Lo studio della funzione dei geni

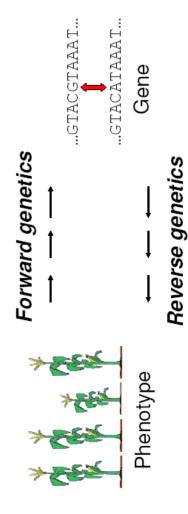
Forward and Reverse Genetics


- Forward genetics starts with identification of interesting mutants
 - Then aims to discover the function of genes defective in mutants
- Reverse genetics starts with a known gene and alters its function
 - Then aims to determine the role of the gene from the effects on the organism

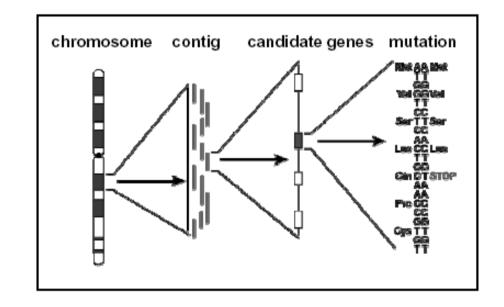

Forward and reverse genetics

Forward genetics

: from phenotype to gene structure


- Reverse genetics
 - : from gene to phenotype

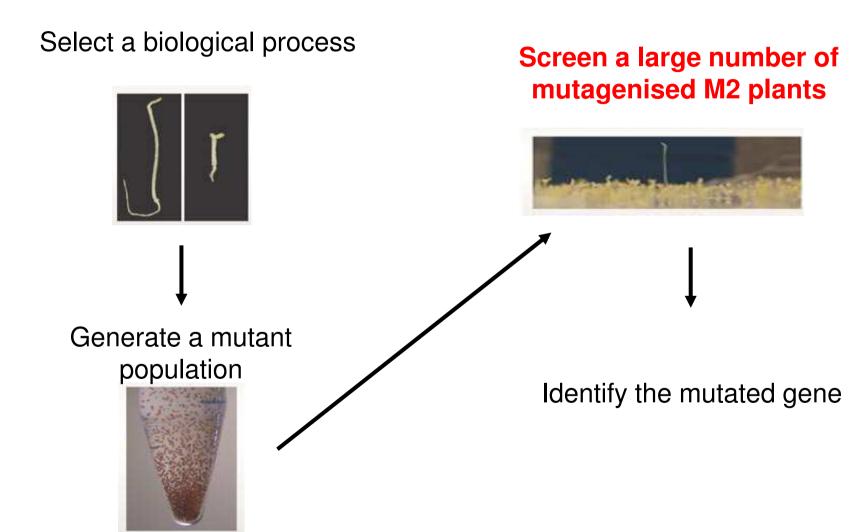
Forward and Reverse Genetics


- Forward genetics starts with identification of interesting mutants
- Then aims to discover the function of genes defective in mutants
- Reverse genetics starts with a known gene and alters its function
- Then aims to determine the role of the gene from the effects on the organism

Forward vs Reverse

From Phenotype to Gene

- Once an interesting mutant is found and characterized, we want to find the gene in which the mutation occurred
- Positional cloning
 - First use genetic mapping
 - Then use chromosome walking



Buchanan et al: Cap 7 par. 7.1.5, 7.2, 7.2.6

Basics of Forward Genetics

- Forward genetics usually starts with mutagenesis of an organism
 - Can use chemicals
 - e.g., ethyl methyl sulfonate (EMS)
 - often used in Arabidopsis
 - Can use radiation
 - e.g., X rays
 - Can use gene tagging
 - e.g., transposon tagging or T-DNA tagging
 - often used in Arabidopsis and maize
- Then screen progeny of mutagenized individuals for phenotypes of interest

Generate or obtain a mutant population

Mutant: An organism that differs from the "normal" or wild type by one or more changes in its DNA sequence

Two major considerations in planning a mutant screen:

- How many plants can be reasonably screened?
- How many genes can mutate to cause the phenotype of interest?

Chemicals agents:

e.g., ethyl methyl sulfonate (EMS) or nitrosomethylurea (NMU)

Physical agents:

e.g., X-rays, fast neutrons and accelerated ions

Biological agents:

e.g., transposons and T-DNA

Point mutations

Large range of mutations including loss and gain of function

Very high efficiency with hundreds of mutations per genome

Difficult to find the mutation in the genome

Big insertions, deletions and rearrangements

Mostly loss-of-function mutants

Medium efficiency

Laborious identification of the mutations

Insertion of specific DNA sequences

Mostly loss-of-function mutants

Low efficiency

Easy identification of the mutations

Chemical (alkylating) agents

- EMS causes addition of chemical groups primarily to Gs.
- The extra groups can cause altered base pairing resulting in transitions.
- EMS can also cause depurination (complete loss of the base) which leaves gaps that cause misincorporation during replication.

Protocollo di mutagenesi EMS

Weight 0.2 gram seeds (10,000 seeds total) (20 microgram/seed).

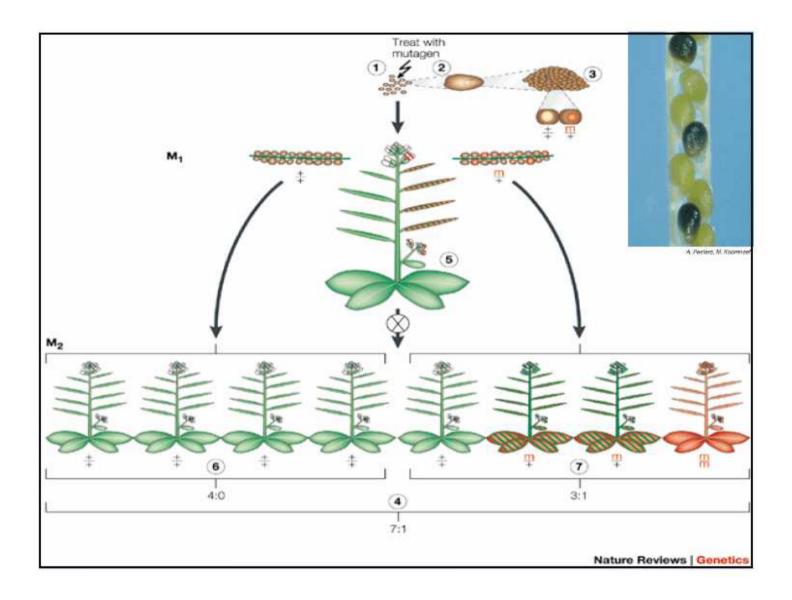
Wash in 0.1% Tween 15'

Put into 15 ml ddH2O

Add 15-45 microliter (0.1% to 0.3%) EMS

Mix and incubate for 8-12 hrs (Rotating) in hood.

Remove the EMS (put EMS sol'n into 0.5M NaOH O/N, then dispose as regular waste)


Rinse the seeds once and then rinse them in 10 ml ddH2O 2-4 hrs.

Put all seeds into 100 ml 0.1% Agar (Autoclave agar, cool on ice, and

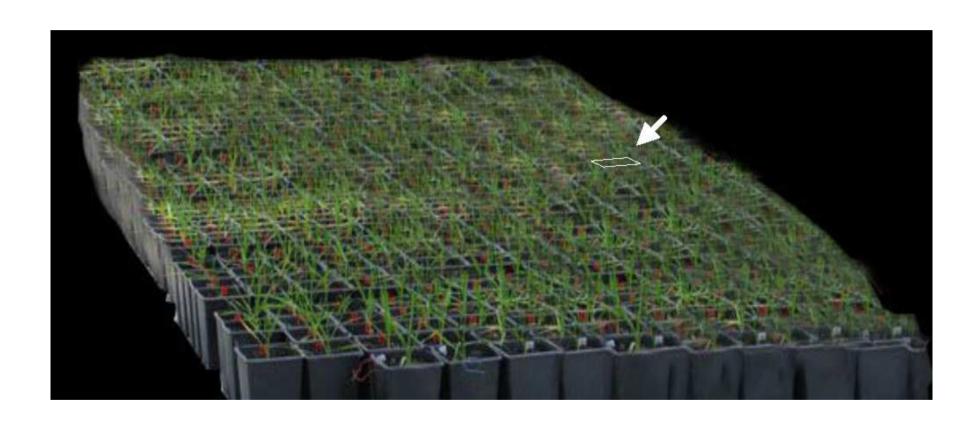
let solidify for several hours first)

Sow the seeds using a P1000 pipetteman (1 ml per pot).

Vengono introdotte mutazione puntiformi con transizioni GC-AT e AT-GC

The targets of seed mutagenesis are the diploid cells of the fully developed embryo covered by the seed coat.

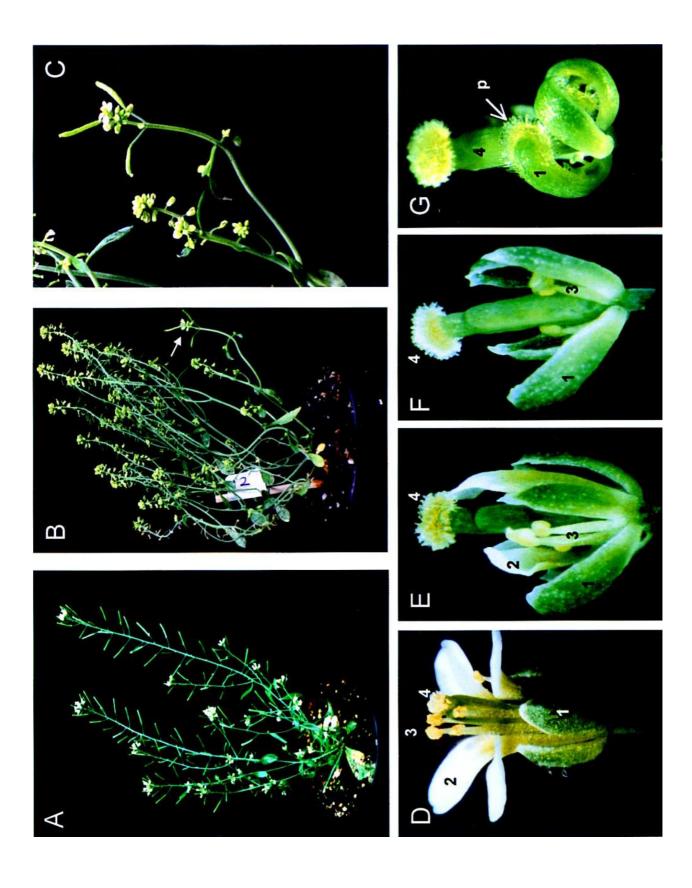
To assess the effectiveness of mutagenesis, it is crucial to know how many of the targeted cells will eventually contribute to the next generation. The functional germ line can be defined as the number of cells in the SAM of the embryo that will contribute to the seed output (the genetically effective cell number (GECN).


In *Arabidopsis*, recessive mutants segregate in a ratio of 7:1 in an M_2 population, therefore, GECN = 2. Because the functional germ line consists of two cells at the time of mutagenesis, the developing M_1 is chimeric and consists of two sectors, which might vary in size. Mutations segregate 4:0 or 3:1, depending on the sector from which the M_2 seeds derive.

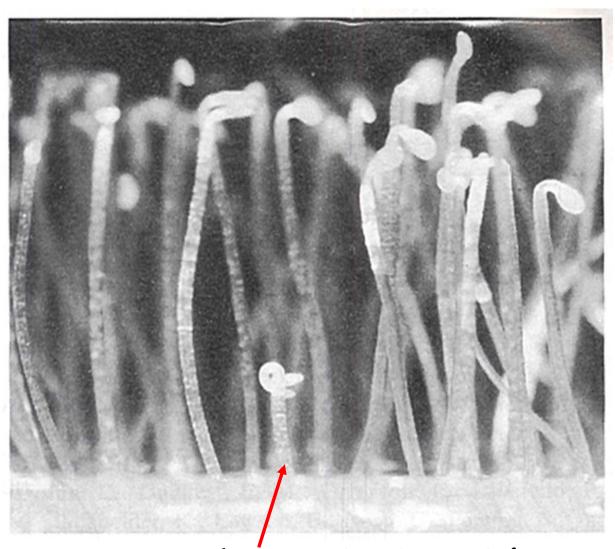
Ionizing radiation

- Radiation ionize water and result in the formation of oxygen radicals such as superoxide $(O_2^{\cdot-})$ and hydroxyl radicals (·OH),
- Radicals are highly reactive and can cause single and double strand breaks and base modifications,
- Single strand breaks are easily repaired but double strand breaks often result in deletions, insertions and translocations.

