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Abstract
The recent REACH Policy of the European Union has led to scientists and regulators to
focus their attention on establishing general validation principles for QSAR models in the
context of chemical regulation (previously known as the Setubal, nowadays, the OECD
principles). This paper gives a brief analysis of some principles: unambiguous algorithm,
Applicability Domain (AD), and statistical validation. Some concerns related to QSAR
algorithm reproducibility and an example of a fast check of the applicability domain for
MLR models are presented. Common myths and misconceptions related to popular tech-
niques for verifying internal predictivity, particularly for MLR models (for instance cross-
validation, bootstrap), are commented on and compared with commonly used statistical
techniques for external validation. The differences in the two validating approaches are
highlighted, and evidence is presented that only models that have been validated
externally, after their internal validation, can be considered reliable and applicable for
both external prediction and regulatory purposes.
(“Validation is one of those words...that is constantly used and seldom defined” as stated
by A. R. Feinstein in the book Multivariate Analysis: An Introduction, Yale University
Press, New Haven, 1996).

1 Introduction

The New Chemicals Policy of the European Commission
(REACH: Registration, Evaluation and Authorisation of
Chemicals) [1] explicitly states that at chemical registra-
tion level the registrant “should include information from
alternative sources (e.g., from Quantitative Structure –Ac-
tivity Relationships (QSARs), etc.) which may assist in
identifying the presence or absence of hazardous proper-
ties of the substance, and which can in certain cases re-
place the results of animal tests. Obviously, for the purpos-
es of the REACH legislation, it is essential to use QSAR
models that produce reliable estimates, i.e., validated
QSAR models [2]. Model validation has been the subject
of much recent debate in the scientific and regulatory
communities. It was considered important to develop an
internationally recognized set of principles for QSAR vali-
dation, to provide regulatory bodies with a scientific basis
for making decisions on the acceptability of QSAR esti-
mates of regulatory endpoints, and to promote the mutual
acceptance of QSAR models.

Several principles for assessing the validity of QSARs
were proposed in 2002, as the “Setubal Principles”, at an
international workshop held in Setubal (Portugal) [3];

these were then modified in 2004, by the OECD Work
Programme on QSARs, as the OECD Principles [4] for
QSAR validation.

To facilitate the consideration of a QSAR model for
regulatory purposes, it should be associated with the fol-
lowing information: (1) a defined endpoint; (2) an unam-
biguous algorithm; (3) a defined domain of applicability;
(4) appropriate measures of goodness-of-fit, robustness
and predictivity; (5) a mechanistic interpretation, if possi-
ble.

The most substantial revision of the Setubal principles
in the new OECD principles was the unification of the
previous Principles 5 (internal validation) and 6 (external
validation) into the single Principle 4. However, it is im-
portant to note that, at the OECD meeting in September
2004, some experts requested this Principle be reworded
as two separate Principles, like the original Setubal ver-
sion, on the basis that the new approach does not suffi-
ciently emphasize the need for external validation. Other
participants felt that the single Principle was more appro-
priate to allow flexibility in regulatory acceptance. The au-
thor, because of her approach to QSAR modeling [5 – 14],
is biased towards the clear separation of these two aspects
of QSAR validation. In fact, as the real utility of a QSAR
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model lies in its ability to accurately predict the modeled
property for new chemicals, a realistic assessment of the
modelKs true predictive power must be ascertained in the
most rigorous and realistic way possible [14].

The present paper examines the OECD Principles 2 –4,
paying particular attention to the differences in internal and
external validations, as many authors frequently do not re-
alize the importance of the difference in these two valida-
tion approaches. The theoretical constructs are illustrated
with examples taken from the literature as well as from the
recent report for ECVAM on “Evaluation of different stat-
istical approaches to the validation of QSARs” [15].

