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ABSTRACTABSTRACTABSTRACTABSTRACT    
 

The binding of small molecule ligands to large protein targets is central to numerous biological 
processes. The accurate prediction of the binding modes between the ligand and protein, (the docking 
problem) is of fundamental importance in modern structure-based drug design. An overview of current 
docking techniques is presented with a description of applications including single docking experiments 
and the virtual screening of databases. 
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INTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTION    
 

The number of algorithms available to 
assess and rationalise ligand protein interactions is 
large and ever increasing. Many algorithms share 
common methodologies with novel extensions, and 
the diversity in both their complexity and 
computational speed provides a plethora of 
techniques to tackle modern structure based drug 
design problems 1. Assuming the receptor structure 
is available, a primary challenge in lead discovery 
and optimisation is to predict both ligand 
orientation and binding affinity; the former is often 
referred to as ‘molecular docking2. The algorithms 
that address this problem have received much 
attention 3, indicating the importance of docking to 

a drug design project. Owing to the increase in 
computer power and algorithm performance, it is 
now possible to dock thousands of ligands in 
ameline which is useful to the pharmaceutical 
industry 4 . 

Despite the large size of this field, we have 
attempted to summarise and classify the most 
important docking methods. The principal 
techniques currently available are: molecular 
dynamics, Monte Carlo methods, genetic 
algorithms, fragment-based methods, point 
complementarity methods, distance geometry 
methods, tabu searches and systematic searches. 
Algorithm examples and the test cases used to 
validate the models will be discuss

a drug design project. Owing to the increase in 
computer power and algorithm performance, it is 
now possible to dock thousands of ligands in a 
timeline which is useful to the pharmaceutical 
industry 4  

Large scale docking and virtual screening 
Molecular docking is often used in virtual 

screening methods 5, whereby large virtual libraries 
of compounds are reduced in size to a manageable 
subset, which, if successful, includes molecules 
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with high binding affinities to a target receptor. 
The potential for a docking algorithm to be used as 
a virtual screening tool is based on both speed and 
accuracy. This review will therefore highlight 
those docking methods that have been used in 
virtual screening applications. 

 
Docking and de novo design methods 

For the purpose of this review, a broad 
distinction is made between docking algorithms 
and de novo design methods. This is arguably 
subjective and in many cases significant overlap in 
methodology occurs between the two strategies. 
Examples of denovo design tools are BUILDER 6, 
CONCEPTS 7, CONCERTS 8, DLD/MCSS 9, 
Genstar10, Group-Build 11, Grow12, HOOK13, 
Legend14, LUDI15, MCDNLG16, SMOG 17 and 
SPROUT 18. LUDI is given as an example of a 
denovo design tool applied to the docking problem. 
Search algorithms 

A rigorous search algorithm would 
exhaustively elucidate all possible binding modes 
between the ligand and receptor. All six degrees of 
translational and rotational freedom of the ligand 
would be explored along with the internal 
conformational degrees of freedom of both the 
ligand and protein. However, this is impractical 
due to the size of the search space. For a simple 
system19 comprising a ligand with four rotatable 
bonds and six rigid-body alignment parameters, the 
search space has been estimated as follows.The 
alignment parameters are used to position the 
ligand relative to the protein in a cubic active site 
measuring 103 Å3. If the angles are considered in 
10 degree increments and translational parameters 
on a 0.5 Å grid there are approximately 4×108 
rigid body degrees of freedom to sample, 
corresponding to 6×1014 configurations (including 
the four rotatable torsions) to be searched. This 
would require approximately 2 000 000 years of 
computational time at a rate of 10 configurations 

per second. As a consequence only a small amount 
of the total conformational space can be sampled, 
and so a balance must be reached between the 
computational expense and the amount of the 
search space examined. 

