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THE COLLINEARITY PROBLEM IN LINEAR REGRESSION.
THE PARTIAL LEAST SQUARES (PLS) APPROACH
TO GENERALIZED INVERSES*

S. WOLD*, A. RUHE}, H. WOLD§ AnNp W. J. DUNN IIIf

Abstract. The use of partial least squares (PLS) for handling collinearities among the independent
variables X in multiple regression is discussed. Consecutive estimates (rank 1,2, - - -) are obtained using
the residuals from previous rank as a new dependent variable y. The PLS method is equivalent to the
conjugate gradient method used in Numerical Analysis for related problems.

To estimate the ‘‘optimal” rank, cross validation is used. Jackknife estimates of the standard errors are
thereby obtained with no extra computation.

The PLS method is compared with ridge regression and principal components regression on a chemical
example of modelling the relation between the measured biological activity and variables describing the
chemical structure of a set of substituted phenethylamines.

Key words. collinearity, linear regression, conjugate gradients, principal components, cross validation,
chemometrics

1. Introduction. In multiple regression, linear or nonlinear, collinearities among
the independent variables x; sometimes cause severe problems. (For notation, see
below equation (1)). The estimated coefficients ﬁj, can be very unstable, and thereby
far from their target values. In particular, this makes predictions by the regression
model to be poor.

In many chemical applications of multiple regression, like the present example of
relationships between chemical structure and biological activity, the predictive proper-
ties of the models are of prime importance and the regression estimates therefore
often need to be stabilized. The present example can be seen as a special case of
response surface modelling, an area where the collinearity problem has been recognized
as a serious problem (Box and Draper (1971), Gorman and Toman (1966), Draper
and Smith (1966)).

In applied work, the collinearity problem is often handled by selecting a subset
of variables by a stepwise procedure. See Hocking (1976) for a review. We shall not
consider this subset strategy here, but shall limit ourselves to the data analysis with
all variables included in the model.

2. Existing methods. Three principal ways are described in the statistical literature
to accomplish a stabilization of the regression estimates §; in a given regression model.
Adopting the usual notation (see e.g. Draper and Smith (1981, p. 72)), the linear
model is:

(1) y=Xb+e.

Here X is a n X p matrix, containing the values of the p predictor variables at the n
data points, b=(By, - -,B,) is a p-dimensional column vector containing the
regression coefficients, and e = (g,, - -, &,)" is an n vector containing the errors which
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are assumed to be uncorrelated, to be normal and to have the same variance. The
prime ' denotes the transpose of a vector or matrix.

The first way, usually called ridge regression (Hoerl and Kennard (1970)) is based
on adding a small number, k, to all elements in the diagonal of the moment matrix
X'X. Thus, instead of inverting X'X, one inverts (X'X +k- I), which gives the
regression estimates

(2) bridge=(X,X+k'I)—1'X,y'

The “‘ridge parameter,” k, is usually chosen between 0 and 1. The specific value of k
is often based on an inspection of a plot of the regression estimates against k (see Fig.
1 for an example). Golub, Heath and Wahba (1979) estimate k directly from the data
using generalized cross validation. Ridge regression has recently been reviewed by
Draper and Van Nostrand (1979) and by Hocking (1976) (see also Smith and Campbell
(1980)). The solution of nonlinear regression using ridge estimates in the iterative
updating is a well established numerical practice (see Marquardt (1970) where the
correspondence between the two situations is discussed).

The second approach to the stabilization of the regression estimates is based on
the contraction of X'X to a matrix of smaller rank. This is, for instance, accomplished
by expanding X'X in terms of its eigenvectors (principal components) and then
retaining only the first r of these p eigenvectors to represent X'X (r<p). This gives
the solution the form of a generalized inverse (Marquardt, 1970). A more elegant and
more numerically stable formulation of that approach is based on the singular value
decomposition (SVD, see Golub and Kahan (1965)) of X itself. The r first singular
vectors can then be regarded as new independent predictor variables, principal com-
ponents regression (see Hocking (1976) for a review).

Marquardt (1970) and others (Hawkins (1975), Mayer and Willke (1973)), showed
the close similarity (but nonequivalence) between ridge and generalized inverse esti-
mates. A large literature on closely related problems in numerical analysis, so-called
ill-posed problems, addresses the collinearity problem in linear models along essentially
the same two lines (see Varah (1979), Bjorck and Elden (1979), Wahba (1977)).