2 Discussion

2.1 Principle 2: An Unambiguous Algorithm

According to OECD principles, for a QSAR model to be
acceptable in chemical regulations it must be clearly de-
fined, easily and continuously applicable in such a way
that the calculations for the prediction of the endpoint can
be reproduced by everyone, also for new chemicals. Thus,
the unambiguous algorithm is characterized not only by
the mathematical method of calculation used, but also by
the specific molecular descriptors required in the model
mathematical equation. Thus, the exact procedure used to
calculate the descriptors, including compound pretreat-
ment (e.g., energy minimization, partial charge calculation,
etc), the software employed, and the variable selection
method for QSAR model development should be consid-
ered as integrative parts of the overall definition of an un-
ambiguous algorithm.

Although all QSAR models (linear and nonlinear) are
based on algorithms, the most common and transparent
method, where models are described by clearly expressed
mathematical equations, is Multiple Linear Regression
(MLR), applied by the author in her QSAR studies (for
instance in [5 – 13]). The reproducibility of a proposed
MLR model must be guaranteed by the possibility of its
future application in the defined regression equation for
new chemical prediction and, thus, by the continuous
availability of reproducible descriptors included in the
proposed equation.

To exemplify this point, the following QSAR model for
log BCF validated prediction was published in 2003 [8]:

Log BCF¼�17.58þ1.69 VIM
D;deg�0.45 nHAcc

þ15.65 MATS2m�0.36 GATS2e�1.64 H6p (1)

R2: 0.79; Q2
LOO: 0.78; Q2

LMOð50%Þ: 0.77; Q2
EXT: 0.88

To guarantee the reproducibility of the unambiguous algo-
rithm (applying the above equation with exactly the same
intercept value and coefficients, also to new chemicals),
the calculated descriptors must be exactly reproducible.

Unfortunately, we verified that this condition was no lon-
ger applicable, as a new version of the software Dragon
calculates some of the selected descriptors differently.
Thus, to have a model reproducible with the descriptors
actually available (calculated by the updated version of
Dragon), we redeveloped [13] the model and proposed the
following new updated Eq. 2. Genetic Algorithms (GA)
applied for variable subset selection again selected similar
and mechanistically interpretable descriptors from the
new input descriptors.

Log BCF¼�0.74þ2.55 VIM
D;deg�1.09 HIC�0.42 nHAcc

�1.22 GATS1e�1.55 MATS1p (2)

R2: 0.81; Q2
LOO: 0.79; Q2

boot: 0.79; Q2
EXT: 0.88

The same crucial problem of descriptor reproducibility
can also be found in the more general and widely applied
QSAR models, based on log Kow as the molecular descrip-
tor, for instance, for nonpolar narcosis in fish [16]

Log (LC50)¼�0.846 log Kow�1.39

This equation could be correctly applied for the prediction
of new toxicity data only if the descriptor value is homoge-
neously calculated, but it is well known that, in apparent
contradiction to its wide use, log Kow is not a universal de-
scriptor and its value varies, depending on the experimen-
tal procedure or the calculation method applied [17, 18].
Thus, the predicted data will differ if log Kow used in the
equation comes from a different experimental method or
different software [18]. This critical point of variability in
toxicity prediction, resulting from the use of differently
calculated log Kow values, was recently demonstrated by
the author group in modeling Fathead Minnow toxicity [12].

In general terms, principle 2 can be applied differently
to different modeling methods. The more portable models,
such as MLR models, have surely an unambiguous algo-
rithm (an explicit function relating the dependent variable
to each predictor) and its variable coefficients allow it to
be applied to any future dataset. A crucial point is the use
of the same software version for the variable calculations.

2.2 Principle 3: A Defined Domain of Applicability

Another crucial problem is the definition of the Applica-
bility Domain (AD) of a QSAR model. Not even a robust,
significant, and validated QSAR model can be expected to
reliably predict the modeled property for the entire uni-
verse of chemicals. In fact, only the predictions for chemi-
cals falling within this domain can be considered reliable
and not model extrapolations.