The practical application of such an 
extensive search involves the sampling of many 
high energy unfavourable states which can restrict 
the success of an optimisation algorithm. In 
practice therefore, to sample such a large search 
space the computational expense is limited by 
applying constraints, restraints and approximations 
to reduce the dimensionality of the problem in an 
attempt to locate the global minimum as efficiently 
as possible. A common approximation in early 
docking algorithms was to treat both the ligand and 
target as rigid bodies and only the six degrees of 
translational and rotational freedom were explored. 
One of the first examples of such an algorithm is 
the early implementation of the program DOCK20 
(see Fragment-Based Methods). Although these 
methods have been successful in certain cases21, 
there is a limitation to the rigid body docking 
paradigm in that the ligand conformation must be 
close to the experimentally observed conformation 
when bound to the target. Furthermore, numerous 
examples of conformational change of the target 
upon binding, for example the binding of 
cyclosporin A to cyclophilin22, have led the drive 
to incorporate conformational flexibility into the 
search algorithm. 
 

A common approach in modelling 
molecular flexibility is to consider only the 
conformational space of the ligand, assuming a 
rigid receptor throughout the docking protocol. The 
techniques used to incorporate conformational 
flexibility into a docking protocol will be discussed 
in some detail. However, the searching algorithm is 
only half the docking problem; the other factor to 
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be incorporated into a docking protocol is the 
scoring function. 

 
Scoring functions 

Generating a broad range of binding modes 
is ineffective without a model to rank each 
conformation that is both accurate and efficient. 
The scoring function should be able to distinguish 
the experimental binding modes from all other 
modes explored through the searching algorithm. A 
rigorous scoring function will generally be 
computationally expensive and so often the 
function’s complexity is reduced, with a 
consequential loss of accuracy. Scoring methods 
can range from molecular mechanics force fields 
such as AMBER 23, OPLS24 or CHARMM 25, 
through to empirical free energy scoring 
functions26 or knowledge based functions 27.The 
currently available docking methods utilise the 
scoring functions in one of two ways. The first 
approach uses the full scoring function to rank a 
proteinlig and conformation. The system is then 
modified by the search algorithm, and the same 
scoring function is again applied to rank the new 
structure. The alternativemethod is to use a two 
stage scoring function. In this approach a reduced 
function is used to direct the search strategy and a 
more rigorous scoring function is then used to rank 
the resulting structures. These directed methods 
make assumptions about the energy hypersurface, 
often omitting computationally expensive terms 
such as electrostatics and considering only a few 
types of interaction such as hydrogen bonds. Such 
algorithms are therefore directed to areas of 
importance as determined by the reduced scoring 
function. Examples of directed methods are 
GOLD28 and DOCK29, and will be considered in 
more detail in the following sections. 

A serious limitation in many existing 
scoring functions is the tendency to either neglect 
solvation effects or use solvent models in a snap-

shot fashion. A snapshot method involves the 
generation of structures in vacuo, that are 
subsequently ranked with a scoring function that 
includes a solvent model. The search function is 
therefore directed to the conformational space 
which favours the in vacuo conformations. 
Furthermore, the structural role of bound solvent 
molecules and ions is often not considered, yet in 
the HIV-1 protease30 system for example, it has 
been shown that explicit waters play an important 
role in ligand binding31. A brief description of the 
scoring and searching function will be given for 
each docking method in the following sections. 
The core components of the algorithm will be 
described, with a brief synopsis of the test cases 
used to validate the algorithms. 
 
Molecular dynamics 

There are many programs to perform 
molecular dynamics (MD) simulations such as 
AMBER32 and CHARMM25. MD involves the 
calculation of solutions to Newton’s equations of 
motions. Using standard MD to find the global 
minimum energy of a docked complex is difficult 
since traversing the rugged hypersurface of a 
biological system is problematic. Often an MD 
trajectory will become trapped in a local minimum 
and will not be able to step over high energy 
conformational barriers. Thus, the quality of the 
results from a standard MD simulation are 
extremely dependent on the starting conformation 
of the system. 

