.8)

and

σW E =
∣∣∣∣Ui

U1

∣∣∣∣∣∣∣∣ σi

|Ui |
+ σ1

|U1|

∣∣∣∣, (4.9)

respectively. In practice, one should not use neither Eq. (4.8) nor Eq. (4.9), for they overesti-
mate the error (the independent error formula can also underestimate it). Nonetheless, here
we will employ these techniques in order to make a comparison with the results of the Jackknife
method. Such results are shown in Table 4.1. For σi and σ1 in the latter expressions we used
the errors calculated with the autocorrelation analysis (see Table 3.1).

Table 4.1: Error made on the estimation of the quantities Ri . The third column (σJK ) corre-
sponds to the Jackknife method. The last two columns give the error computed ac-
cording to Eqs. (4.8) and (4.9), respectively.

Quantity R̂ JK
i σJK σIE σWE

R2 1.746 0.034 0.027 0.035
R3 0.521 0.008 0.008 0.009
R4 0.322 0.010 0.013 0.017
R5 -0.019 0.009 0.009 0.009
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