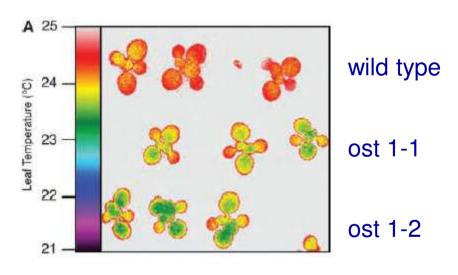
Screening...



You need a screenable phenotype • Flower development


- Disease resistance
- Photomorphogenesis
- Responses to hormones etc.

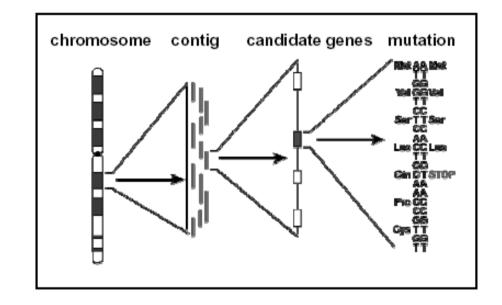
Recettori dell'etilene sono stati clonati per isolamento di mutanti etilene -insensibili (A)


Isolamento di mutanti che presentano tripla risposta costitutiva (anche in assenza di etilene) ha permesso di identificare un regolatore negativo nella via di trasduzione

ctr1: constitutive triple response

Un sistema per isolare mutanti (ost1)

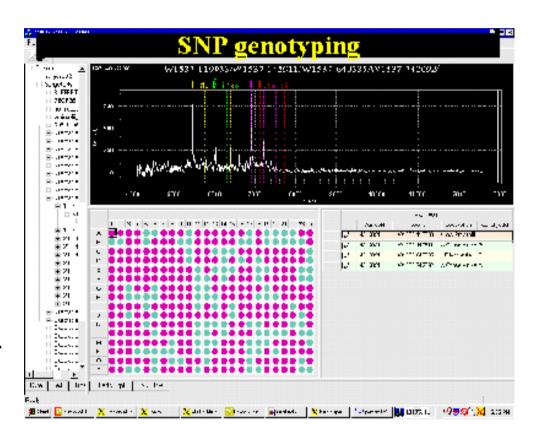
- Popolazione mutagenizzata con etil metansulfonato
- Stress idrico
- Analisi mediante termografia infrarossa
- · Selezione dei mutanti


I mutanti *ost1* sono difettivi nella regolazione della traspirazione sotto stress idrico

From Phenotype to Gene

In case of chemical or physical mutagenesis

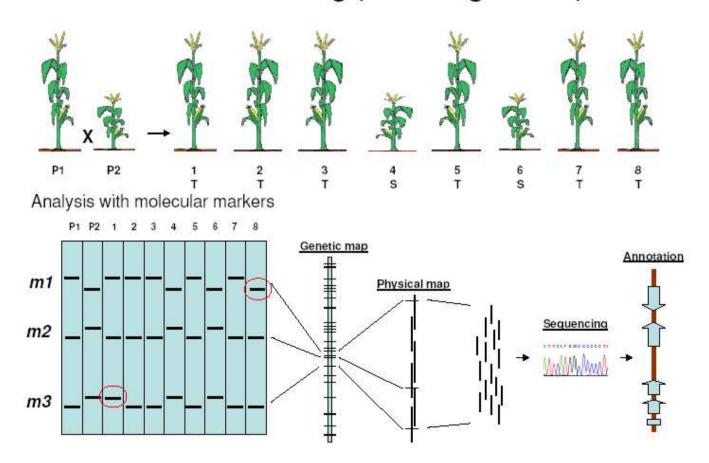
- Once an interesting mutant is found and characterized, we want to find the gene in which the mutation occurred
- Positional cloning
 - First use genetic mapping
 - Then use chromosome walking

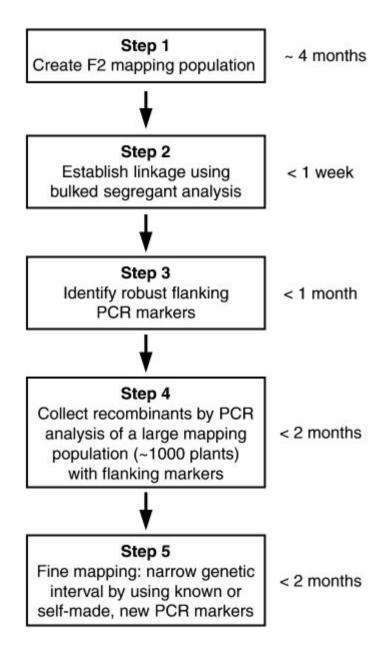


But now deep sequencing (it is becoming less and less expensive)

CLONAGGIO DI GENI BASATO SULLA MAPPATURA DI MUTAZIONI (MAP-BASED CLONING)

Single Nucleotide Polymorphisms (SNPs)

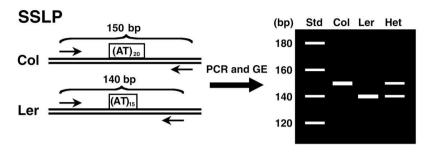

- -In ogni locus: massimo 4 alleli (di solito 2)
- grandissimo numero di loci SNP
- Spesso molti SNP per gene, anche dentro esoni
- -Non richiedono elettroforesi, per cui veloci ed automatizzabili


To isolate point mutations, deletions an translocation

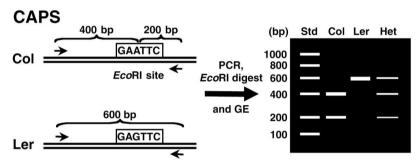
Mapping will narrow down the genetic interval containing a mutation by successively excluding all other parts of the genome. Map positions are determined by measuring the recombination frequencies between the mutation and markers that lie in known position in the genome

Positional cloning (forward genetics)

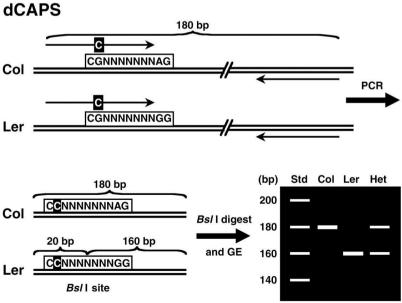
MAP-BASED CLONING


Mapping with a high resolution requires a high density of genetic markers

- •Several Arabidopsis accessions, or ecotypes, are sufficiently divergent to support the design of molecular markers at this high density.
- •The most commonly used combination for mapping purposes is Landsberg *erecta* X Columbia (Ler X Col).
- •These two accessions have been estimated to differ in 4 to 11 positions every 1,000 bp (Chang et al., 1988_ Konieczny and Ausubel, 1993_Hardtke et al., 1996_.
- •Most existing mutations, including mutations causing visible phenotypes that can be employed as genetic markers have been induced either in a Col or a Ler background.

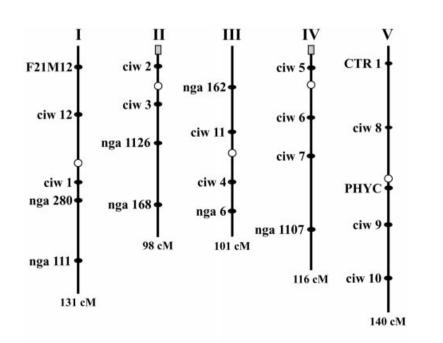

Molecular markers commonly used for mapping (SSLP, CAPS and dCAPS)

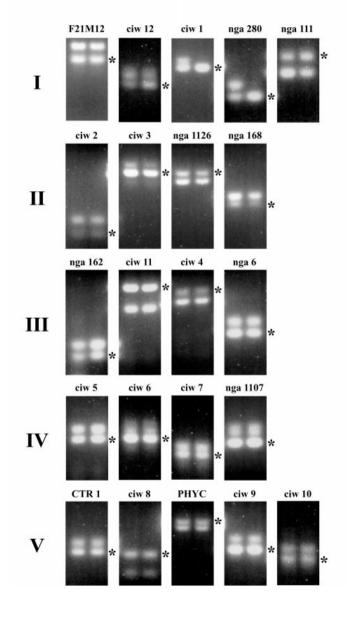
- •They are codominant (both chromosomes of a plant may be genotyped)
- •They are PCR-based and can be analyzed on agarose gels (easy to use and inexpensive)
- •Several methods for the extraction of plant DNA from small tissue samples have been described
- •These methods are cheap and suitable for high throughput applications in microtiter plates.


Molecular markers commonly used for mapping

SSLP (simple sequence length polymorphisms) markers exploit the variability of short repetitive sequences for mapping purposes

CAPS (cleaved amplified polymorphic sequences; Konieczny and Ausubel, 1993), CAPS marker exploits polymorphic restriction sites for mapping purposes


1998), markers can exploit almost all single nucleotide changes for mapping purposes. To achieve this a mismatched PCR primer is designed next to the polymorphic position such that an artificial restriction site is created with the sequence variant of just one accession.


dCAPS (Michaels and Amasino, 1998; Neff et al.,

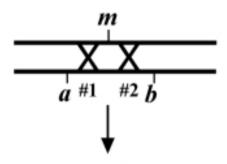
Lukowitz W. et.al. Plant Physiol. 2010:123:795-806

BLUKED SEGREGANT ANALYSIS

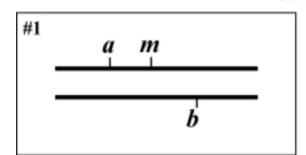
- Su pool di DNA da diversi individui mutanti della popolazione segregante F2
- Controllo: DNA di individui F1 (eterozigoti in tutti i loci)

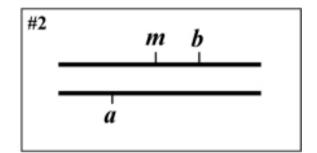
Three-point mapping

Once you have assigned your mutation to a chromosome, three-point mapping is almost always an obligatory step in the process of cloning our mutants.


Even SNP mapping is usually preceded by three-point mapping with genetic markers.

We cross our mutation (m) into a strain with two linked morphological markers (a and b) that are on the same chromosome as m, to generate the m/a b heterozygote.


We then isolate and follow two classes of recombinant progeny; those that display the **A** phenotype only (**A non-B** recombinants) and those that display only the **B** phenotype only (**B non-A** recombinants). By seeing which of these two classes produce the mutant phenotype (**M**) and by scoring the percentages for each, we can determine whether our mutation lies to the left, to the right, or between our set of markers.


In the case where the mutation lies in between, we may then determine the approximate distance from each marker.