This section focuses on novel MD 
techniques applied specifically to the docking 
problem to overcome the shortcomings of standard 
MD methodology.Flexible ligands have been 
docked to flexible receptors in solution using MD 
simulations by Mangoni et al.33, building upon the 
original work of Di Nola et al. 34. The problems of 
obtaining adequate sampling are addressed by 
separating the centre of mass motion of the 
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substrate from its internal and rotational motion. 
Separate thermal baths are then used for both types 
of substrate motion and receptor motion which 
permits local freezing of the various motion types. 

Wang and Pak35 have applied a newMD 
method to flexible ligand docking using a well 
jumping technique, where a scaling function is 
applied to the equations of motion to facilitate 
barrier crossing by effectively reducing the 
magnitude of the forces. Multicanonical molecular 
dynamics addresses the problem of limited 
conformational sampling and has been used as a 
technique to dock flexible ligands by Nakajima et 
al.36 These methods operate on a single structure. 
However, it is common practice to generate a sub-
ensemble of protein states, often using molecular 
dynamics, for use in docking studies. Such 
techniques have been summarised by Carlson and 
McCammon 37 where multiple protein structures 
are utilised rather than operating on a single 
flexible protein structure. 

 
Monte Carlo methods 

Monte Carlo (MC) methods are among the 
most established and widely used stochastic 
optimisation techniques. The combination of 
atomistic potential energy models with stochastic 
search techniques has produced some of the most 
powerful methods for both structure optimisation 
and prediction. A significant advantage of the MC 
technique compared with gradient based methods, 
such as MD, is that a simple energy function can 
be used which does not require derivative 
information. Furthermore, through a judicious 
choice of move type, energy barriers can simply be 
stepped over. The gradient based methods are often 
efficient at local optimisation, but have difficulty 
navigating a rugged hyper surface. The standard 
MC method (more correctly,Metropolis MC 38) 
involves applying random Cartesian moves to the 

system and accepting or rejecting the move based 
on a Boltzmann probability. 

Early implementations of AutoDock39,40 
used Metropolis MC simulated annealing with a 
grid based evaluation of the energy, based on the 
AMBER force field, to dock flexible ligands into 
the binding pocket of a rigid receptor. The 
algorithm was originally tested on six complexes 
and was able to reproduce the experimental 
binding modes, although the lowest energy 
structures did not always correspond to the 
crystallographic conformation. Prodock41 uses a 
Monte Carlo minimisation technique to dock 
flexible ligands to a flexible binding site, using 
internal coordinates to represent the structures. 
This method differs from a standard MC procedure 
in that after each random move a local gradient-
based minimisation is performed; the resulting 
structure is then accepted based on the Metropolis 
acceptance criteria. A grid based technique to 
evaluate the energy function is incorporated into 
the algorithm using Bezier splines42, which 
produces a smooth function that can be 
differentiated; this property is crucial to the local 
gradient-based minimisation. During the dock the 
magnitudes of the various potential energy terms 
are scaled to facilitate sampling.  

The independent scaling allows the 
selective reduction of barriers that restrict 
sampling. The size of each random move is 
determined from an assessment of the curvature of 
the hyper surface using the second derivative of the 
energy function. Thus large moves are attempted in 
areas of small curvature and small moves are 
attempted in areas of large curvature. Two force 
fields are implemented in Prodock, namely 
AMBER23 and ECEPP/3 43 along with a solvation 
model based on solvent exposed volume. 