A third, less often used approach, is the so called James—Stein estimates. These
consist of the ordinary least squares estimates multiplied by a shrinking factor ¢
(0< ¢ <1). The use of these shrunk estimates in multiple regression has recently been
reviewed by Draper and van Nostrand (1979) and Hocking (1976).

3. The PLS method. In the present article we investigate the properties of so
called PLS estimates (partial least squares) adapted to the multiple regression problem.
PLS was recently developed for modelling information-scarce situations in Social
Sciences (H. Wold, 1975, 1982). We show that the present PLS estimation is a variant
of the conjugate gradient method developed in numerical analysis for the calculation
of generalized inverses (Hestenes and Stiefel (1952), Golub and Kahan (1965), Paige
and Saunders (1982)). Each step of the conjugate gradient algorithm gives the PLS
estimate of the corresponding rank.

The predictive significance of each sequential estimate can be tested by cross
validation with only a small amount of additional computation. One simultaneously
obtains jackknife estimates of the regression coefficient standard errors. Thus an
efficient stopping rule is obtained; the rank is used which gives the model the best
predictive properties in the cross-validatory sense.

The method is particularly attractive because (1) only two vector-matrix multipli-
cations are needed for each successive rank estimate; and (2) the calculations are
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performed on the raw data y and X and the moment matrix needs not be calculated.
This makes the method suitable for large problems where the amount of computation
with standard methods of matrix inversion or diagonalization becomes prohibitive.
Examples of such large problems are found in protein X-ray crystallography (Konnert
(1976)) and geodesy (Kolata (1978)). With the proliferation of microcomputers, fast
and simple-to-program methods are of interest also for small and moderate problems.

4. Details of the estimation. The PLS algorithm, in its general, mode A formula-
tion, deals with variables blocked in g blocks, and forms a sequence of rank one
approximations to the combined data matrix. In this paper, we consider only the case
with two blocks, one of them furthermore restricted to consisting of only one variable.
Let the data matrices for the two blocks be X and y, and denote the combined matrix
by

Z=[X|y].

We then successively form a sequence of residual matrices Z,, using the following
algorithm:

ALGORITHM PLS.
1. Start Z, =[X]y], by=0.
2. For s=1,2, -+, until | Z,| is small
Louy = XX,/ 1 X 5yl
2. ¢y=Zus/usu, c;=(as, ps)'.
3. Zg =2Z,— uch.
4. Solve A'b,=r, r,=(py, -, p,) for b,

We first note that
Ur=[u19 ttt, ur]

builds up an orthogonal basis of the range of X, since X, is the projection of X
orthogonal to Uj, (see step 2.3):

Xs“=Xs_usu§Xs=(I_uiu§>Xs___<I___”fL§) . (,_M)X

’ !
UsUs sYs sUs Uy

making u},, U, =0. Noting that step 2.1 is a gradient step, we see then that the PLS
algorithm is actually equivalent to a conjugate gradient algorithm applied to the normal
equations of the system (1). The right vectors denoted by a; are not orthogonal, so
in order to solve for the regression coefficients, we have to update the solution of an
underdetermined system in step (2.4).

The formulation in algorithm PLS is of interest since it shows the close connection
to the principal components regression and total least squares (Golub, van Loan
(1980)) algorithms, in that they all build up Z as a sum of rank one matrices. However
for actual computation, especially for large problems where the updating step (2.3)
becomes time-consuming, we suggest that a reliable implementation of conjugate
gradients be used. The algorithm LSQR (Paige and Saunders (1982)) is the preferred
choice.

ALGoriTHM LSQR. (see Paige and Saunders (1982) for details).
1. Start 6,0, = X"y, p; p1 = Xv;.
2. For s=1,2,---

1 65410514 = X’ps — PsUs.

2. Ps+1Ps+1 = Xvs+1 =011 Ds
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The positive numbers 6, and p, are normalization coefficients chosen to give the vectors
v, and p, unit length. We have given the algorithm bidiag 2 of Paige and Saunders
(1982), which is a simple transformation of the algorithm bidiag 1 that they have
actually implemented.