Three-point mapping

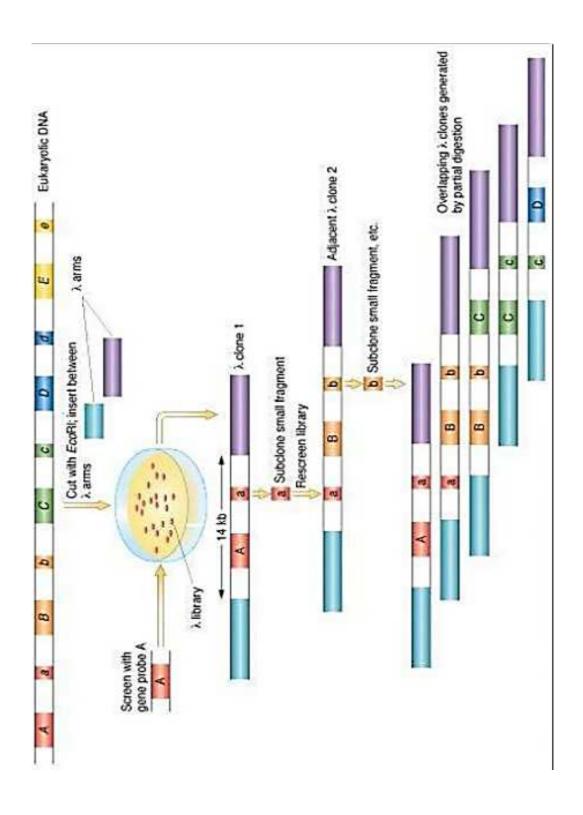
recombinant chromosomes

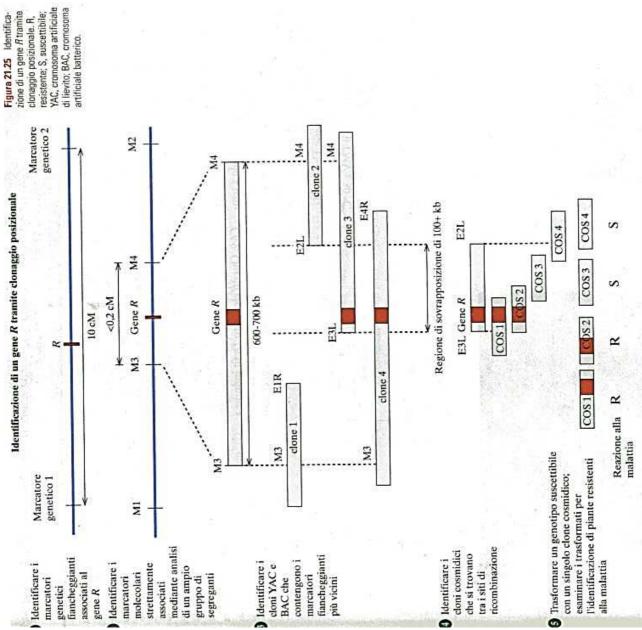
(recombinant + parental)

$$\frac{a \ m}{a \ b}$$

$$\frac{b}{a \ b}$$

$$\frac{m}{a} \frac{b}{b}$$


$$\frac{a}{a b}$$

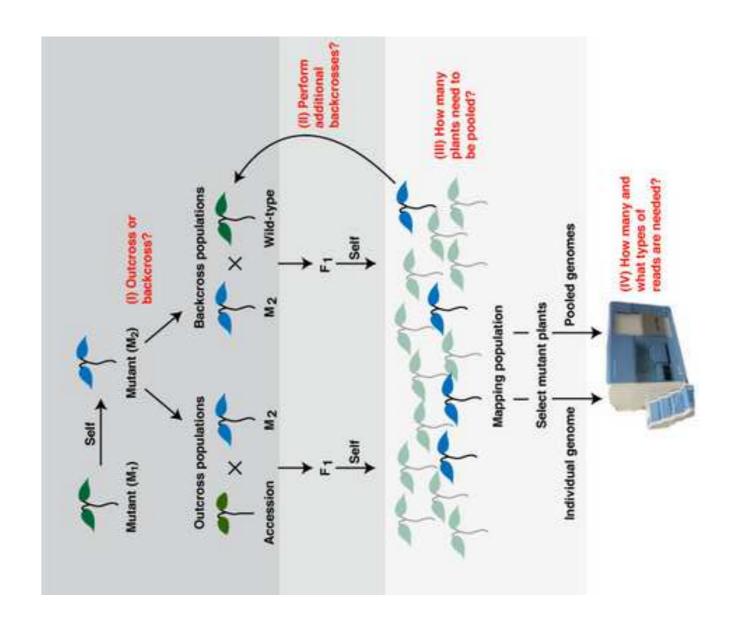

A non-B

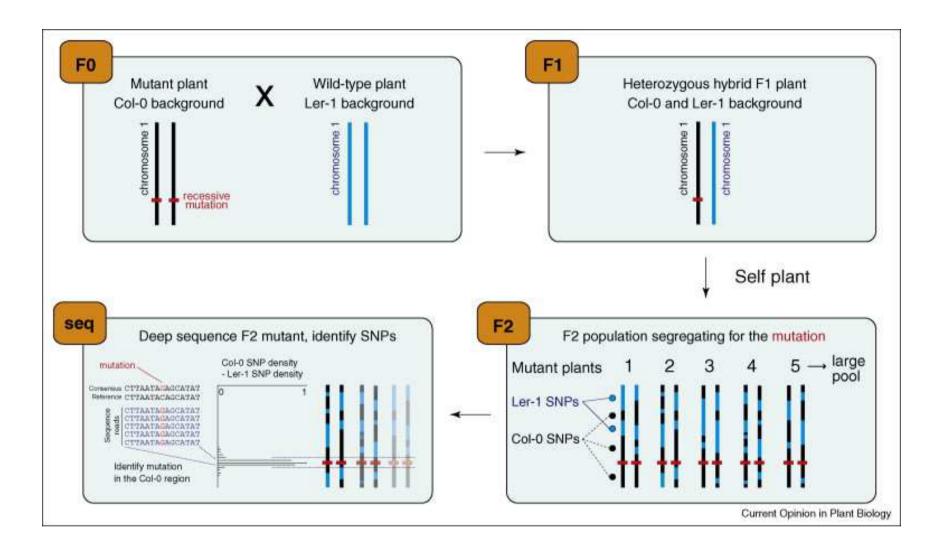
B non-A

B non-A

A non-B

Sequenziare la regione di sovrapposizione tra i cloni 1 e 2 per identificare il modulo di lettura aperta (ORF) del gene R


Mutation mapping by deep sequencing


Forward genetic screens have proven extremely powerful in *Arabidopsis thaliana* for assigning genes to specific biological pathways .

The <u>success</u> of this approach is, in part, due to the highly accurate sequence of its compact genome, facile genetics, and extensive collection of mapping markers.

However, identifying the causative mutation <u>commonly takes several months to years</u> after generating a mapping population, so approaches to expedite this step will be highly valuable.

Deep sequencing of a pool of F2 individuals containing only mutant plants from a mapping population enables rapid mapping of enables rapid mapping of the mutation.

Identification of mutations by deep sequencing. A plant with Col-0 background that harbors a recessive mutation leading to a mutant phenotype is crossed to a wild-type Ler-1 plant. The heterozygous F1 hybrid plant is allowed to self-fertilize to produce a large pool of F2 plants that are segregating for the mutation. A large number of F2 plants that display the mutant phenotype are pooled and their gDNA subjected to deep sequencing. The density of single nucleotide polymorphisms (SNPs) inherent in the Ler-1 strain is subtracted from the density of SNPs indicative of the Col-0 background, identifying a discrete region on the chromosome in which only Col-0 marker SNPs are present. The deep sequencing data in this interval are then scoured for the potential causative mutation.

Table 1

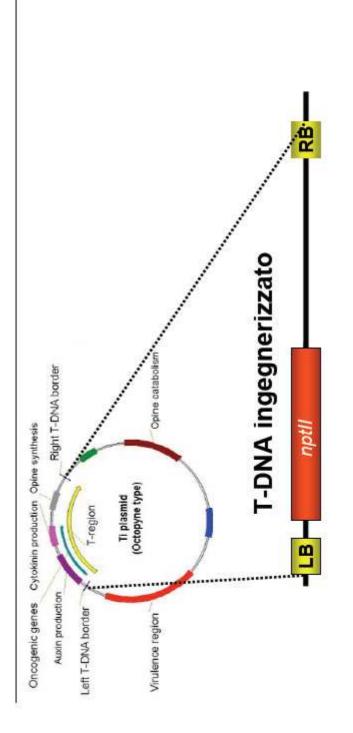
Suggestions for the design of mapping-by-sequencing experiments

	Outcross populations	Backcross populations	Sequencing	Deep candidate resequencing (dCARE)
Generation	F ₂	BC ₁ F ₂	BC ₁₋₃ F ₂ ª	n/a
Mutants (n)	Approximately 150	Approximately 50	н	As many as possible
Optimal coverage	>25	Approximately 50	>25	n/a
Sequencing type	Paired-end	Paired-end	Paired-end	Single-end

^aDepending on mutation rate.

James et al. Genome Biology 2013 14:R61 doi:10.1186/gb-2013-14-6-r61

Drawbacks of Forward Genetics


- Breeding must be possible
- You need a screenable phenotype
- Easy with visible phenotypes
- growth, color, development
- not easy with metabolism
- impossible for "essential genes" (defects of which would be lethal)
- You need a dense genetic map and markers closely associated with the phenotype
- Good for Arabidopsis, Maize, Rice
- Not established for many tropical plants, hops (Humulus lupuls) and other speciality crops
- Access to genomic library (YAC, BAC) required for cloning the gene

per generare collezioni di mutanti inserzionali II T-DNA di *Agrobacterium* è stato utilizzato

.. permettendo la generazione di knock-outs all'interno del genoma della cellula vegetale.. II T-DNA si integra in maniera casuale

- L'integrazione è stabile per un buon numero di generazioni
- Inserzioni singole o più inserzioni (testa testa, testa coda o coda-coda)

II "T-DNA" viene ingegnerizzato con:

Un marcatore per la selezione delle linee T/F (Kan)

Mutagenesis by insertion tagging

Principle: A DNA fragment with a known sequence (transposons, *A.tumefaciens* T-DNA) is allowed to randomly insert into the genome (it usually causes a recessive, loss of function mutation

Advantages:

- tags or marks the gene
- provides a powerful way to identify or fish the gene out

Disadvantages (like chemical and physical mutagenesis):

- cannot knock out essential genes,
- other redundant genes mask loss of disrupted gene
- may disrupt non-functional sub-region of gene.

Insertion tagging

[signature tagged mutagenesis (STM)]

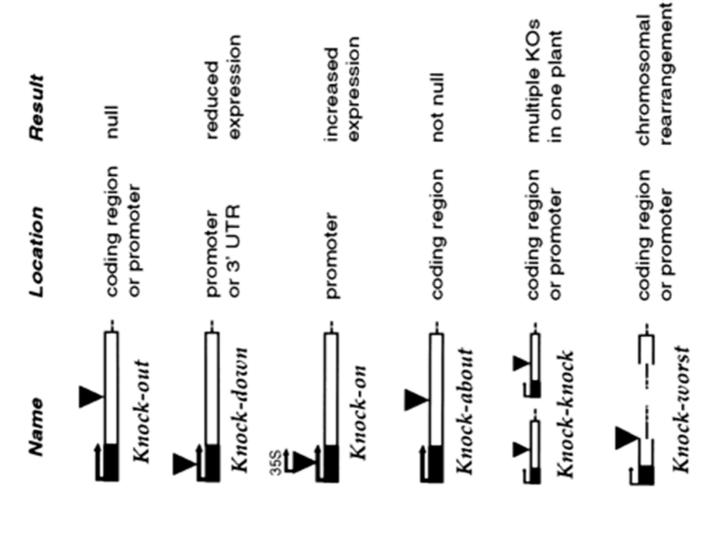
-The advantage of insertion tagging over traditional forms of mutagenesis is that the interrupted gene becomes "tagged" with the insertion elements, hence the strategy is sometimes termed Signature-tagged mutagenesis (STM).

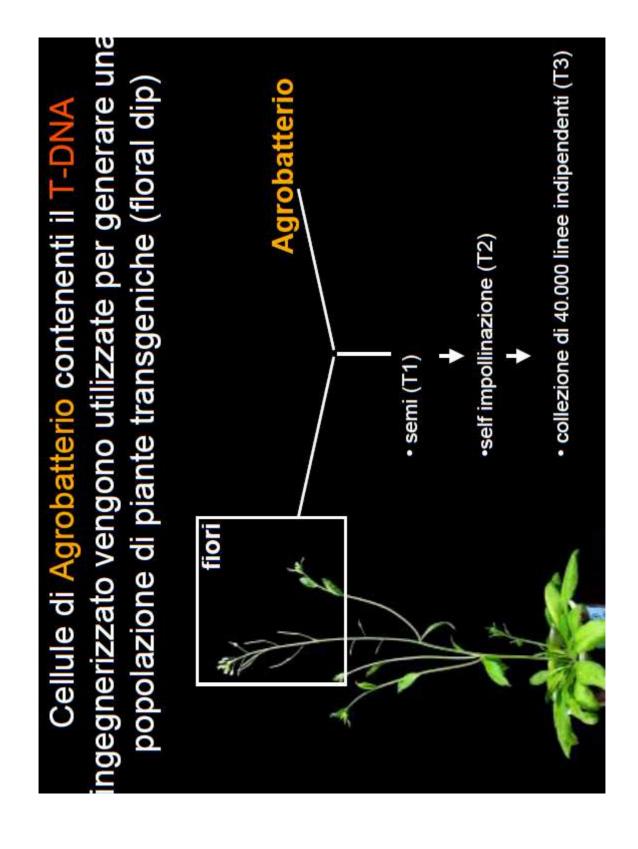
Steps:

- 1. T-DNA or transposon tagging.
- 2. Techniques can be used to obtained the flanking DNA.
- 3. The sequence of the flanking DNA can then be used to interrogate sequence databases, allowing the tagged gene to be associated with its "parent" genomic clone phenotype.
- 4. If insertion also generates a mutant phenotype, the gene in the database can then be ascribed a tentative function.