The MC method has been used to dock 
flexible ligands into a flexible binding site by 
Caflisch and coworkers 44; this study built on 
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previous work by Caflisch et al. 45 for docking an 
FKBP-Substrate complex. The first stage of the 
procedure places the ligand, at random, within the 
active site. This structure is then minimised in 
vacuo using a conjugate gradient minimiser with 
the CHARMM force field, allowing flexibility of 
the ligand and the protein. The Lennard- Jones and 
coulombic potentials are initially softened and 
gradually turned on throughout the course of the 
minimisation. This is repeated for 1000 seed 
structures. The seed structures are then ranked 
based on the potential energies calculated using the 
CHARMM force field. Solvation is included in the 
potential energy using a finite difference Poisson-
Boltzmann (PB) term for the electrostatic 
contributions, calculated by UHBD 46, and 
nonpolar contributions are approximated by a 
weighted solvent-accessible area (SA) term. The 
MC method is then applied to the 20 structures 
with the lowest energy. This implementation of the 
MC method (referred to as Monte Carlo 
minimisation or MCM), is similar to the method 
adopted in the program Prodock 41. MCM performs 
conjugate gradient minimisation after each random 
move. The minimised structures are then accepted 
based on the Boltzmann acceptance criteria. The 
energy for each MCM stage is again calculated 
using the CHARMM force field with the PB/SA 
solvent model. Each random move samples not 
only the position and orientation of the ligand but 
also a set of randomly selected dihedrals in the 
ligand and in the protein. This technique has been 
applied to three test systems and all three produced 
lowest energy structures within 1.4 Å RMSD of the 
crystallographic structures. Caflisch and co-
workers also report the importance of allowing the 
protein to relax upon binding of the ligand, to 
discriminate near-native from non-native 
structures. This is arguably one of the most 
ambitious docking projects to date. 

Internal Coordinates Mechanics 47 (ICM) is 
a program to perform flexible protein-ligand 
docking and may be summarised as a MC 
minimisation method in internal coordinates. The 
algorithm initially makes a random move, which is 
one of three types; rigid body ligand move, torsion 
moves of the ligand, or torsion moves of the 
receptor side chain, using the biased probability 
methodology 48. The side chain movement using 
this method is one of the defining features of the 
algorithm. The idea is to sample with a larger 
probability those regions of conformational space 
which are known a priori, based on previously 
defined rotamers 49, to be highly populated. This is 
achieved by making a normally distributed step in 
the vicinity of the low energy rotamer states for the 
protein side chains. Having made a random move, 
local minimisation of the ECEPP/3 43 scoring 
function with a distance-dependent dielectric is 
performed using a conjugate gradient minimiser. 
An approximation for side chain entropy, loosely 
based around the statistical distributions of side 
chains, is then added to the minimised in vacuo 
ECEPP/3 energy. An electrostatic solvation term is 
then added to this energy, which is calculated using 
the MIMEL 48 approximation. This is a rapid 
approximation to the reaction field potential using 
the Born equation with a modification for many 
atoms. The modified ECEPP/3 energy is then used 
to test whether the structure is accepted or rejected, 
based on the Boltzmann criteria. A history 
mechanism has also been implemented to promote 
the discovery of 
new minima 50. 

ICM has been applied to protein-ligand 
docking in the CASP-2 experiments 51. For the 8 
complexes tested only one produced an RMSD of 
1.8 Å with respect to the crystal structure; the 
remaining test cases were only able to give, at best, 
an RMSD of 3 Å. However, in most cases the 
prediction was reasonable; on average 50% of the 
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ligand was docked correctly. MCDOCK 52 (version 
1.0) applies a multiple stage strategy to dock a 
flexible ligand to a rigid receptor. The first stage of 
the docking places the ligand in the binding site. 
Random moves are then applied to the ligand to 
reduce the overlap of ligand and protein atoms. 
Metropolis MC with simulated annealing is then 
performed using a scoring function based on the 
CHARMM force field 25. This is followed by a MC 
simulation which uses an adjustable temperature. 
In this method the temperature is increased if the 
acceptance ratio is too low, in an attempt to yield 
increased sampling. MCDOCK was tested using 19 
complexes, taken from the FlexX 53 optimisation 
test set. The RMSD between the binding modes 
predicted by MCDOCK and the experimental 
binding modes, for the non-hydrogen atoms of the 
ligand, ranged from 0.25 to 1.84 Å. 