We see that the vectors p, of algorithm LSQR are proportional to the vectors u;
of algorithm PLS. In fact, the two algorithms are equivalent, and give the same sequence
of solutions. Convergence occurs when 6,., or p,,; become negligible, and since the
vectors are orthogonal, this occurs for s=r, the rank of X, if not earlier. Often
sufficiently good numerical results are obtained much earlier.

5. Data scaling. The PLS estimates depend on the scaling of the variables x; as
do ridge and principal components regression estimates. Thus, a variable x; with large
variance will get a larger weight v;, and hence give a larger influence on the latent
variable u than a variable x; with a small variance.

When no prior information about the relative importance of the independent
variables is available, centering the variables x; to mean zero and scaling to unit length
is probably the best alternative. As noted by Draper and van Nostrand (1979): “This
at least forces everyone to do the same calculations in circumstances where compelling
prior information is lacking.”

6. Cross validation and jackknife. Cross validation (Stone (1974) and Geisser
(1974)) is a technique which is very useful in estimating the optimal complexity of a
model for a given data set. The data set is divided into a number of groups. The model,
with a given complexity, is fitted to the data set reduced by one of the groups. Predictions
are calculated by the fitted model for the deleted data and the sum of squares of
predicted minus observed values for the deleted data is formed. Then, in a second
round, the same procedure is repeated but with the second group held out. Then a
third round is performed, etc., until each data point has been held out once and only
once. The total sum of squares of predictions minus observations then contains one
term from each point. This sum, abbreviated PRESS, is a measure of the predictive
power of the model with the given complexity for the given data set.

Cross validation has attractive theoretical properties (Wahba (1977)). Golub,
Heath and Wahba (1979) use it to estimate the optimal ridge factor in ridge regression.
It has been used as a criterion to select variables in multiple regression (Allen, 1971),
for selecting the smoothing factor in spline fitting (Wahba and Wold (1974), Craven
and Wahba (1979)), to select the best number of components in principal components
analysis (S. Wold, 1978), and for hypothesis testing in PLS modelling (H. Wold (1982)).
In the PLS estimation discussed here, we wish to estimate the optimal rank of the
estimate, i.e. when to stop the algorithm. We divide the cases into G groups. With
one of these groups deleted one still gets estimates for v, in step (2.1) of algorithm
LSQR, which allows the “‘latent” variable Xuv,., in step (2.2) to be estimated for all
n data points, including those deleted. The residual p;.; is then estimated based on
the retained points, and prediction errors computed for those deleted. The PRESS is
then calculated as the sum of squares of the predicted residuals for the deleted points.
A second part of the data set is then held out, squared prediction errors are added to
the PRESS and so on.

Note that in algorithm LSQR we have scaled p; to unit length. When comparing
prediction errors in different steps, we use the unscaled residuals

psUN5C=(p1p2 e ps)/(01 e 9:—1)17:‘

An alternative way of performing cross validation, which is to be used when the
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successive PRESS - es are to be compared with ridge-PRESS and ordinary least squares
PRESS, is to make the total calculation up to the last significant PLS rank separately
for each subgroup deletion.

In large problems, repeated calculations with deletion of one group after another
may be too time-consuming. In such cases, however, there are usually so many data
points that one with little loss can make a small part, say 5 or 10%, of the data a “test
set.” The estimation is then based on the remaining 90 or 95% of the data and the
validation is made by letting the model predict the values in the test set. Thus the test
set never enters the estimation; it is used only to estimate the “optimal rank” of the
model.

The jackknife method (see Duncan (1978) and Miller (1974) for reviews) is closely
related to cross validation in that it makes use of the data several times, each time
with a subset of the data deleted from the calculation. The scope of the jackknife is
to use the variation in the resulting parameter estimates E to calculate standard errors
of these estimates. It is a “‘soft,”” data-oriented approach, in contrast to methods based
on ‘“‘hard” models such as maximum-likelihood methods (see H. Wold (1982) for a
discussion). Denoting the value of /§,~ obtained when subgroup i (i=1,2,---,1I) is
deleted by ,éﬁ, one first forms the pseudo-values P; as:

Pi=I1-B—(I-1)B; (i=1,2,---,1D).

