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Abstract

Validation is a crucial aspect of any quantitative structure–activity relationship (QSAR) modeling. This paper examines one of the most
popular validation criteria, leave-one-out cross-validatedR2 (LOO q2). Often, a high value of this statistical characteristic (q2 > 0.5) is
considered as a proof of the high predictive ability of the model. In this paper, we show that this assumption is generally incorrect. In the
case of 3D QSAR, the lack of the correlation between the high LOOq2 and the high predictive ability of a QSAR model has been established
earlier [Pharm. Acta Helv. 70 (1995) 149; J. Chemomet. 10 (1996) 95; J. Med. Chem. 41 (1998) 2553]. In this paper, we use two-dimensional
(2D) molecular descriptors andk nearest neighbors (kNN) QSAR method for the analysis of several datasets. No correlation between the
values ofq2 for the training set and predictive ability for the test set was found for any of the datasets. Thus, the high value of LOOq2 appears
to be the necessary but not the sufficient condition for the model to have a high predictive power. We argue that this is the general property of
QSAR models developed using LOO cross-validation. We emphasize that the external validation is the only way to establish a reliable QSAR
model. We formulate a set of criteria for evaluation of predictive ability of QSAR models. © 2002 Elsevier Science Inc. All rights reserved.
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1. Introduction

Rapid development of combinatorial chemistry and high
throughput screening methods in recent years has signif-
icantly increased a bulk of experimental structure–activity
relationship (SAR) datasets. These developments have
emphasized a need for reliable analytical methods for bi-
ological SAR data examination such as quantitative SAR
(QSAR). QSAR has been traditionally perceived as a means
of establishing correlations between trends in chemical
structure modifications and respective changes of biological
activity [1]. However, in many cases of chemical library
design, the number of compounds that could be practically
synthesized and tested is much smaller than the total size
of exhaustive virtual chemical libraries. There is a need for
developing virtual library screening tools, and QSAR mod-
eling can be adapted to the task of targeted library design
[2–4]. Of course, any QSAR modeling should ultimately
lead to statistically robust models capable of making ac-
curate and reliable predictions of biological activities of
compounds. However, the application of QSAR models for
virtual screening places a special emphasis on statistical
significance and predictive ability of these models as their
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most crucial characteristics. This paper examines the valid-
ity of one of the most popular criteria of QSAR model pre-
dictive ability, leave-one-out cross-validatedR2 (LOO q2).

The process of QSAR model development can be gener-
ally divided into three stages: data preparation, data analysis,
and model validation. The first stage includes selection of a
molecular dataset for QSAR studies, calculation of molecu-
lar descriptors, and selection of a QSAR (statistical analysis
and correlation) method. These steps represent a standard
practice of any QSAR modeling, and their specific details
are generally determined by the researchers’ interests and
software availability.

The second part of QSAR model development consists
of an application of statistical approaches for QSAR model
development. Many different algorithms and computer soft-
ware are available for this purpose. Most are based on lin-
ear (multiple linear) regression with variable selection [5],
partial least squares (PLS) [6], etc.) as well as non-linear
(genetic algorithms [7], artificial neural networks [8], etc.)
methods. In all approaches, descriptors serve as independent
variables, and biological activities as dependent variables.

The last and as we emphasize in this paper, most impor-
tant part of QSAR model development is the modelvalida-
tion. Most of the QSAR modeling methods implement the
leave-one-out (or leave-some-out) cross-validation proce-
dure. The outcome from the cross-validation procedure is
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cross-validatedR2 (q2), which is used as a criterion of both
robustness and predictive ability of the model. Many authors
consider highq2 (for instance,q2 > 0.5) as an indicator or
even as the ultimate proof that the model is highly predictive.
A widely used approach to establish the model robustness is
so-calledy-randomization (randomization of response, e.g.
biological activities) [9]. It consists of repeating the calcu-
lation procedure with randomized activities and subsequent
probability assessment of the resultant statistics. Often, it
is used along with cross-validation. Sometimes, models are
tested for their ability to predict accurately the activity of
one or two compounds that were not used in model de-
velopment (see, for instance [10,11]). However, it is still
common not to test QSAR models (characterized by a rea-
sonably high LOOq2) for their ability to predict accurately
biological activities of compounds from an external test
dataset, i.e. those compounds, which were not used for the
model development.