MC simulated annealing was applied to the 
docking problem using HIV-1 protease inhibitors 
by Bouzida et al. 54 The AMBER force field was 
used with a desolvation correction based on the 
product of atomic charges and volume. To traverse 
efficiently the rugged energy hyper surface a soft-
core smoothing function was used, for both the 
Lennard-Jones and electrostatic contributions to 
the potential energy. This methodology was used to 
dock two flexible ligands to a rigid X-ray structure 
of HIV-1 protease with some crystallographic 
waters retained as part of therigid system. One of 
the docks reproduced the experimental binding 
mode. However, the second testcase was not 
successful. The AMBER potential energy function 
was then exchanged for the piecewise linear 
potential function55 (PLP). The PLP function is a 
simple model of ligand-protein interactions 
encompassing four terms: ligand and receptor 
nonbonded interaction terms (hydrogen bonds or 
steric clashes), internal torsion energies, and two 
penalty terms for leaving the active site and for 
internal clashes within the ligand. Using this 

scoring function the binding modes for both test 
cases were successfully reproduced. 

Further MC simulations were performed 
using 10 different protein conformations for HIV-1 
protease.The method consisted of randomly 
moving the ligand and calculating the score for this 
move, using the PLP function, between the ligand 
and all 10 protein complexes. The lowest energy 
from the 10 ligand-protein combinations was then 
used in the MC acceptance criteria to yield a 
frequency distribution of binding modes. This 
study attempted to rationalise the population of 
binding modes arising from the conformational 
changes in both the ligand and protein. They 
concluded, for two ligands, that there was a high 
correlation between protein conformation and 
predicted binding mode for one ligand but that the 
other case showed only a weak correlation. 

DockVision 56 is another MC based 
docking method, using a rigid ligand and rigid 
receptor. The first stage of this docking algorithm 
generates a random ligand orientation. The MC 
method is then applied to the system, except the 
energy function is replaced by a geometric score 
for atomic overlap. This is followed by an MC 
simulated annealing protocol using a simple 
potential energy function. The two stage docking 
procedure is then repeated for a large number of 
random ligand orientations. The ligand orientations 
generated by theMCdock are then clustered, based 
on a RMSD score. Two inhibitor complexes were 
used to test the protocol and in each case the 
binding geometry was correctly predicted. More 
recently this methodology has been applied to 
protein docking in CASP-2 experiments 57, 
achieving the second highest success rate. 

QXP58 performs MC flexible ligand/rigid 
protein docking, and is part of the FLO96 package. 
The Metropolis MC method is initially performed 
on the isolated ligand using only random dihedral 
moves (up to 360◦). This is followed by rigid body 
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rotations and translations to align the ligand onto 
guide atomswithin the active site. These guide 
atoms are simply atoms in van der Waals contact 
with the binding site atoms. Having aligned the 
atoms within the active site, the MC method is 
applied to the ligand using only rigid body 
rotations and translations. Conjugate-gradient 
minimisation is then performed on the ligand 
torsions followed by Metropolis MC on the ligand 
torsions. In this method a grid representation of the 
receptor is used. The scoring function uses the 
AMBER force field with short non-bonded cut-offs 
and a distance dependent dielectric. The original 
test set consisted of 12 ligand-protein complexes, 
with a maximum of 24 rotatable ligand dihedrals. 
The ligand was flexible and the receptor rigid, with 
single important water molecules retained in three 
of the complexes. Their results were compared 
with energy minimised structures; 11 ligands gave 
an RMSD of less than 0.76 Å. Affinity59 is 
commercial program using Monte Carlo simulated 
annealing with a grid representation for the non-
moving parts of the system [60] and an implicit 
representation of solvation effects61. Another 
commercial program is Glide62  which uses a 
hierarchical filter to rapidly score hydrophobic and 
polar contacts, followed by Monte Carlo sampling 
with the ChemScore26 scoring function. 