It is important to note that the AD of a model cannot be
verified by studying only a few chemicals (even less than
five) [19], as in such cases it could happen that extrapolat-
ed predictions are good, but probably only by chance, so it
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is impossible to rely on the possibility of obtaining general
conclusions.

The AD is a theoretical region in chemical space, defined
by the model descriptors and modeled response, and thus
by the nature of the chemicals in the training set, as repre-
sented in each model by specific molecular descriptors.

This topic was dealt with at a recent Workshop where
several different approaches were proposed [20], in rela-
tion to the different model typologies. One of the simplest,
and immediately applicable to multiple predictor prob-
lems with normally distributed data such as in Ordinary
Least Squares (OLS) models and Partial Least Squares
models (PLS), is based on distance-based measures, analo-
gous to leverage [20 – 24]. It is important to note that in
multiple predictor models, simple single-variable range
checks are not sufficient to verify AD.

Through the leverage approach [21] (shown below), it is
possible to verify whether a new chemical will lie within
the structural model domain (in this case predicted data
can be considered as interpolated and with reduced uncer-
tainty, hence reliable) or outside the domain (so predicted
data are extrapolated by the model and must be consid-
ered to have increased uncertainty, hence unreliable). If it
is outside the model domain, a warning must be given to
the users. In fact, leverage used as a quantitative measure
of the model applicability domain is suitable for evaluating
the degree of extrapolation, which represents a sort of
compound “distance” from the model experimental space
(the structural centroid of the training set) and is a mea-
sure of the influence a particular chemicalKs structure has
on the model: chemicals close to the centroid are less influ-
ential in model building than the extreme points. A com-
pound with high leverage in a QSAR model would rein-
force the model if the compound is in the training set
(good leverage), but such a compound in the test set could
have unreliable predicted data, the result of substantial ex-
trapolation of the model (bad leverage).

Prediction should be considered unreliable for com-
pounds of high leverage value (h>h*, the critical value be-
ing h*¼3p’/n, where p’ is the number of model variables
plus one, and n is the number of the objects used to calcu-
late the model). When the leverage value of a compound
is lower than the critical value, the probability of accord-
ance between predicted and actual values is as high as that
for the training set chemicals. Conversely, a high leverage
chemical in the test set is structurally distant from the
training chemicals, thus it can be considered outside the
AD of the model.

To clarify recent doubts [25], it is important to point out
here that each QSAR model has its own specific AD
based on the training set chemicals, not just on the kind of
included chemicals but also on the values of the specific
descriptors used in the model itself; such descriptors are
dependent on the typology of the training chemicals.

For example, a population of MLR models of similar
good quality, developed by variable selection performed

with GA [26], can include a hundred different models de-
veloped on the same training set but based on different
molecular descriptors: even if the models are developed
on the same chemicals, the AD for new chemicals can dif-
fer from model to model, depending on the specific de-
scriptors.

To visualize the AD of a QSAR model, the plot of
standardized crossvalidated residuals (R) versus leverage
(Hat diagonal) values (h) (the Williams plot) can be used
for an immediate and simple graphical detection of both
the response outliers (i.e., compounds with crossvalidated
standardized residuals greater than three standard devia-
tion units, >3s) and structurally influential chemicals in a
model (h>h*).

Figure 1 shows the Williams plot of a model for polar
narcotics in Pimephales promelas [12] as an example: here
chemical 347 is wrongly predicted (>3s); it is a test chemi-
cal completely outside the AD of the model, as defined by
the Hat vertical line (high h leverage value). Thus, it is
both a response outlier and a high leverage chemical. Two
other chemicals (squares at 0.35 h) slightly exceed the crit-
ical hat value (vertical line) but are close to three chemi-
cals of the training set (rhombus), slightly influential in the
model development: the predictions for these test chemi-
cals can be considered as reliable as those of the training
chemicals. Chemical 283 is wrongly predicted (>3s), but
in this case it belongs to the model AD, being within the
cutoff value of Hat. This erroneous prediction could prob-
ably be attributed to wrong experimental data rather than
to molecular structure.