Although, the low value ofq2 for the training set can
indeed serve as an indicator of a low predictive abil-
ity of a model, the opposite is not necessarily true. In-
deed, the highq2 does not imply automatically a high
predictive ability of the model. In order to both develop the
model and validate it, one needs to split the whole avail-
able dataset into the training and test set. Several methods
can be used for this purpose. They include random selec-
tion, selection by groups of compounds where the whole
group is included into a training or a test set, selection of
training set compounds with major features varying in a
systematic way, etc. [12]. Not all of these methods produce
sufficiently reliable models. In fact, the lack of correla-
tion between the high value of the training setq2 and the
high predictive ability of a QSAR model has been noticed
earlier in the case of 3D QSAR [13–15]. These studies
indicated that while highq2 is the necessary condition for
a model to have a high predictive power, it is not a suffi-
cient condition. Apparently, the only way to estimate the
true predictive power of a model is to test it on a suf-
ficiently large collection of compounds from an external
test set.

In this paper, using several published datasets for the anal-
ysis, we argue that the external validation is an absolute re-
quirement for the development of a truly predictive QSAR
model. As the first example, we consider a well-known
group of ligands of corticosteroid binding globulin [16]. This
dataset is frequently referred to as a benchmark [17] for the
development and testing of novel QSAR methods. In [13],
many 3D QSAR models have been built based on the divi-
sions of this dataset into training and test sets and no relation-
ship between highq2 and predictiveR2 values was found. In
this paper, we employ thek nearest neighbors (kNN) QSAR
variable selection method that was recently developed in this
laboratory [18].kNN QSAR uses 2D descriptors of chem-
ical structures such as connectivity indices and atom pairs.
We show that the application of this approach to the steroid
dataset [16] leads to the same observations as using 3D

QSAR: highq2 does not automatically imply a high predic-
tive power of the model. We also consider 2D QSAR models
built for two other examples: a set of 78 ecdysteroids [19]
and 66 Histamine H1 receptor ligands [20]. In all these cases,
we consider training and test sets as they were defined in the
original publications. We demonstrate the lack of any rela-
tionship between highq2 and predictiveR2 in all cases. The
lack of this relationship appears to be the common feature of
the QSAR methods that must be always taken into account in
QSAR studies.

On the basis of our analysis, we suggest that the test set
must include no less than five compounds, whose activities
and structures must cover the range of activities and struc-
tures of compounds from the training set. This requirement
is necessary for obtaining reliable statistics for comparison
between the observed and predicted activities for these com-
pounds. We reason that in addition to a highq2 a reliable
model should be also characterized by a high correlation co-
efficient R (or R2) between the predicted and observed ac-
tivities of compounds from a test set. Finally, we introduce
a notion of the “ideal” QSAR model and formulate a set of
criteria for a reliable QSAR model based on its closeness to
the “ideal” model.

2. Methods

2.1. Descriptors

The following Molconn-Z [21] descriptors were used
to develop QSAR models: simple and valence path, clus-
ter, path/cluster and chain molecular connectivity indices
[22–24], kappa molecular shape indices [25,26], topological
[27] and electrotopological state indices [28–31], differen-
tial connectivity indices [32], graph’s radius and diameter
[33], Wiener [34] and Platt [35] indices, Shannon [36] and
Bonchev et al. [37] information indices, counts of different
vertices [21], counts of paths and edges between different
kinds of vertices [21]. Since datasets considered in this
paper contained chiral molecules, chirality descriptors de-
veloped recently [38] were added to the Molconn-Z [21]
descriptors. The chirality descriptors [38] included modified
Zagreb group indices [39], molecular connectivity indices
[22–24], extended connectivity indices [40] and overall
connectivity indices [41,42].

In each case, descriptors were scaled according to the
following formula:

Xn
ij = Xij − Xj,min

Xj,max − Xj,min
,

where Xij and Xn
ij are the non-scaled and scaledjth de-

scriptor values for compoundi, respectively, andXj ,min and
Xj ,max are the minimum and maximum values forjth de-
scriptor, respectively. Thus, for all descriptors, min(Xn

ij) = 0
and max(Xn

ij) = 1.
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2.2. kNN QSAR

kNN variable selection QSAR method developed in this
laboratory earlier [18] was used to build QSAR models for
all datasets.kNN QSAR optimizes the descriptor selection
to achieve a model with the highest LOOq2 as follows.
To initiate the procedure, the following input should be
provided:

• the number of variables (descriptors)D to be selected
from the whole set of descriptors for the final best model;

• the maximum numberk of nearest neighbors;
• the number of descriptorsM to be changed at each step of

the stochastic descriptor sampling procedure that utilizes
simulation annealing;

• the startingTmax and endingTmin of the simulation an-
nealing parameter, “temperature”,T, and the factord < 1
to decreaseT (T next = dTprevious) at each step;

• the number of timesN the calculations must be performed
before loweringT, if q2 is not improved.