 
Genetic algorithms and evolutionary 
programming 

Since their inception, genetic algorithms 
(GA) have increased in popularity as an 
optimisation tool. It should be noted that GAs (and 
evolution programming (EP)) require the 
generation of an initial population whereas 
conventional MC and MD require a single starting 
structure in their standard implementation. The 
essence of a GA is the evolution of a population of 
possible solutions via genetic operators (mutations, 
crossovers and migrations) to a final population, 

optimising a predefined fitness function. Degrees 
of freedom are encoded into genes or binary strings 
and the collection of genes, or chromosome, is 
assigned a fitness based on a scoring function. The 
mutation operator randomly changes the value of a 
gene, crossover exchanges a set of genes from one 
parent chromosome to another, and 
migrationmoves individual genes from one sub-
population to another. 

GOLD28 is a docking program that uses a 
GA search strategy and includes rotational 
flexibility for selected receptor hydrogens along 
with full ligand flexibility. Gene encoding is used 
to represent both rotatable dihedrals and ligand-
receptor hydrogen bonds. A GA move operator is 
subsequently applied to parent chromosomes that 
are randomly chosen from the existing population 
with a bias towards the fittest members. The 
ligand-receptor hydrogen bonds are subsequently 
matched with a least squares fitting protocol to 
maximise the number of inter-molecular hydrogen 
bonds for each GA move. As a consequence the 
GA structure generation is biased towards inter-
molecular hydrogen bonds. However each structure 
is ranked based on a more complex fitness 
function. The fitness (or scoring) function is the 
sum of a hydrogen bond term, a 4–8 inter-
molecular dispersion potential and a 6– 12 intra-
molecular potential for the internal energy of the 
ligand. Each complex was run using an initial 
population of 500 individuals divided into five 
equal sub-populations, and migration of individual 
chromosomes between sub-populations was 
permitted. A single GA run used 100 000 genetic 
operations and 20 GA runs were performed. 
Finally, the solution with the highest fitness score 
was compared with the crystallographic binding 
mode. 

AutoDock 3.0 64 uses a genetic algorithm as 
a global optimiser combined with energy 
minimisation as a local search method. In this 
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implementation of AutoDock the ligand is flexible 
and the receptor is rigid and represented as a grid. 
The genetic algorithm uses two point crossover and 
mutation operators. For each new population a user 
determined fraction undergo a local search 
procedure using a random mutation operator where 
the step size is adjusted to give an appropriate 
acceptance ratio. The fitness function comprises 
five terms: a Lennard-Jones 12-6 
dispersion/repulsion term; a directional 12-10 
hydrogen bond term; a coulombic electrostatic 
potential; a term proportional to the number of sp3 
bonds in the ligand to represent unfavourable 
entropy of ligand binding due to the restriction of 
conformational degrees of freedom; and a 
desolvation term. This scoring function is based 
loosely around the AMBER force field from which 
protein and ligand parameters are taken. The 
desolvation term is an inter-molecular pairwise 
summation combining an empirical desolvation 
weight for ligand carbon atoms, and a pre-
calculated volume term for the protein grid. Each 
of the five terms are weighted using an empirical 
scaling factor determined using linear regression 
analysis from a set of 30 protein-ligand complexes 
with known binding constants. The algorithm was 
originally tested on seven complexes, and for these 
test examples all lowest energy structures were 
within 1.14 Å RMSD of the crystal structure. 

DIVALI 65 uses an AMBER-type potential 
energy function with a distance dependent 
dielectric and a genetic algorithm search function 
to dock four complexes. The receptorwas modelled 
as a rigid entity and consequently a grid based 
energy evaluation of ligand protein interactions 
was performed to assess the fitness function. An 
additional masking operator is used that fixes part 
of the population which is associated with 
translational space so that subpopulations search 
different regions of the active site. Three out of 

four of the test complexes gave an RMSD of 1.7 Å 
or less. 