Mutagenesis by T-DNA tagging

- -Gene insertion is essentially random.
- -It affects only the gene, where it incorporated (within the gene space).
- Disadvantage is the tendency to generate complex, multicopy integration patterns and sometimes deletions and gene rearrangements of surrounding genes.
- -As *Arabidopsis* is a gene dense plant- having small introns, little intergenic space and therefore, about 80 % genome is thought to represent genome.
 - Insertions in around 90% of genes are present.
 - Over 300,000 transformants were made by T-DNA tagging
- As T-DNA is not a transposon, it has no ability to 'jump' following integration......therefore, having advantage of generating stable insertions

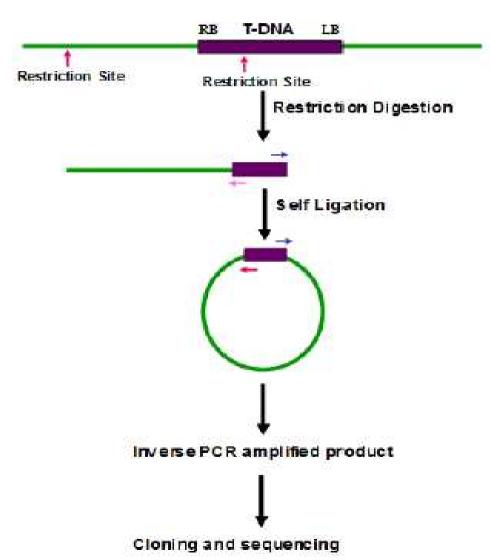

Flanking sequences have been characterized. Mutants can be used for reverse genetics (see ahead)


- DNA isolated and the junction fragment between the T-DNA and the plant DNA recovered. This allows the precise location of the T-DNA in the genome to be assessed. Called Flanking Sequence Tag (FST).
- These FSTs are present in databases, so insertions in a gene of interest can be recovered by searching the database.
- Mutant lines can be ordered from catalogue.

T-DNA insertion lines

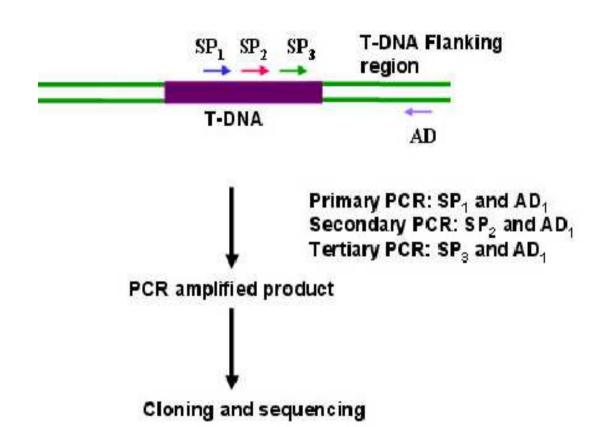
- Average number of independent insert 1.5 per diploid genome
- 57% of the transformants containing single insert
- 25% of the transformants containing double insert
- Bias observed against integration events in exons and introns in favour of promoters, 5' and 3' UTRs
- Number of integrations decrease from chromosome arms towards centromers

Disrupted gene for blue light receptor Mutant gene for blue light receptor T-DNA Identify map chromosomal location and Clone gene (A) Chemical mutagenesis vs. T-DNA mutagenesis clone gene containing position Walk to T-DNA Isolate mutants insensitive to blue light mutagenesis mutagenesis Chemical T-DNA



Identification of sequences flanking T-DNA (= mutated gene)

- Inverse PCR
- Thermal asymmetric interlaced (TAIL) PCR
- Plasmid rescue


Inverse PCR

- 1) Restriction digestion of genomic DNA from mutant plant (preferably single cut within the T-DNA);
- 2) self-ligation;
- 3) circularized ligation products are used for PCR amplification using appropriate primers from the T-DNA region.

Thermal asymmetric interlaced (TAIL) PCR

Three consecutive rounds of PCR, performed with a set of three nested T-DNA specific primers (SP1, SP2 and SP3) and a small, arbitrary primer.

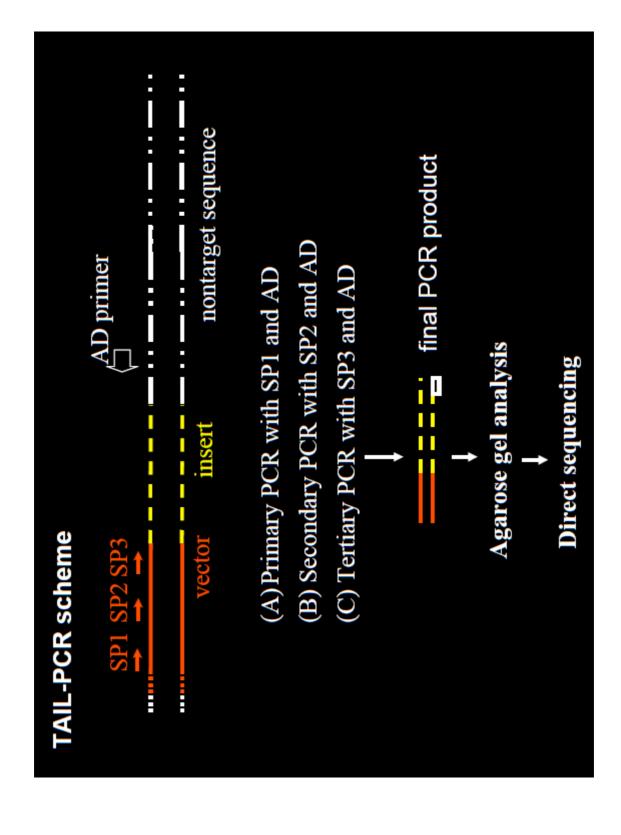
AD is arbitrary degenerate primer indicated by purple arrow.

Arbitrary or degenerate primer

1.3.3. Primer degenerati

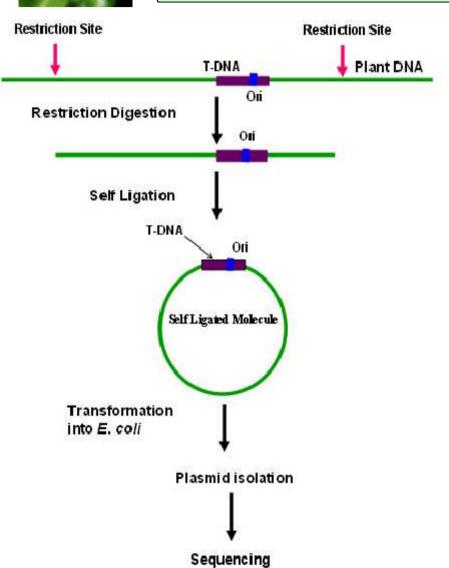
I primer degenerati sono primer la cui sequenza non è determinata univocamente, ma contiene una o più posizioni in cui possono essere presenti più nucleotidi in miscela. Ad esempio, la sequenza sottostante di un primer di 20 basi:

5'-ACGTATNTCCNCAYATYGCT-3'

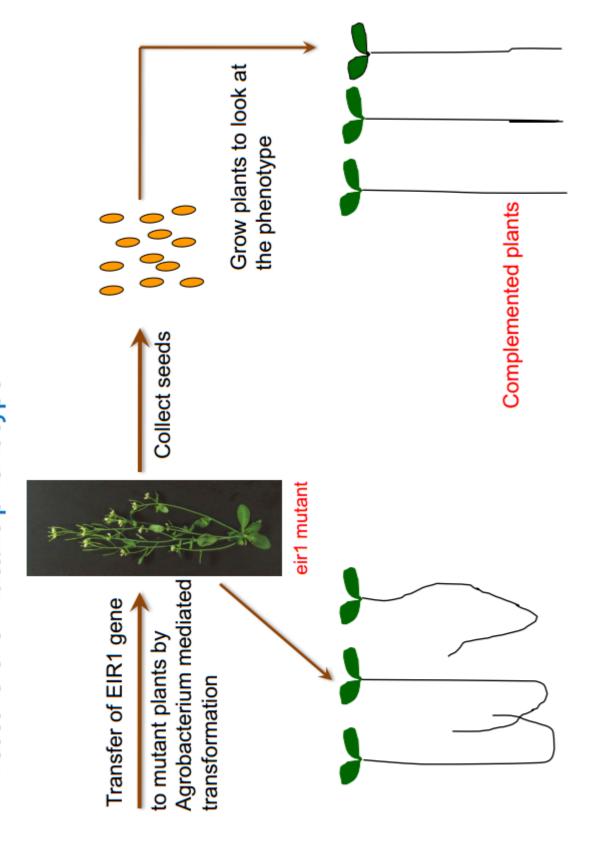

significa che il primer disegnato contiene delle posizioni ("degenerazioni" indicate con Y e N) che contengono in miscela le basi T+C (Y) o A+G+C+T (N). Le degenerazioni ovviamente riducono la specificità del primer aumentando le possibilità di appaiamento.

A cosa servono i primer degenerati?

I primer degenerati possono essere utilizzati per amplificare sequenze di DNA (ignote) da un organismo utilizzando per il disegno del primer la sequenza nota (omologa) proveniente da un altro organismo o dallo stesso organismo. In alcuni casi si possono usare i primer degenerati


Primer Design for TAIL-PCR

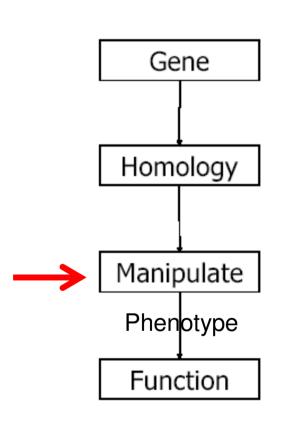
- Specific primer (SP)
- Nested sequence specific primer complementary to vector sequence
- − High melting temperature, T_m=58-63°C
- Arbitrary degenerate (AD) primer
- Relatively shorter
- Lower melting temperature, T_m =47-48°C



Plasmid rescue

- 1) Restriction digestion of genomic DNA from mutant plant (preferably with an enzyme which does not cut within the T-DNA);
- 2) self ligation;
- 3) transformation of *E. coli* with the self-ligated fragments

Final step: to validate the gene function we need to restore the mutant phenotype



Mutant collections

Submitted by	Background	Selectable marker	Promoter/enhancer/rep orter gene Population size		References
SALK	Columbia-0	Kanamycin		145589	Alonso et al. 2003
GABI-Kat ²	Columbia-0	Sulfadiazine		59455	Rosso et al. 2003
Czaba Koncz		Hygromycin		300	Szabados et al. 2002
Syngenta	C24	Hygromycin	GUS	1250	Sessions et al. 2002
INRA- Versailles	Ws, (Wassil-evskija)	Basta	GUS	1480	Balzergue et al. 2001
Le Clere and Bartel	Columbia	Basta	CaMV35S-cDNA	33100	LeClere and Bartel, 2001
Haseloff	C24	Kanamycin	GAL4-GFP	8000	Kiegle et al. 2000
Weigel	Columbia	Basta	Multimerised CaMV35S enhancers	>20000	Weigel et al. 2000
Sussman and Amasino ³	Ws-2	Kanamycin	Ap2::GUS	37800	Sussman et al. 2000
Jack	Columbia	Kanamycin	CaMV-GUS	11370	Campisi et al. 1999
Ehrhardt	Col-2 (CS907)	Basta	CaMV 35S -GFP	108	Cutler et al. 2000

GENETICA INVERSA

'Reverse Genetics'

- Know a gene
 - genome sequence, EST etc
- and want to discover function
- Manipulate the gene
 - and do as for forward genetics