In all calculations reported in this work,k = 5, T max =
100,T min = 10−9, d = 0.9, andM = 3. D was varied from
10 to 40 with step 2.

In the LOO cross-validation procedure, every compound
was eliminated from the dataset once and its activity was
then predicted as a weighted average of the activities of its
nearest neighbors using the following formula:

ŷ =
∑

nearest neighborsyi exp(−di)∑
nearest neighborsexp(−di)

, (1)

wheredi are the distances between this compound and its
kNN. LOO q2 was calculated according to the following
expression:

q2 = 1 −
∑

(yi − ŷi )
2

∑
(yi − ȳ)2

, (2)

whereyi are the actual activities,̂yi are defined by Eq. (1),
and ȳ the average activity. The summation in Eq. (2) is
performed over all compounds. The following algorithm was
used to derive QSAR models for the examples considered
in this paper.

1. SetT = T max.
2. Select randomly a subset ofD descriptors.
3. For each compound, predict its activity using Eq. (1).
4. Select the number of nearest neighbors, which gives the

highestq2 (Eq. (2)).
5. ExchangeM � D descriptors for the same number of

descriptors selected randomly out of all descriptors.
6. Perform steps 3 and 4 for the new descriptor set defined

in step 5.
7. If the newq2 (q2

new) is higher than the previous one (q2
old),

accept the new set of descriptors and go to step 5. Oth-
erwise, accept it with the probabilityP = exp[−(q2

old −
q2

new)/T ] and go to step 5, or reject it with the probability
(1 − P ), and go to step 8.

8. If q2 did not change after step 5 has been performedN
times for currentT, and ifT > T min, decreaseT and go to
step 5, and ifT ≤ T min stop. If step 5 has been performed
less thanN times for the currentq2, go to step 5.

Thus, the output from the procedure is a QSAR model,
which is characterized by the set ofD descriptors selected,
the numberk of nearest neighbors, and the value ofq2.

The activities for the test set compounds are predicted
based on selected training set model as follows.

1. For each compound of the test set, find its closestkNN
from the training set using the value ofk and descriptors
selected by the underlyingkNN QSAR model.

2. Predict activities of compounds from the test set using
Eq. (1).

2.3. Estimation of the predictive ability of a
QSAR model

Let us first define quantitative criteria of a predictive
QSAR model. Letỹi and yi be the predicted and actual
activities, respectively. If we ploty versusỹ for the ideal
QSAR model, the regression line will bisect the angle formed
by positive directions of the orthogonal axesỹ andy. The
regression line can be described by expressionyr = aỹ +b,
where [43]

a =
∑

(yi − ȳ)(ỹi − ¯̃y)∑
(ỹi − ¯̃y)2

(3a)

and

b = ȳ − a ¯̃y. (3b)

In Eqs. (3a) and (3b),̃̄y and ȳ are the average values of
the predicted and observed activities, respectively, and the
summations in this and all the following equations are over
all n compounds of the test set.

For the ideal model, the slopea is equal to 1, interceptb
is equal to 0, and correlation coefficient:

R =
∑

(yi − ȳ)(ỹi − ¯̃y)√∑
(yi − ȳ)2

∑
(ỹi − ¯̃y)2

, (4)

for the regression of̃y versusy is equal to 1. Areal QSAR
model may have a high predictive ability, if it is close to the
ideal one. This may imply that the correlation coefficientR
between the actualy and predicted̃y activities must be close
to 1 and regressions ofy againstỹ or ỹ againsty through
the origin, i.e.yr0 = kỹ andỹr0 = k′y, respectively, should
be characterized by at least eitherk or k′ close to 1. Slopes
k andk′ are calculated as follows:

k =
∑

yi ỹi∑
ỹ2
i

, (5a)

k′ =
∑

yi ỹi∑
y2
i

. (5b)
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Fig. 1. An example of a regression between observed vs. predicted (a) and predicted vs. observed (b) activities for compounds from an external test
set. Despite highR2 value and bothk and k′ (cf. text) close to 1, the model is not highly predictive, because the regressions through the origin of the
coordinate system are not close to the optimal regressionsyr = aỹ +b and ỹr = a′y +b′. Note thatR2

0 andR′2
0 are substantially different from each other.

Plotting bothy againstỹ and ỹ againsty may appear
redundant; however, we shall see that these plots could be
characterized by different statistics.