These values have the averages

1
f=7§i:Pfi

and the estimated standard errors:

1 _ 1/2
Sf:[l(l—l)Z(P""P")] '

7. A chemical example. Dunn, Wold and Martin (1978) tried to relate the
biological activity, y (the stimulation of the B-receptor measured by Lefkowitz et al.,
1976), of n =16 similar chemical compounds to a set of 8 variables x; These variables
describe various morphological and physicochemical properties of these compounds,
such as electronic and steric properties of the substituent in a certain position and the
lipophilic character and receptor-binding strength of the whole molecule. The data
are shown in Table 1.

In their analysis, Dunn, Wold and Martin (1978) use principal components
regression, contracting the matrix X to its first two singular vectors.

Here we reanalyze the same data using partial least squares, PLS. For comparison
we have used ordinary least squares (OLS), principal component regression (PCR),
James Stein shrunk estimate (JS), ridge regression (RR), and finally total least squares
(TLS).

To evaluate the goodness of fit of the various models, we use the predictive sums
of squares (PRESS) as described above in § 6. The data were divided into 3 groups
(no. 1=points 1,4,7,- - - ,no. 2=points 2,5, 8, * - -+ ,no. 3=points 3,6, 9, - - -). Thus,
the jackknife standard errors were also obtained for the PLS estimates.

Figure 1 shows the variation of the ridge estimates, PRESS and the residual sum
of squares with the ridge parameter k. PRESS has a minimum around k = 2.0, which
is larger than the maximal recommended value of 1.0 (Hoerl and Kennard (1970)).
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TABLE 1
Observed B-receptor agonist activity (y) for 15 compounds of the formulae

X ?H——(liH—NH—Rz

v R R,

The structural descriptors x, to xg are, in order: x, =log equilibrium constant for the binding of the molecule
to a receptor model, x,=log acidity constant, x; = lipophilicity (tendency to prefer fatty tissues compared to
aqueous phase, e.g. blood) of the phenyl part (X, Y —Cg¢H, in the formulae above) as measured on the model
system octanol-water (see Hansch et al. (1973)), x, and x5 are lipophilicities of groups R, and R, respectively,
defined in the same way as x5, x, and x, are Taft’s o* and E, of the group R, which measure the electronic
and steric properties of the group (see Hansch et al. (1973)) and xg is an indicator variable equal to 1 when
R=OH and 0 when R=H.

t y X X, X3 X4 Xs X X, Xg
1 4.39 4.55 8.93 1.14 0.70 0.19 0.49 1.24 1
2 4.42 4.74 8.93 1.14 1.23 0.19 0.49 1.24 1
3 5.00 5.07 9.29 1.14 0.19 0.70 0.00 0.00 1
4 5.85 5.77 9.90 1.14 0.19 1.64 -0.10 -0.47 1
5 4.35 4.62 9.90 1.14 1.23 1.64 -0.10 -0.47 1
6 4.51 4.41 9.93 1.14 1.23 2.35 -0.20 -0.51 1
7 6.33 6.17 9.19 1.14 0.19 2.83 -0.13 -0.93 1
8 6.37 6.17 9.19 1.14 0.19 2.56 -0.13 -0.93 1
9 4.68 4.33 10.03 1.14 0.19 2.42 -0.08 -0.38 0
10 5.04 4.62 10.29 1.14 0.19 3.36 -0.13 -0.93 0
11 7.10 7.22 9.29 1.14 0.19 2.43 -0.30 —1.60 1
12 5.04 4.64 10.22 1.14 0.19 2.95 —0.08 -0.38 0
13 6.00 5.62 994 —-0.07 0.19 1.64 -0.19 —0.47 1
14 5.48 6.19 9.77 -0.07 0.19 1.64 -0.19 -0.47 1
15 7.10 7.85 9.29 -0.07 0.19 3.80 -0.30 —1.60 1

The OLS PRESS is 3.16 which is considerably higher than the best ridge value
of 2.11. The PLS PRESS is 2.06, very close to the ridge optimum. The PCR value of
2.56 (with two components) is somewhat larger. The James—Stein estimates give a
minimal PRESS =2.57 for the shrinking factor of 0.82. The PCR PRESS for three
components equals 2.12. TLS (minimum norm) gave PRESS =2.02 for rank = 3, and
behaved very similarly to PCR for low ranks. When full rank is approached, it behaved
differently. Note that in order to get a minimum norm TLS solution, the complete
singular value decomposition is needed (see Golub and Van Loan (1980, formula (2.7)).