2.3 Principle 4: Appropriate Measures of Goodness-of –
fit, Robustness and Predictivity

The R2 [1� (RSS/TSS), where RSS is the Residual Sum of
Squares and TSS is the Total Sum of Squares] is the most
widely used measure of the ability of a QSAR model to re-
produce the data in the training (goodness of fit), but
nothing is known of its robustness and predictivity. Several
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approaches to estimate model predictivity by internal vali-
dation have been suggested. Cross-Validations (CV), the
most commonly used techniques for internal validation,
are statistical techniques in which different proportions of
chemicals are iteratively held-out from the training set
used for model development (an optimal parametersK se-
lection step) and “predicted” as new by the developed
model in order to verify internal “predictivity” {e.g. by
Q2

LOO [Leave-One-Out; 1 – PRESS/TSS where PRESS is
the Predictive Error Sum of Squares], Q2

LMO (Leave-
Many-Out), Q2

boot (bootstrapping [27]).
The statistical parameters should be as high as possible

(maximized) in the best model. However, it is important
to remember that, in contrast to the fitting parameter R2

which increases as more and more descriptors are added
(until there is dangerous overfitting), the value of Q2 gen-
erally increases only when the added predictors are useful
in predicting left out compounds. Although LOO-CV is
the sole technique that uses all the information available
(very relevant mainly in small datasets), thus using the
data more economically, it often overestimates the true
model prediction ability. In fact, recent studies have sys-
tematically addressed the issue of Q2

LOO being an incom-
plete measure of a modelKs predictive power [14, 28 – 33];
while it is essential at the model development step, it is still
inadequate for a reliable estimate of model predictivity for
completely new chemicals.

A stronger CV is LMO-CV where more than one chem-
ical at a time is left out for the validation (groups of CV).
LMO is used to counteract the slight overoptimism of
LOO-CV. LMO methods vary in the data amount held-
out to assess internal validity in relation to the dataset di-
mension, its structural heterogenicity, and the modeled re-
sponse. For big datasets, it is suggested that the highest
splitting possible be applied: It can be arbitrarily high as
long as the remaining percentage of the data is sufficient
to obtain a meaningful model. For medium and small data-
sets (n<50), if too many chemicals are held-out (for in-
stance 50%), the performance of the full model is general-
ly underestimated, since only half the data are used to con-
struct all the reduced parallel models for validation: the re-
duced models may not contain all the relevant structural
information of the whole dataset. In fact, it has been veri-
fied on different datasets [15] that the strongest CV, able
to give a more realistic idea of the true internal predictivi-
ty in small datasets (20 – 30 chemicals), is LMO 30%; even
if it is evident that the more robust models of easily mod-
eled endpoints (e.g. log Kow, solubility, etc.) would allow a
higher perturbation percentage.

Contrary to LOO- and LMO-CV, bootstrap methods
[27] are more efficient and stable: they can be seen as a
smoothed version of CV. Thus, this method generally gives
the most accurate estimates of model performance in
terms of “internal predictivity”.

Although small Q2 values, measured by the above men-
tioned CV (in my opinion those with Q2

LOO<0.7) indicate

models with low robustness and low internal predictive
ability, the opposite is not necessarily true. In fact, while
high Q2 for each internal validation is a necessary condi-
tion for robustness and possible high predictive power in a
model, it alone is not sufficient and could give an overopti-
mistic estimate of model predictivity for really external
chemicals.

In the QSAR community, there are discordant opinions
on the different outcomes of internal and external valida-
tions on QSAR models: most of the modelers still apply
only internal validation approaches, convinced that this
kind of validation gives an adequate and reliable idea of
model predictivity. However, a relatively restricted model-
ersK group always externally validates models, previously
internally validated by CVat the model development step;
such action is based on the modelersK conviction that only
models which have been additionally externally validated
can be considered predictive for new chemicals (“Kubinyi
paradox” [30]) [5 – 14, 29 – 43].