BUT

- Need to know roughly what to look for in phenotype (guess by homology)
 - But no idea of function of 30% of Arabidopsis genes
- Need gene not to have function covered by another gene
 - Multigene families (37% of Arabidopsis genes in families of >5 genes)

MANIPULATION OF THE EXPRESSION OF YOUR PLANT GENE FOR REVERSE GENETICS

- Gene disruption (Knock-out)
- Gene Knock-down

(you mostly buy mutants)

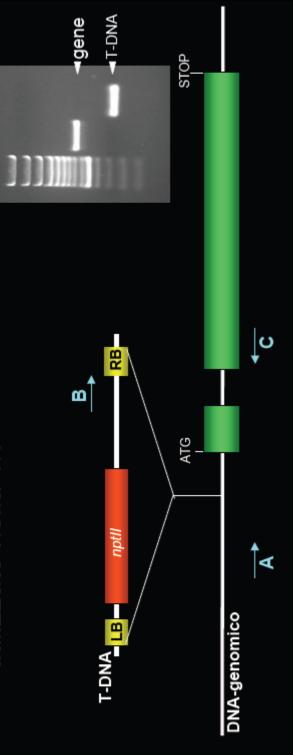
- Gene silencing (TARGETED) (Hairpin-loop, artificial miRNAs)
- Gene OVEREXPRESSION (35S promoter or inducible promoters)
- Genome editing (you generate mutants)
- Gene overexpression or silencing in specific tissues (ex. GAL4-UAS) (buy +generate)

Reverse genetics

Enabling tools for reverse genetics:

- Collections of mutations that reside in almost every gene
- Methods to rapidly knock out or knock or silence or overexpress genes of interest

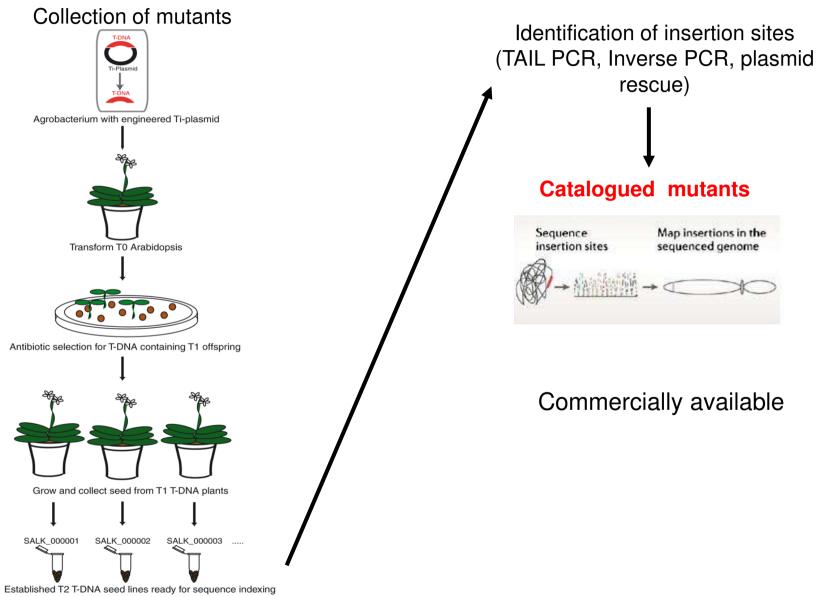
How to choose a gene:


- Your favorite gene family or gene function
- Candidate genes from other genomics approaches associated with your favorite biological process
- Candidate genes from other organisms associated with your favorite biological process

Approccio di Genetica Inversa:

Conosco la sequenza del mio gene di interesse

Disegno primers


specifici per il gene ed il T-DNA M A/C B/C Conosco la sequenza del T-DNA utilizzato nella T/F

B+C = sequenza T-DNA/genomica A+C = sequenza genomica

T-DNA insertional mutant collection for reverse genetics (commercially available)

Mutant collections

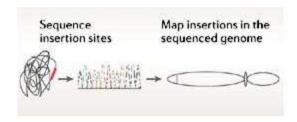
Submitted by	Background	Selectable marker	Promoter/enhancer/rep orter gene Population size		References
SALK	Columbia-0	Kanamycin		145589	Alonso et al. 2003
GABI-Kat ²	Columbia-0	Sulfadiazine		59455	Rosso et al. 2003
Czaba Koncz		Hygromycin		300	Szabados et al. 2002
Syngenta	C24	Hygromycin	GUS	1250	Sessions et al. 2002
INRA- Versailles	Ws, (Wassil-evskija)	Basta	GUS	1480	Balzergue et al. 2001
Le Clere and Bartel	Columbia	Basta	CaMV35S-cDNA	33100	LeClere and Bartel, 2001
Haseloff	C24	Kanamycin	GAL4-GFP	8000	Kiegle et al. 2000
Weigel	Columbia	Basta	Multimerised CaMV35S enhancers	>20000	Weigel et al. 2000
Sussman and Amasino ³	Ws-2	Kanamycin	Ap2::GUS	37800	Sussman et al. 2000
Jack	Columbia	Kanamycin	CaMV-GUS	11370	Campisi et al. 1999
Ehrhardt	Col-2 (CS907)	Basta	CaMV 35S -GFP	108	Cutler et al. 2000

La disponibilità della sequenza del genoma di *Arabidopsis* ha permesso di mappare sul genoma tutte le inserzioni

Tail-PCR e sequenziamento del DNA vicino al sito di inserzione

Ricerca omologia sul DNA genomico

Organizzazione in banche dati


Per Arabidopsis il SALK raccoglie i risultati di più collezioni di mutanti (SAIL, Wisc) e la distribuzione è gratuita

http://signal.salk.edu/tabout.html

Then, what do you have to do?

Catalogued mutants

Select on the Internet and buy mutants in the gene or genes of interest

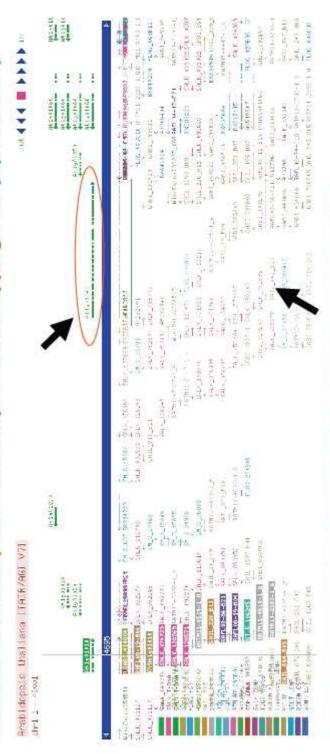
♦Molecular genotyping

T-DNA Express: Arabidopsis Gene Mapping Tool (May. 7, 2008)

			Clear
	At5g42350		Search
	Query:	Posn:	
	1	F	F
2	Cene	chr1	Graphy
1. Search: [7]	Type:	Chr.	Display:

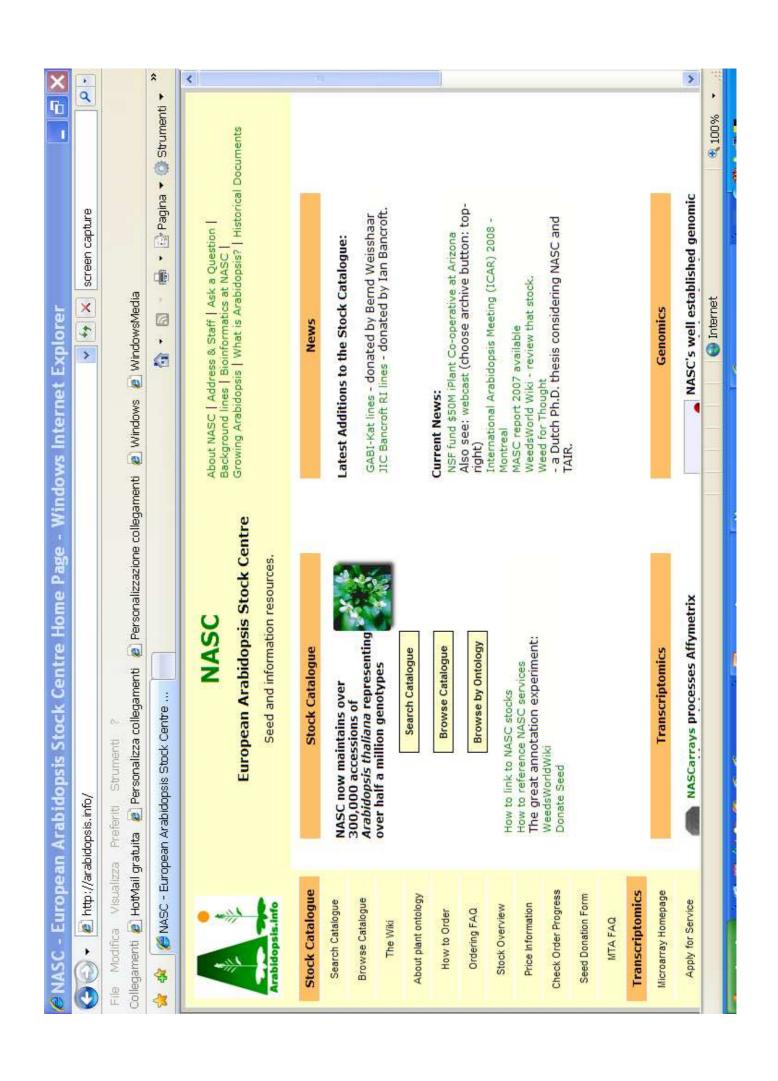
a. Data Source, Detail and Summary. b. Gene Expression Atlas Data Source.

3. Data Source:

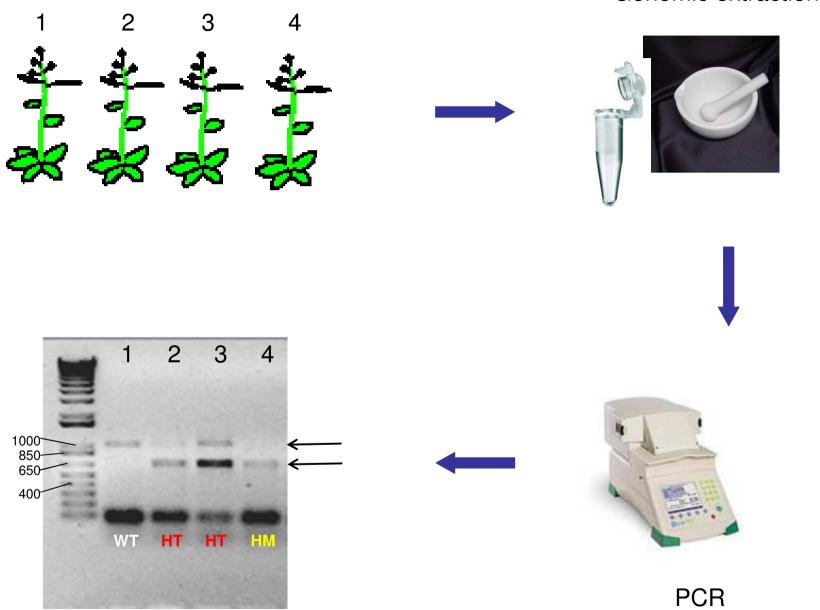

Please Select one

2. iSect Tool: [?]