The program DARWIN 66 combines a GA 
and a local gradient minimisation strategy with the 
CHARMM-AA molecular mechanics force field, 
for flexible docking of three protein-carbohydrate 
complexes. Binary encoding is used to describe a 
starting ligand conformation and position; the 
potential energy is then locally minimised using a 
gradient method and the chromosome fitness is 
scored using the CHARMM-AA potential energy 
function. The populations are then modified by 
standard mutation and crossover operators while 
the protein is held rigid. Solvent contributions are 
assessed using a modified version of the program 
DelPhi67 to yield finite difference solutions to the 
Poisson-Boltzmann equation. Although the search 
algorithm was able to optimise the energy 
landscape, certain structures were obtained with 
energies lower than the experimental binding 
mode. The false positives produced were thus 
attributed to limitations in the scoring function. 
Including specific explicit waters in the binding 
site increased the success of the program. The 
authors further note the dynamic nature of the 
complexes, and that multiple binding modes is a 
reasonable reflection of reality and not an artefact 
of the force field. 

Judson et al.68 were one of the first to report 
the application of a GA to the docking problem. A 
flexible ligand was used with interacting sub-
populations and a gradient minimisation during the 
search. The method was tested by docking Cbz-
GlyP-Leu-Leu into thermolysin and produced 
conformations which were close to the 
experimental binding mode, although in some 
cases the energies were lower than the crystal 
conformation. 

Gehlhaar et al.55  have applied evolutionary 
algorithms to flexible ligand docking in an HIV-1 
protease complex, using the previously described 
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PLP scoring function 55. An initial population is 
generated and the fitness of each member is 
evaluated based on the scoring function. The 
fitness of the members are then compared with a 
predetermined number of opponent members 
chosen at random. The members are then ranked 
by the number of wins, and the highest ranking 
solutions are chosen as a new population. All 
surviving solutions are used to produce offspring 
with a mutation operator, such that the population 
size is constant. This protocol is repeated until a 
user defined number of iterations is exceeded; a 
conjugate gradient optimisation is then performed 
on the best member. Interestingly, for this test case, 
previous docking attempts have failed. This failure 
was attributed to high energy barriers69. 
Consequently, the repulsive term was slowly 
turned on through the course of the simulation, in 
an analogous fashion to MC simulated annealing. 
100 simulations were run and the crystal structure 
was reproduced 34 times with a maximum RMSD 
of 1.5 Å; these solutions were the lowest energy 
docks. 
Fragment-based methods 

The broad philosophy of fragment based 
dockingmmethods can be described as dividing the 
ligand into separate portions or fragments, docking 
the fragments, followed by the linking of 
fragments. These methods require subjective 
decisions on the importance of the various 
functional groups in the ligand, which can result in 
the omission of possible solutions, due to 
assumptions made about the potential energy 
landscape. Furthermore, a judicious choice of base 
fragment is essential for these methods, and can 
significantly affect the quality of the results. The 
docking of fragments and the subsequent joining of 
the docked fragments has been widely used in de 
novo design methods. Although, for this review, 
only a few de novo programs have been 

considered, there is a considerable overlap of 
methodologies. 

One of the most popular programs to 
perform fragment docking is the incremental 
construction algorithm FlexX53. The initial phase is 
the selection of the base fragment for the ligand 
from which possible conformations are formed 
based on the MlMUMBA 70 torsion angle database. 
As with all fragment based methods the choice of 
base fragment is crucial to the algorithm; it must 
contain the predominant interactions with the 
receptor. Early implementations of FlexX required 
manual selection of this base fragment but this 
process has been subsequently automated71. 
Following the selection of the base fragment an 
alignment procedure is performed to optimise the 
number of favourable interactions. These 
interactions are based primarily on hydrogen bond 
geometric constraints but also include hydrophobic 
interactions. In this stage, the base fragment is 
considered rigid, and three sites on the fragment 
are mapped onto three sites of the receptor. All 
geometrically accessible receptor triangles are then 
clustered and the superposition of ligand triplets 
onto the receptor is performed using the method of 
Kabsch 72. Overlaps are removed and energies are 
then calculated for the base fragments using 
Böhm’s 73 function. Following this base fragment 
placement the ligand is built in an incremental 
fashion, where each new fragment is added in all 
possible positions and conformations. 
  Intra-molecular and inter-molecular 
overlaps are then removed and the placements are 
ranked, from which the best solutions are subjected 
to a clustering protocol. The highest rank solution 
from each cluster is then used in the next iteration. 
This process is repeated until the complete ligand 
is built, and the final structures are scored using the 
empirical scoring function. 