The supporters of using CV alone, for instance Hawkins
[44, 45], Helma [46, personal communication], Asikainen
[47], and Niemelå [48], point out the advantages of using
many different test sets iteratively put out of the training;
such test sets do not participate in the selection of varia-
bles for model development, in the turn in which they are
left out. In this economical way of validation, the random-
ly selected data in each of the test sets are, in a sense, simi-
lar to the real life situation of unknown new chemicals.
But, the author wishes to again highlight that CV tech-
niques are essential at the variable selection step (for in-
stance in our work [5 – 13, 49, 50], we always use Q2

LOO as
the optimization parameter for GA-based variable selec-
tion) and also to verify model robustness (stability of CV-
Q2), but provide a reasonable estimate only of the internal
predictive power of a QSAR model. However, nothing
can be concluded concerning the predictivity of new total-
ly external chemicals (never included in the training set
for model development, so never participating in variable
selection, not even in one run), because any really new
chemical has never been verified [14, 29, 31, 32].

To explain this point, it is important to take into account
that CV, even if introduced at the proper stage [44, 45], is
performed by iteratively developing the model on the
same descriptors, selected only on the reduced training
sets. These parallel models are, in turn, used to make pre-
dictions for chemicals that are iteratively omitted from
each run; such chemicals being considered test chemicals
and thus iteratively independent of model selection. Statis-
tical parameters are then derived from the comparison of
predicted and known experimental data. This is repeated
time and time again (for tens or thousands of runs, de-
pending on the software) and the average of Q2 values
over these runs is used. It is important to highlight that, in
this way, the structural information of each chemical in the
training set (the features represented by the selected de-
scriptors) is taken into account in at least one validation

QSAR Comb. Sci. 26, 2007, No. 5, 694 – 701 www.qcs.wiley-vch.de G 2007 WILEY-VCH Verlag GmbH&Co. KGaA, Weinheim 697

Principles of QSAR models validation: internal and external

www.qcs.wiley-vch.de


run (no chemical is “new” at the end of this process). Bau-
mann too pointed out [31, 32] that although the data used
for validation are independent of the model-building pro-
cess in each single split of the CV process, the resulting in-
ternal estimate of the prediction error is overoptimistic
since the same data are repeatedly used to build and to
assess the model. The average of the performance meas-
ures of these parallel models, taken over several iterations,
is considered as the performance estimate of the final
proposed model (the full model), whose equation is
developed on all the available chemicals (this is the un-
ambiguous algorithm of Principle 2). The parallel models,
developed on reduced training sets for CV, are different
(in terms of variable coefficients) from the final full
model.

The limiting problem for efficient model validation is,
obviously, data availability. When, after model develop-
ment, a sufficiently large number of really new and relia-
ble experimental data are available, the best proof of al-
ready developed model accuracy is to test the model per-
formance on these additional data and at the same time
check the chemical AD. This external validation can be
considered the best. However, it is generally difficult to
have data available (in useful quantity and quality) for ex-
ternal validation purposes for new experimentally tested
compounds. Thus, in the absence of additional statistical
data, external validation can be usefully applied by the
QSAR modeler before the model proposal, to more pre-
cisely define the actual predictive power of the proposed
model. This can be done by adequately splitting, before
the model development, the available input data set into
training set (for model development) and prediction set
(for model predictive assessment) by different methods.
At this point the underlying goal is to ensure that both the
training and the prediction sets span, separately, the whole
descriptor space occupied by the entire dataset, and that
the chemical domain in the two datasets is not too dissimi-
lar [33, 34, 51].