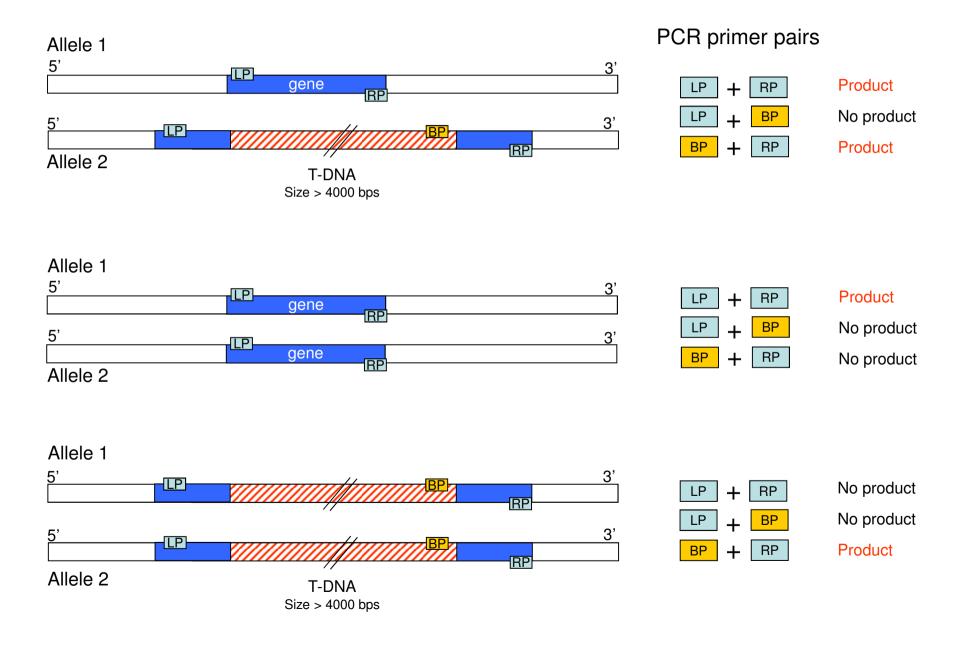
c. Data Release Policy. d. FAQs.

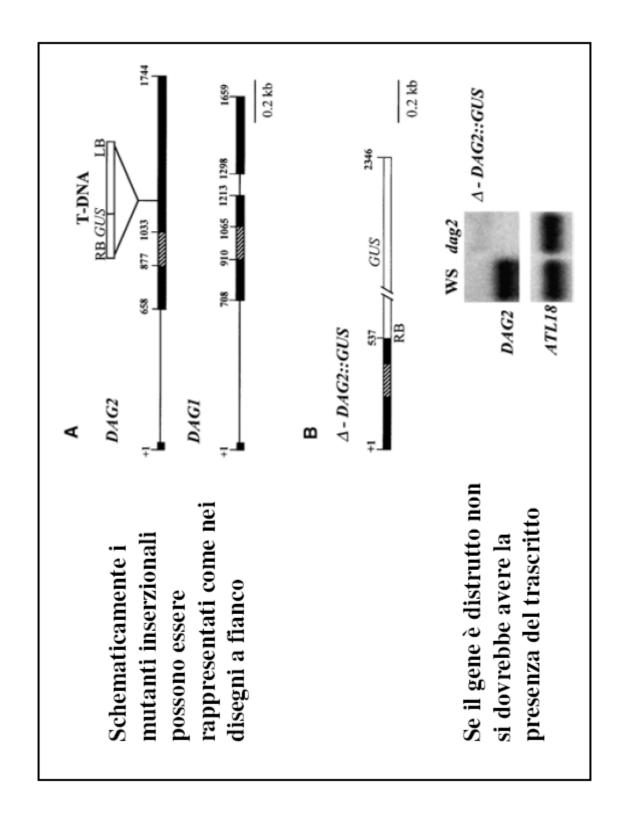

SIGNAL "T-DNA Express" Arabidopsis Gene Mapping Tool (Apr. 22, 2007)

Please note: We are using AGI/TAIR V7 pseudo-molecules & annotation (Apr-06-2007


http://signal.salk.edu/cgi-bin/tdnaexpress

Ordino il mutante !!

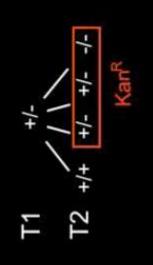



Mutant genotyping

Genomic extraction

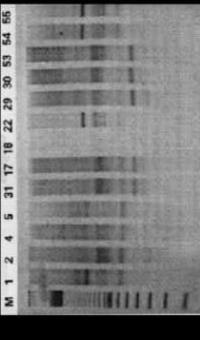
Mutant genotyping

La T/F con *Agrobacterium* ha una efficienza media di 1,5 inserzioni di T-DNA per linea

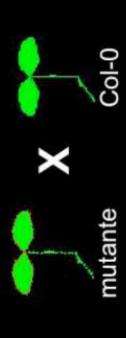

Più inserzioni nella mia linea?

• in loci differenti Rap di lir

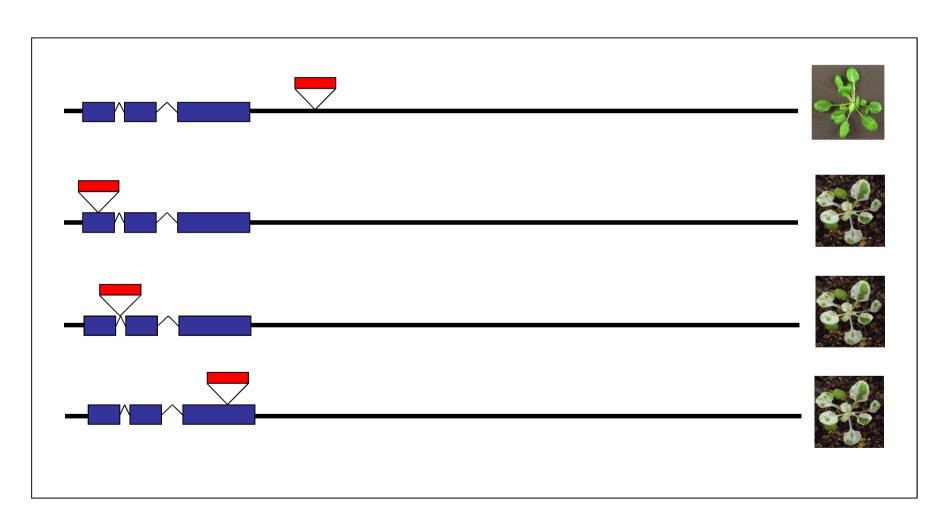
Rapporti di segregazione di linee eterozigoti sulla


resistenza e Southern

 nello stesso locus Southern


- = Allele selvatico- = T-DNA

Southern Blot


Analisi del pattern di bande

Se ci sono più inserzioni in loci differenti si incrocia la linea mutante con la rispettiva linea selvatica (reincrocio)

Finchè non trovo un rapporto di segregazione di 3:1

How to chose the mutant of interest (you should have at least two alleles)

Select homozygous and propagate

Back crossing

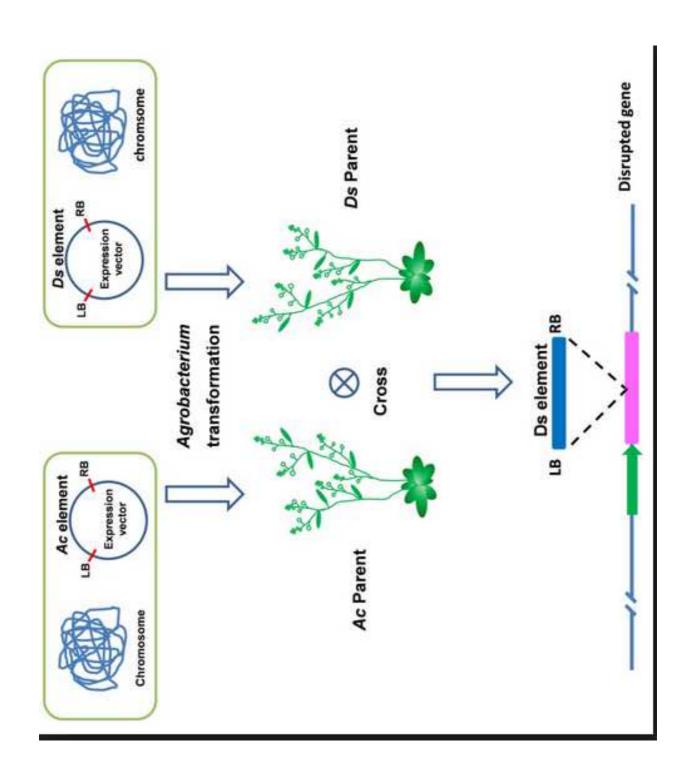
IN general, but expecially for pleiotropic mutants, it is necessary to determine whether the phenotypes result from same or from two different mutations. This can be determined by multiple round of backcrossing or by co-segregation analysis

Backcross of the mutant to wt is important to clean up the mutant.

Theoretically, each back cross removes half of the unlinked secondary mutations.

The probability that a particular unlinked mutation remains after n rounds of back crossing is $(1/2)^n$

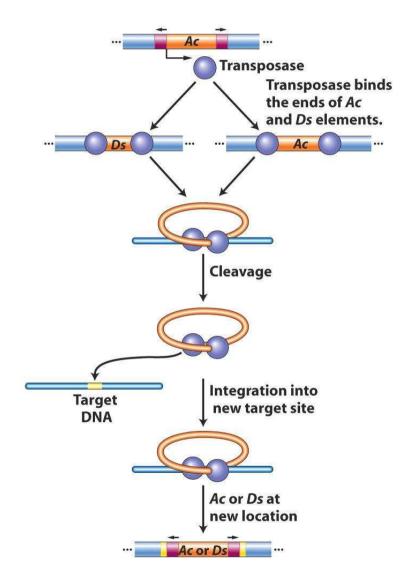
Constraints on use of knockouts


Genes may have no obvious loss-of-function phenotype due to:

presence of duplicate genes

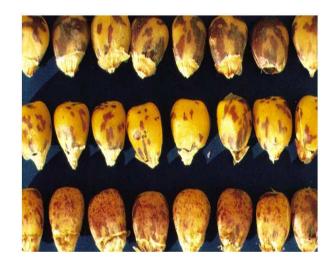
existence of alternative metabolic pathways and regulatory networks

lethality


TRASPOSONI ED ACTIVATION TAGGING

Mutagenesis by transposon tagging

- Two maize-derived transposons are used
 - » Ac/Ds Transposon
 - » (En1 Transposon)
- Ds is the transposon (does not encode a transposase)
- Ac is an immobile element encoding the transposase
- Ds transposon is maintained immobile because Ac (encoding transposase) is maintained in a separate plant line
- To mobilize the Ds trasposon you cross the plants and obtain an F1
- Eventually you segregate out Ac to have stable lines

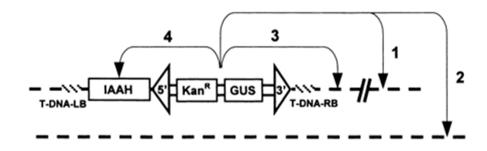

MUTAGENESI TRAMITE TRASPOSONI

Esempio: il sistema Ac/Ds (Activator/Dissociator)

Due linee transgeniche, che recano una l'elemento Ac e l'altra l'elemento Ds vengono incrociate.

Nella progenie la TRASPOSASI Ac mobilizza l'elemento Ds, generando piante F1 che sono MOSAICI GENETICI (Barbara McClintock)

Transposon tagging


<u>Ac-Ds</u> system: contain 11 bp terminal inverted repeat (TIR), create 8 bp target site duplication. The 4.5 kb *Ac* element codes for 3.5 kb mRNA for transposase.

<u>En-Spm system</u>: contain a 13 bp TIR and create a 3 bp target site duplication. *En* element is 8.3 kb long and contains 2 alternately spliced gene products, *Tnp*A and *Tnp*D. Both are required for transposition.

Robertson's mutator (*Mu*)/ *Mu*DR: Very mobile, short (1.5 or 1.7 kb) in maize. Cause high rate of mutation, somatic instability. *MuDR* encodes the MURA transposase required for *Mu* transposition and MURB, a helper protein implicated in insertion. All *Mu* elements share 215-bp terminal inverted repeat (TIR) sequences and the mobile *Mu* elements contain a highly conserved 32-bp MURA transposase binding site. Characteristic 9-bp host sequence duplications are generated during *MuDR/Mu* germinal insertion.

MUTAGENESI TRAMITE TRASPOSONI

- Gli elementi Ds traspongono preferibilmente in siti vicini al sito donatore, per cui le linee sono disegnate in modo da permettere:
- a) la selezione positiva per la presenza di Ds originati da nuove trasposizioni
- b) la selezione negativa contro Ac e contro il locus Ds donatore.
- Il T-DNA che contiente Ac reca anche il gene per l'indolacetammide idrolasi (IAAH), che conferisce sensibilità al naftalene acetammide (NAM).
- L'elemento Ds porta il gene NPTII (resistenza alla kanamicina)
- Il T-DNA per l'elemento Ds donatore porta anche il gene IAAH, in modo da selezionare contro la presenza del Ds trasposto vicino al Ds donatore.