We also tested cross validation with 5 and 15 groups, i.e. only one point deleted.
The results are not significantly different; in some cases we got a sharper minimum
for PRESS with 5 groups. Generally, few groups are expected to give a conservative
estimate of complexity, since the risk of overfitting is smaller.

Table 2 shows the estimated values of the regression coefficients ﬁi for the various
methods. It is seen that the Ridge, PLS and PCR values are shrunk compared with
the OLS values, the PLS and PCR values being the most shrunk. The ridge, PCR (2)
and the PLS (2) agree within about 2 standard errors of the latter.

8. Discussion. The PLS method gives a solution to the multiple regression prob-
lem which is stabilized in comparison with the OLS solution and which has, at least
in the examples investigated, a comparable prediction error to ridge regression. The
very simple computations involved makes the method suitable for large problems and
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F1G. 1. Estimated values for regression coefficients 1 through 8 as functions of the ridge parameter k.
Also plotted are the estimates corresponding to the TLS, JS, PLS and PCR solutions (see Table 2). The sum
of squared residuals and the cross validation variance are plotted in relative scales.

TABLE 2

Resulting estimates of the regression coefficients B; (data in Table 1*) for the different methods of estimation.
SS is the residual sum of squares obtained when the model is fitted to all data. PRESS is the corresponding
predictive sum of squares obtained by cross validation with the data divided into three groups. OLS is ordinary
least squares, JS is James—Stein estimate with shrinking factor 0.82, RR ridge regression with k =2.0, PCR
principal components regression with 2 and 3 components, TLS is total least squares and PLS is partial least
squares rank 1 and 2, respectively. The PLS(2) standard errors (s.err) were calculated by the jackknife method.

Var. no 1 2 3 4 S 6 7 8 SS PRESS
OLS .636 .080 095  -.308  .169 241 —.278 238 0.61 3.156

JS (.82) 522 .066 078 -.252 138 197 =228 195 1.04 2.569

RR (2.0) 432 —.143 011 -.267 133 -.049 -—-.200 .133 0.82 2.114

PCR (2) 325 —-121 =210 —-144 111 —-.184 —-210 .194 1.99 2.557

PCR (3) 354 235 018 -.162 168 -—.164 -—.262 172 1.15 2.117

TLS (3) 379 274 030 -.260 .161 -.125 -—.244 132 0.88 2.015

PLS (1) 284  —.069 -—.122 -192 .161 -.184 —-.223 .085 2.15 3.030

PLS (2) 372 =205 -.09 -226 .119 —.128 -—.211 .166 1.06 2.062

s.err .058 .081 .103 .046  .009 .047 .016  .045

* All variables including y scaled to mean zero and unit variance.
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for the implementation on micro-computers and desk calculators. Cross validation
provides a simple and straightforward stopping rule; it also makes it simple to compare
the estimates of different methods and to calculate jackknife standard errors.

The situation treated in the present article is a simple special case of the general
PLS modelling and estimation. The favorable predictive properties of the PLS estimates
found in this case is encouraging for the utility of more extended PLS models (cf. H.
Wold, 1982).

We have been using the principal components of X as a means of discriminating
between different classes of “‘objects” (cases, compounds), each object being character-
ized by values of the variables x; (Albano et al. (1978), Dunn et al. (1978), (1979),
S. Wold et al. (1976), (1977), (1978)). The extra information provided by the variable
y in the present case might make the corresponding vectors b, superior to the ordinary
principal components in the context of discriminant analysis and pattern recognition,
a subject which we are currently investigating.

In a forthcoming report we will also investigate statistical and numerical aspects
on the PLS method, and show how the 8 theorems given by Marquardt (1970) for
ridge and principal component regression translate into this situation. We will also
investigate computational aspects, especially for large problems. For large sparse
problems, e.g., the geodesy problem, a reformulation as a multiple block PLS problem
might prove advantageous.
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