The composition of the two sets is of crucial importance.
The best splitting must guarantee that the training and
prediction sets are scattered over the whole area occupied
by representative points in the descriptor space (represen-
tativity) and that the training set is distributed over the en-
tire area occupied by representative points for the whole
dataset (diversity). The more widely applied splitting
methodologies are based on similarity analysis (for in-
stance, D-optimal distance [51, 52], Kohonen Map-Artifi-
cial Neural Network (K-ANN) or Self Organizing Map
(SOM) [33, 34, 53, 54]) or on random selection through ac-
tivity sampling. The random splitting, while useful if ap-
plied iteratively in splitting for CV internal validation and
more similar to real situations, gives very variable results
when applied to statistical external validation, depending
greatly on set dimension and representativity. In addition,
there is a greater probability of having chemicals outside
the model AD in the prediction set.

Statistical external validation should be applied at the
model development step, in order to determine both the
generalizability of QSAR models for new chemicals, that
must obviously belong to the model AD, and the “realis-
tic” predictive power of the model. The model must be
tested on a sufficiently large number of chemicals not used
in the QSAR model development (at least 20% of the
complete dataset is recommended, but the most stable and
robust models can also be checked on prediction set larger
than the training set [39, 50]). In fact, there are in the liter-
ature examples of highly predictive models obtained by us-
ing significantly reduced training sets and larger test set.
For instance, Kahn et al. [39] used about the 20% of the
available data for model development and a big prediction
set (about 80% of the original data) for model perfor-
mance inspection in the soil sorption modeling. Very re-
cently, the author group modeled the same property [50]
by using even less than 15% of the original dataset in
training. Moreover, it is important to highlight that, as ex-
plained above for AD, a model cannot be verified for its
predictivity by checking only a few chemicals (even less
than five) [19], as in such cases the results could be ob-
tained by chance and it is impossible to obtain general
conclusions.

The dimension of the available dataset is of crucial im-
portance to all kinds of validation processes (internal or
external). In dealing with small datasets, Hawkins [23, 44,
45] stated that CV, if done properly, provides a reliable
picture of the fit of QSAR models. When the available
sample size is small (less than 50 chemicals), he suggests to
assess the model fit only by LOO, as stronger validations
(LMO and external validation on a split prediction set) re-
sult in a waste of valuable information and give more vari-
able estimates. For small sample sets (in my opinion this
should be the case of less than 25 compounds) this is obvi-
ously correct, but consideration must be given to the fact
that the main consequence in such cases is that the ob-
tained models are not incontrovertibly generalizable mod-
els and great care must be taken when applying them for
the prediction of new data.

The above cited papers [23, 44, 45] that support CV in
any case, explain the proper stage for its application and
come to the conclusion that CV is the preferable approach
for estimating the predictive ability rather than external
validation on split data (as used for instance in [5 – 14, 33 –
43, 49, 50]); however, there has been a crucial misunder-
standing, evident in the last paper [45].

I am in full agreement with an anonymous reviewer who
has stated that it is time for published papers to be cited
correctly. Thus, it is very important to clarify here again
that most of the supporters of external validation do not
suggest external validation as an alternative to CV, but as
a necessary additional validation step to be taken, CV be-
ing considered internal validation as it is based on several
iterations (as explained before). Our basic idea is that a
QSAR modeler must provide models that have been veri-
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fied in a validation step for reliable predictive perfor-
mance for future applications, mainly in the field of human
and environmental protection and in regulation contexts
[1]. Many of our papers [5 – 13, 49, 50] were aimed at veri-
fying this predictive ability before model proposal. In the
absence of new additional data, we assume that there is
less data than is actually available: this is the reason for
splitting the data in a reasonable way (commented on
above) into a training set and a prediction set of “momen-
tarily forgotten chemicals”. First of all, in this approach
the best model is selected by maximizing all the CV inter-
nal validation parameters, by applying CV in the proper
way and step. Then, only the good models (Q2

LOO>0.7),
stable and internal predictive (with similar values of all the
different CV-Q2), are subjected to external validation on
the split prediction set.

The invaluable quality of the proper CV for the selec-
tion of the best model must be fully recognized, and CV is
surely necessary for model validation; however, it is not
sufficient to demonstrate the external predictive ability for
chemicals that never participated in the variable selection.
This can be demonstrated by additional examples.