Nature Reviews | Genetics

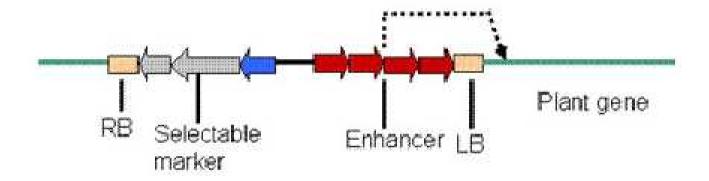
VANTAGGI DELLA MUTAGENESI TRAMITE TRASPOSONI

- La mutazione è reversibile: in presenza della trasposasi, il trasposone può escindersi nuovamente dal locus mutagenizzato, ripristinando il locus WT e confermando che il fenotipo è legato all'inserzione
- 2) Poiché gli eventi di trasposizione avvengono preferibilmente vicino la sito donatore, si può utilizzare questa strategia per effettuare mutagenesi mirate su determinate regioni cromosomiche

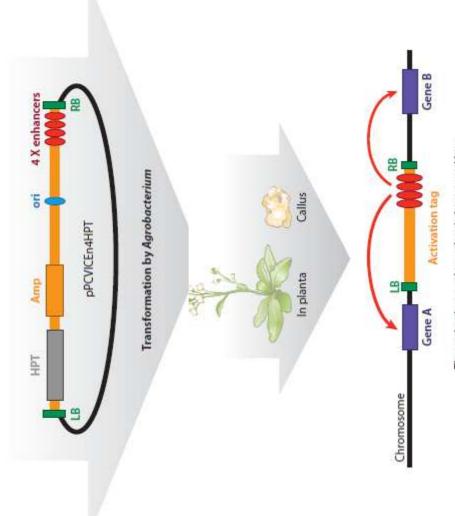
Constraints on use of knockouts

Genes may have no obvious loss-of-function phenotype due to:

- presence of duplicate genes
- existence of alternative metabolic pathways and regulatory networks
- lethality


- Gene function studies can be performed also on the basis of expression patterns or gain-offunction phenotypes. These screens are particularly useful for genes that have redundant and multiple functions during development.
- Before 1992 there was no technique to isolate gainof-function mutants.
- Activation tagging technology was originally developed by Rick Walden at the Max Planck Institute.
- This technology has made the production of gainof-function mutants possible.

1) Generation of gain of function mutants by activation tagging


- -In this technique instead loss of function in response to insertion element, gain of function takes place.
- -The insertion element (T-DNA or transposon) carries an enhancer (or a a strong outward-facing promoter) and if, it integrates adjacent to an endogenous gene, the gene will be activated by the enhancer (or the promoter).
- -This type of tagging causes over expression or ectopic expression of endogenous gene.

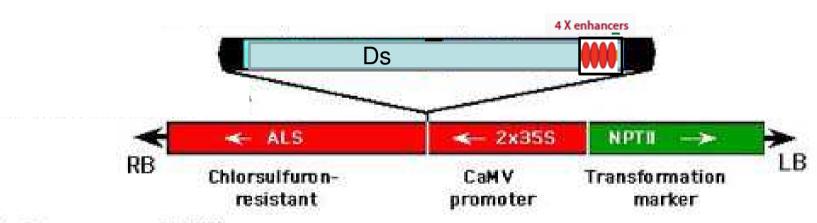
Activation TAG lines

The vector contains multimerized cauliflower Mosaic Virus (CaMV) 35S enhancer that can function in either orientation and can cause transcriptional activation of nearby genes resulting in dominant gain of function mutations.

The activation tag is randomly integrated into the genome and activates nearby genes.

Figure 1

resistance gene (Amp) for bacterial selection, and the replication origin (ori) for stable maintenance in E. adi. Amp and ori are necessary for plasmid rescue. Plants and callus can be transformed by the activation-tagging CaMV 335 enhancers in the activation tag activate the nearby genes (Genes A and B) in the activation-tagged vector through Agrabacterium. T-DNA (the activation tag) is randomly inserted into the plant chromosome. pPCVICEn4HPT, contains tetrameric CaMV 35S enhancers (4 X enhancers), left (LB) and right border (RB) sequences, the hygromycin resistance gene (HPT) for the plant selection marker, the ampicillin Overview of the activation-tagging system. The T-DNA region of the activation-tagging vector,


Transposon-based Activation Tagging

- Two transposons used:
 - » Ac/Ds Transposon
 - » En1 Transposon

Construct for transposon-based Activation Tagging

Figure 1: Structure of Ac- and Ds-(T-DNAs

a. Transposon T-DNAs

b. Transposase T-DNAs

BamAc

RB Negative selectable Transformation
Nae Ac marker marker

Conclusion

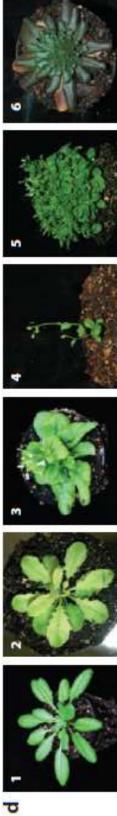
- Using Activation tagging numerous genes that play a vital role in plant growth and development are being isolated and maintained.
- This method is extensively used for cloning several genes in all on-going plant genomics research.

2) Gain-of-function mutants generated by ectopic expression of cDNAs Driven by a Constitutive Promoter

Arabidopsis lines that overexpresses random cDNAs driven by the *CaMV* 35S promoter.

More than 30,000 Arabidopsis transgenic plants have been generated

Problem cDNA may not be full length


(risk of dominant-negative effects due to truncated proteins)

3) Gain-of-function mutants generated by the FOX Hunting System

The full-length cDNA over-expressing gene (FOX) hunting system is an alternative gain-of-function approach that uses fl-cDNAs

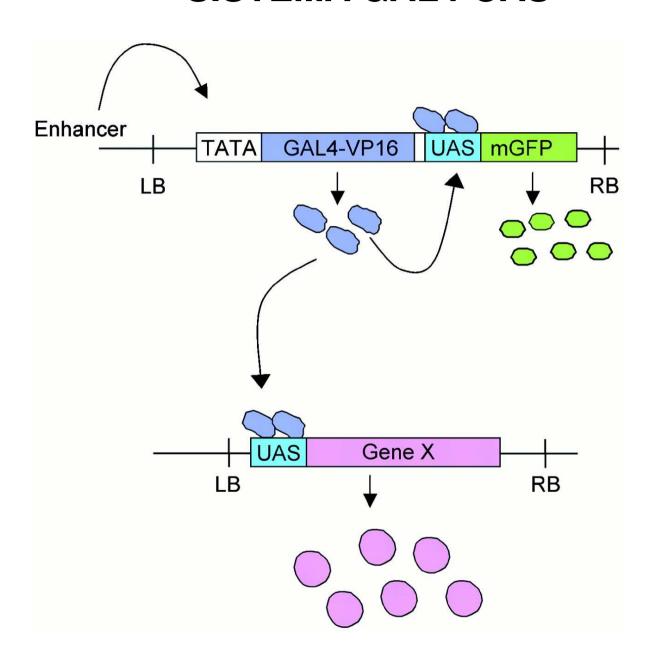
Overview of the cDNA overexpression and open reading frame (ORF) overexpression systems. (a) To generate Agrobacterium libraries, fl-cDNAs are cloned into an expression vector that contains the CaMV 35S promoter and NOS terminator. (b) As an alternative, ORFs can be amplified by polymerase chain reaction (PCR) and the resulting DNA fragments cloned into the same expression vector. (c) The expression vector is transformed into Agrobacterium and Arabidopsis plants transformed by floral dip infiltration with Agrobacterium that harbors the expression vector. To plants are self-pollinated to generate independent T1 FOX seeds. The phenotypic mutant lines (in this case, the E line) are identified from T1 lines. The transgene of the E line is easily identified by PCR amplification with vector-specific primers and sequencing. (d) Wild-type Arabidopsis (1) and isolated mutants from Arabidopsis FOX lines (2-3) and rice FOX Arabidopsis lines (4-6). Abbreviations: LB, left border; RB, right border; Ter, terminator; UTR, untranslated region.

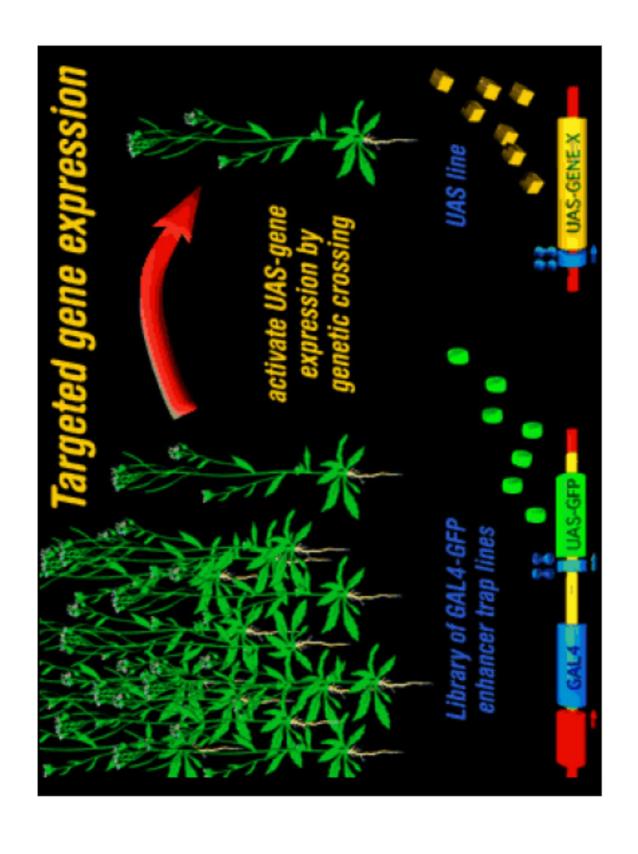
See figure in the next slide

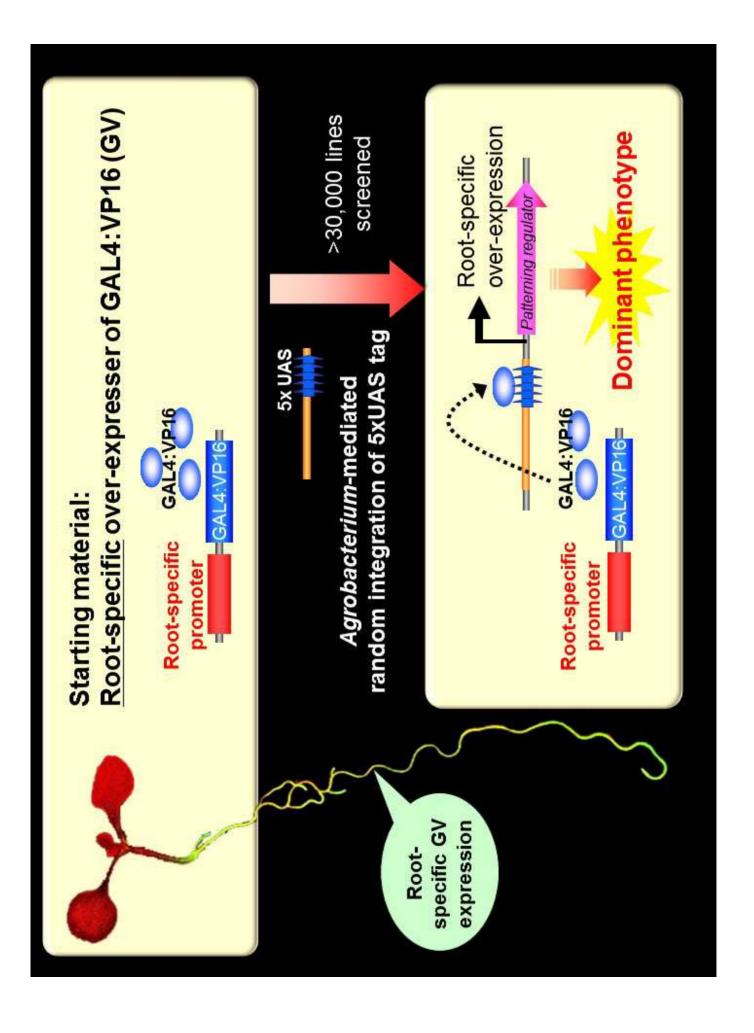
Overexpression of your gene of interest to look at the phenotype is also a reverse genetics approach