The program DOCK (version 4.0 29) can be 
summarised as a search for geometrically allowed 
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ligand-binding modes using several steps that 
include: describing the ligand and receptor cavity 
as sets of spheres, matching the sphere sets, 
orienting the ligand, and scoring the orientation. 
New extensions to the protocol involve combining 
the bipartite graphs consisting of protein and ligand 
interaction sites, into a single docking graph where 
each node now represents a pairing of an atom with 
a site point. Clique detection is then implemented 
based on the methodology of Bron and Kerbosch76. 
The technique has been previously evaluated77, 78 
and was found to be the most efficient 
methodology for finding cliques which encode 
maximal pairs of interactions between matching 
sites. Having generated multiple orientations an 
inter-molecular score is calculated based, on the 
AMBER force field 79 where receptor terms are 
calculated on a grid. DOCK 4.0 includes ligand 
flexibility using a modified scoring function which 
incorporates an intramolecular score for the ligand 
80. In this version the docking is fragment based; a 
ligand anchor fragment is selected and placed in 
the receptor, followed by rigid body simplex 
minimisation. The conformations of the remaining 
parts of the ligand are searched by a limited 
backtrack method and minimised. This protocol 
was tested on 10 structures; 7 docked complexes 
reproduced the crystal structure with a maximum 
RMSD of 1.03 Å and the remaining 3 were within 
1.88 Å. Although DOCK is included as a fragment 
based method, this is only one of several modes of 
operation. An alternative mode of operation is the 
docking of multiple random ligand 
conformations81, 82. This method generates a user-
defined number of conformers as a multiple of the 
number of rotatable bonds in the ligand. If the total 
number of user-defined conformers is greater than 
the number of conformations possible, based on a 
set of dihedral rules, then a systematic search is 
performed. Otherwise the required number of 
conformers are generated by assigning random 

dihedral values. These conformers are then docked 
independently. The search algorithms available in 
DOCK 4.0 have recently been reviewed by Ewing 
et al.82. Further extensions to DOCK have included 
incorporating protein flexibility using ensembles of 
protein structures 83 and the inclusion of a GB/SA84 
continuum model into the scoring function 85. 

 
SUMMARY AND CONCLUSISUMMARY AND CONCLUSISUMMARY AND CONCLUSISUMMARY AND CONCLUSIONSONSONSONS    

An extensive summary of currently 
available docking methods has been presented. 
Comparisons suggest that the best algorithm for 
docking is probably a hybrid of various types of 
algorithm encompassing novel search and scoring 
strategies. The most useful docking method will 
not only perform well, but will be easy to use and 
parametrise, and sufficiently adaptable such that 
different functionality may be selected, depending 
on the number of structures to be docked, the 
available computational resources, and the 
complexity of the problem. If the parameters 
cannot be generated quickly then although the 
algorithm may be computationally efficient, from a 
practical point of view it is limited. Conversely, a 
rapid scoring function may not necessarily be able 
to model some specific interactions. Algorithms 
that use the rigid receptor/flexible ligand 
approximation are well established and the most 
successful programs have achieved a success rate 
of between 70–80%. However, in the few 
examples where protein flexibility is incorporated 
into the docking algorithm, it is not clear whether 
the protein conformational states are sampled 
extensively. Furthermore, incorporating an ‘on-the-
fly’ solvent model into a docking method is a 
problem which has only recently been addressed 
with varying degrees of success. Moreover, 
although current docking methods show great 
promise, fast and accurate discrimination between 
different ligands based on binding affinity, once 
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the binding mode is generated, is still a significant 
problem. 
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