In a validation exercise of some literature models com-
missioned by ECVAM [15], it was verified that different
QSAR models published as predictive, reporting only
good fitting parameters and satisfactory CV-LOO results,
are decidedly less predictive than reported (indeed, quite
unpredictive) and thus not generalizable when checked by
LMO (different levels of perturbation from 10 to 50%),
bootstrap, and, mainly, external validation.

Additionally, it is not unusual that models with high in-
ternal predictivity, verified by different internal validation
methods (CV-LOO, CV-LMO, and bootstrap) but exter-
nally less predictive or even absolutely unpredictive, are
present in the population of models developed by the evo-
lutionary techniques.

An example of this crucial point is highlighted in Ta-
ble 1, which lists the first 30 models of a GA-population of
PAH mutagenicity models (TA100 on 48 PAHs) [54].
Some models (in bold) appear stable and predictive by in-
ternal validation parameters (Q2 and Q2boot), but are less
predictive (or even unpredictive: Q2

EXT¼0) when applied
to external chemicals that were really never presented to
the GA during model development. It is also important to
note that the less predictive models (in bold) are based on
different kinds of molecular descriptors, thus model insta-
bility cannot be attributed to a particular descriptor. The
best combination of modeling variables must be chosen in
this GA population from among the models, guaranteeing,
first of all, a stable and internally predictive model (veri-
fied by CV) and, additionally, externally predictive ability
(verified on the “momentarily forgotten chemicals”).
From the model population of Table 1 we selected the var-
iables of model 2 as the most stable of all the validation
parameters and for three different kinds of splittings, re-
gardless of the composition of the three training sets [54].

Y-randomization, randomly scrambling the responses, is
another validation approach that must be used in parallel
with CV, and must always be applied to test the signifi-
cance of the derived QSAR model, highlighting the pres-
ence of apparent models, obtained only by chance correla-
tion [14, 22, 32].

Other useful parameters to be considered are the
RMSEs (Root Mean Squared Errors) calculated on differ-
ent sets: on training sets (also called SDEC), CV (also
called SDEP) and external prediction set. The R2 and Q2

values are good tests for evenly distributed data, but they
are not always reliable for unevenly distributed datasets;
instead RMSEs provide a more reliable indication of the
fitness of the model, independently of the applied splitting.
It is important to note that RMSE values must not only be
low but also as similar as possible for the training, CV and
external prediction sets: this suggests that the proposed
model has both predictive ability (low values) as well as
sufficient generalizability (similar values) [35].

A final point to highlight is that the validation of a de-
fined QSAR model must be performed by applying the
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Table 1. GA Population of models for 48 Nitro-PAH mutagenic-
ity [49] (31 in training and 17 in prediction set), fitting (R2), CV
(Q2

LOO and Q2
boot) and external validation (Q2ext) parameters.

ID Model descriptors R2 Q2
LOO Q2

boot Q2
ext

1 PW2 SIC1 85.7 82.44 82.36 72.27
2 PW2 CIC1 84.88 80.78 80.71 75.34
3 X1A MATS1e 82.42 79.32 79 85.75
4 Mv MATS2e 83.37 79.04 79.25 84.27
5 Mv MATS1e 81.76 78.47 78.42 74.86
6 Mv GATS2m 81.57 77.87 78.1 69.13
7 GATS1e VED2 81.07 77.64 77.68 88.06
8 Xt nPyr 80.25 77.48 77.41 81.71
9 Mv PW2 80.95 77.39 77.97 71.85
10 PW2 IC1 80.89 77.04 77.32 60.07
11 JGI3 VED2 80.27 76.76 76.91 66.67
12 Mp LUMO 80.78 76.54 76.55 70.13
13 Mv LUMO 80.26 76.15 76.11 63.74
14 BELe8 HATS4u 80.53 76.1 76.17 47.59
15 IC1 VED2 80.17 76.09 76.55 80.94
16 Xt MATS1e 80.23 76.08 75.96 86.79
17 PW2 HIC 80.14 75.99 76.16 69.62
18 SIC1 VED2 79.92 75.78 76.11 81.65
19 VED2 Hy 79.55 75.52 75.63 86.98
20 VED2 R6uþ 79.27 75.52 75.5 27.18
21 HATS3u R3v 79.55 75.52 75.23 0
22 Mv MATS2m 79.25 75.37 75.64 69.21
23 Xt BELm2 79.89 75.35 75.4 69.54
24 GGI3 VED2 79.1 75.34 75.58 63.5
25 BELe8 R4uþ 80.06 75.32 75.3 50.23
26 SIC2 BEHm8 79.14 75.13 75.48 61.48
27 VED2 RTe 78.65 75.13 75.32 69.76
28 CIC2 VED2 79.49 75.06 75.08 77.75
29 SIC2 BELv5 79.4 75.02 75.36 58.31
30 X1A LUMO 79.13 74.96 74.91 78.98