Usually the gene is placed under the CaMV 35S promoter

Inducible promoter

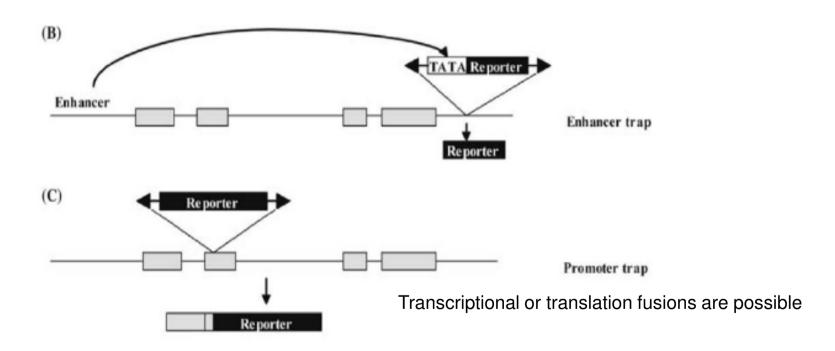

Dominant phenotype


Espressione ectopica in specifici tessuti per generare fenotipi dominanti


Sistema GAL4-UAS

- protocollo per attivare selettivamente l'espressione di un gene X in modo tessuto o cellula-specifico
- · studio dell'effeto dovuto all'espressione ectopica di un gene X
- attivatore GAL4 e gene X sono clonati in linee diverse → si possono studiare anche i fenotipi letali
- le 2 linee vengono incrociate e il gene X verrà espresso solo in quelle cellule dove è espresso GAL4 → studio dell'effetto dell'espressione del gene X durante lo sviluppo

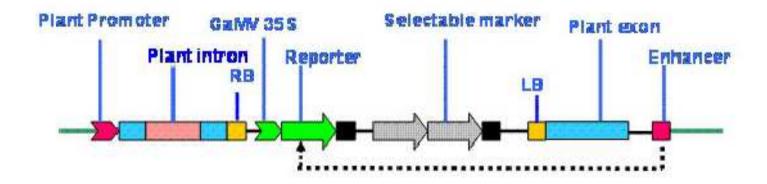
SISTEMA GAL4-UAS



Promoter/ enhancer trapping

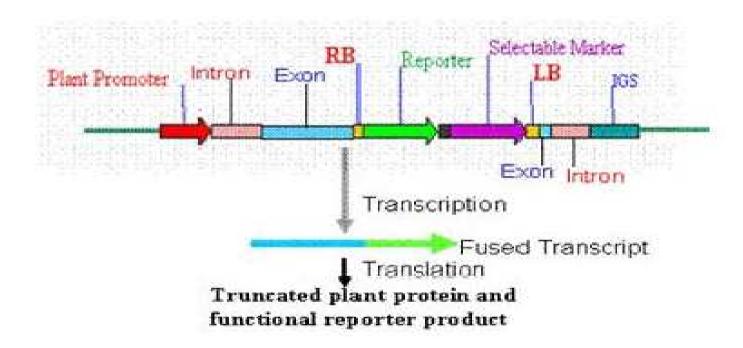
To find genes and corresponding regulatory sequences with specific expression patterns

An et al., 2005 PMB 59, 111


Enhancer/promoter trap vectors

-In these vectors, the insertion element contains a visible marker gene such as Gus A (Encoding β - glucuronidase) or GFP promoterless or downstream of a minimal promoter (that requires an enhancer for activity).

Note- The marker gene will be expressed only when the element insert in proximity of a transcriptional unit (minimal promoter construct) or within the transcription unit of a gene generating either a transcriptional or an in-frame translational fusion (promoterless construct).


Enhancer Trap lines

The minimal promoter of the reporter gene is activated by a chromosomal enhancer element, resulting in over-expression of the reporter gene.

Promoter Trap lines

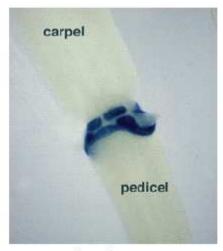
The promoterless reporter gene can be expressed when insertion of a promoter trap vector occurs in an exon so as to result in a transcriptional fusion and disruption of native gene product.

Enhancer trap in Arabidopsis

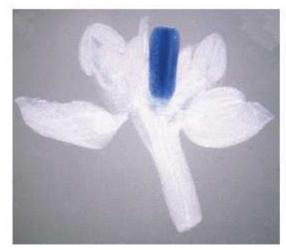
La tecnica dell' enhancer trap permette inoltre di identificare L'analisi di linee enhancer trap di Arabidopsis si basa sulla nuovi geni basandosi sul loro pattern di espressione.

selezione di linee che mostrano uno specifico pattern d'espressione e non su fenotipi mutati.

consiste nel fatto che anche se l'inserzione del T-DNA (enhancer trap) avviene in un gene essenziale la pianta sarà in quasi tutti i Un vantaggio di questa tecnica rispetto all'analisi di mutanti casi vitale essendoci nella generazione T, una condizione di emizigosi.


far esprimere un determinato gene in un limitato numero di cellule permette anche di ottenere, mediante incroci, piante in cui si può La possibilità di disporre di linee di Arabidopsis enhancer trap o tessuto.

Enhancer trap (GUS) in Arabidopsis


Selection of the desired mutants is based on the expression profile of the reporter gene

Espressione diffusa

Zona di abscissione

Carpello specifica

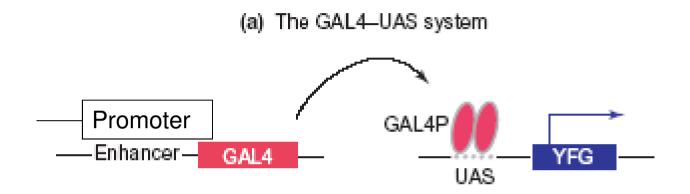
Antera specifica

Petalo specifica

Enhancer trap (GUS) in *Arabidopsis*

- Primo progetto di enhancer trap su larga scala
- sono state generate più di 11,000 linee enhancer trap.
- semi di queste linee sono disponibili per la distribuzione sia al "Arabidopsis Biological Resource Center" (ABRC) presso l'università dell'Ohio sia al "Nottingham Arabidopsis Stock Center" (NASC).
- Il T-DNA con cui le piante sono state trasformate contiene il promotore minimale -60CaMV fuso al gene per la β -glucuronidasi (6US).
- adiacente al T-DNA provocano un aumento della in trascrizione a partire dopo l'integrazione, elementi enhancer che si trovano sul DNA genomico dal promotore minimale e si osserva una aumento del livello dell'espressione di 6US
- specifica come specificato dall'enhancer. Questa espressione può essere visualizzata mediante la colorazione per il 6US usando il substrato l'espressione di GUS risulta spesso essere cellula-, tessuto- o organocromogenico X-gluc
- 31% delle linee mostra colorazione a livello delle infiorescenze

Limitations


- gene trap strategy selects for insertions into genes -> is very useful in plants with large amount of non-genic DNA
- Dependency on 'in frame' insertions -> two-third of all "hits" on genes were not recognized
- expression of marker relies on the transcriptional activity of the surrounding gene, and therefore, non-expressed genes are not detected

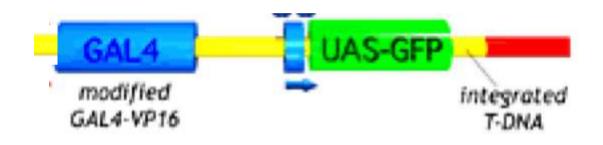
Solution

-The use of ribosome entry sites (IRES) bypasses the need for in-frame design, it greatly increases the hit rate of gene traps.

A bipartite system for promoter/enhancer trapping

The bipartite GAL4-UAS system

- GAL4 is a transcriptional activator from yeast that recognizes a DNA sequence called the UAS (upstream activating sequence)
- •The UAS to which Gal4 binds is CGG-N₁₁-CCG, where N can be any base
- We can use this to control expression of YFG in a tissue specific manner by using enhancer elements specific for the tissue we are interested in


GAL4-VP16 is an unusually potent transcriptional activator.

Formed by fusing a DNA-binding fragment of the yeast activator GAL4 to a highly acidic portion of the herpes simplex virus protein VP16 (ref. 11; also called Vmw65).

VP16 activates transcription of immediate early viral genes by using its aminoterminal sequences to attach to one or more host-encoded proteins that recognise DNA sequences in their promoters.

The hybrid protein (GAL4-VP16) activates transcription unusually efficiently in mammalian cells when bound close to, or at large distances from the gene.

A collection of trangenic plants have been obtained carrying T-DNA insertions containing both sequences for GAL4-based promoter/enhancer trapping and UAS-GFP

Mutants have been characterized for expression profile and made available [useful for reverse genetic approaches (see ahead)]

NASC

On-Line Catalogue

NASC home Help

Search Browse

NAME OF STREET

Picture book

How to order
Order by code
View selection
Order selection

Fees FAQ / Help Your Details Create/Update

New charging system All single stocks are charged at £2.25 each with a fee of £8.50 per order

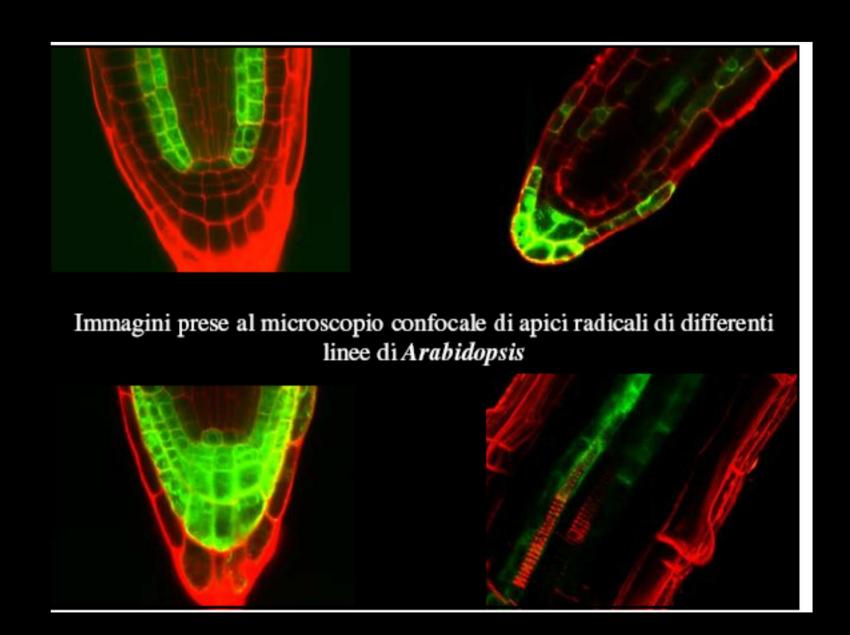
Haseloff GAL4-GFP Enhancer-trap lines

These lines have been produced, and donated, by Dr. Jim Haseloff, MRC Laboratory of Molecular Biology, Hills Road Cambridge, UK.

Ordering lines

Four sets of GAL4-GFP lines are now available. The sets correspond to those mentioned on Jim Haseloff's web site and fall into the following categories.

- Set 1 and 1a Lines pre-screened for root expression by Jim Haseloff and Sarah Hodge.
- Set KS Lines pre-screened for shoot and floral expression by Kirby Siemering and Marion Bauch.
 - Set M Lines prescreened for shoot and floral expression by Marion Bauch.


Individual lines may also be ordered, to do so follow the details link in the table below.

For detailed descriptions of these lines, and information relating to these lines, please refer to Jim Haseloffs' web page.

. About the GFP lines

Category	Stock No. Price £	Price £	
GAL4-GFP Enhancer trap lines - set 1 (116 lines) details N9089		122	
GAL4-GFP Enhancer trap lines - set 1a (29 lines) details N9340	N9340	33	
GAL4-GFP Enhancer trap lines - set KS (31 lines) details N9341	N9341	36	
GAL4-GFP Enhancer trap lines - set M (70 lines) details N9342	N9342	22	

Add to Selection