Models with reduced predictive performance in external validation in
comparison to internal are shown in bold.
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same equation (descriptors and coefficients) of the model
developed on the training set to the new chemicals, and
not by redeveloping a new equation (even if based on the
same descriptors) and fitting it on the new chemicals, as
has sometimes been published [55, 56]. For instance, a full
model for log BCF, developed on 539 chemicals, was vali-
dated [55] “by removing 25% of the chemicals from the
training set, redeveloping the QSAR and using it to pre-
dict the logBCF values of the 135 chemicals removed”.
The conclusion of the authors was that, as the observed
and predicted values for the 135 chemicals correlated well
(even with a relatively low r2¼0.637), the full model on
539 chemicals had good predictive ability. This conclusion
should not be drawn, nor verified in this way as the two
models (the full one and that redeveloped on the reduced
dataset) are different models: the equation is changed as
the intercept and the coefficients of the molecular descrip-
tors are surely modified by the mutation in the training set
composition. Such a change in the regression coefficients
and intercept in the equations of two models (one devel-
oped on training chemicals, the other redeveloped on ex-
ternal validation chemicals) was observed in an evaluation
of QSARs for Tetrahymena toxicity [56], but the conclu-
sions were that the external validation of the model was
performed and the robustness of the models was demon-
strated by the similarity of the coefficients.

A comment could be: Which is the externally predictive
model? Which is the unambiguous algorithm that must be
applied on new chemicals for data prediction? We must al-
ways be very aware that a model redeveloped on different
chemicals results in a new model (different chemicals in-
fluence the model), and this new model cannot verify the
applicability for new chemical prediction of the previous
model (developed on training).

Therefore, the inclusion of the term unambiguous is not
redundant in the OECD Principle 2 for specifying algo-
rithm quality.

3 Conclusions

In the past decade, QSAR model validation issues have
been the subject of wide debate, from the Svante Wold
school [57] to the fundamental papers of Kubinyi [30],
Tropsha et al. ([14] and references cited therein) and Bau-
mann [31, 32]. The aim of this paper has been to comment
on three crucial OECD principles for QSAR validation.

Some interesting conclusions can be derived from this
analysis.

Principle 2: The reproducibility of the molecular de-
scriptors and the application of the coefficients of the un-
ambiguous algorithm of Principle 1 must be guaranteed.

Principle 3: A fast and simple way to verify the AD of
an MLR model is the Williams plot, a plot of standardized
cross-validated residuals versus leverages (derived from
the Hat diagonal) values.

Principle 4: External validation on a significant and rep-
resentative number of chemicals must always supplement
the necessary, but not sufficient, internal validation for
predictive QSAR models. This can be done through statis-
tical external validation, by properly splitting a priori the
available data.

Again my suggestion is, after “The importance of being
Earnest” [14], to externally validate, always and rigorously,
models which have first been verified, by CV techniques,
to be stable and internally predictive. This will avoid the
proposal of overoptimistic, erroneously called, “predic-
tive” QSAR models.
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