We shall show now that the criteria formulated above may
not be sufficient for a QSAR model to be truly predictive.
Fig. 1 examines a case when the correlation between the
actual activities and those predicted by a QSAR model for
an external test set is characterized byR2 = 0.98, and both
k and k′ are close to 1. Despite these good statistics, the
predictions are inaccurate. Thus, regression lines through the
origin defined byyr0 = kỹ andỹr0 = k′y (with the intercept
set to 0) are not close to the optimum regression linesyr =
aỹ + b and ỹr = a′y + b′. Furthermore, both correlation
coefficients for these linesR2

0 andR′2
0 have different values,

which are quite different from that ofR2. R2
0 andR′2

0 are
calculated as follows:

R2
0 = 1 −

∑
(ỹi − y

r0
i )2

∑
(ỹi − ¯̃y)2

, (6a)

R′2
0 = 1 −

∑
(yi − ỹ

r0
i )2

∑
(yi − ȳ)2

, (6b)

wherey
r0
i = kỹi and ỹ

r0
i = k′yi , and the summations are

over alln compounds in the test set.
The values of all coefficients in both regressionsyr =

aỹ + b andỹr = a′y + b′ are far from the ideal ones:a and
a’ are not close to 1, andb andb′ are not close to 0.

This example demonstrates that we need to impose an ad-
ditional, more strict condition for the QSAR model to have
a high predictive ability: bothR2 and eitherR2

0 or R′2
0 must

have similar values. In fact, it can be shown thatR2 ≥
max(R2

0, R′2
0 ). The values ofb andb′ can be actually signif-

icantly different from 0 even for good models (for instance,
see Fig. 2). If the angle between regression linesyr = aỹ+b

and yr0 = kỹ is small, then these lines are close to each
other in the area close to their intersection. The permissible
values of these angles for good models depend on the range
of activities in the test set. The larger the range, the smaller

this angle must be, and the closera or a′ must be tok or k′.
Closeness ofR to 1, R2 to eitherR2

0 or R′2
0 and the corre-

sponding slopek or k′ to 1, guarantee thata anda′ are suffi-
ciently close to 1, and no additional condition is necessary.

Residual variance (or residual mean square error) are cal-
culated as follows:

s2
res =

∑
(ỹi − yr

i )
2

n − 2
, (7)

wheresres is the standard deviation of the predicted activities
for given actual activities. The square of the deviation of the
mean of the regression line is obtained as

s2
r =

∑
(yr

i − ȳ)2 (8)

andF-ratio is calculated according to the formula

F = s2
r

s2
res

. (9)

s2
resis also referred to as residual mean square error (RMSE).

sres is standard error of estimation [43]. In Eqs. (7) and (8),
yr
i correspond to the equation of regressionyr = aỹ + b.
In most publications whereF-ratio is calculated, authors

assume that the higherF-value, the better is the model. This
assumption is correct, ifF-values with the same numbers of
degrees of freedom [43] are compared. For simple regres-
sion, the degrees of freedom have values of 1 andn − 2
[43]. Most authors do not mention thatF-ratio is used in
hypothesis testing. Briefly, null hypothesis H0 assumes that
the model does not predict better than the average activity
value. H1 hypothesis is based on the opposite assumption.
Usually H1 is accepted or rejected with a certain significance
level α, that means that the probability of H1 being true or
false is at leastα. Typically, the significance level of 0.95
or 0.99 is used. To find, whether H1 can be accepted with a
certain significance level,F-distribution function is used. If
F-ratio appears to be higher than the corresponding value of
F-distribution function for given degrees of freedom, H1 is
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Fig. 2. QSAR modeling of Cramer’s steroids [16]. (a) PredictiveR2 vs. q2 for the models withq2 > 0.5 for the same training and test sets. (b)
Observed vs. predicted affinity to corticosteroid binding globulin by the best model obtained using compounds 1–21 as the training set and validated
using compounds 22–31 as the test set. (c) PredictiveR2 vs. q2 for the models withq2 > 0.5 for the same training and test sets. (d) Observed vs.
predicted affinity to corticosteroid binding globulin by the best model built using compounds 1–12 and 23–31 as the training set and validated using
compounds 13–22 as the test sets.

accepted otherwise it is rejected [43]. Alternative approach
is to find the boundary significance levelα between H1 and
H0. This boundary significance level can serve as an addi-
tional parameter of predictive power of a QSAR model. To
find the boundary significance levelα, the following equa-
tion must be solved:

F1,n−2,α = F, (10)

whereF1,n−2,α is theF-distribution function with 1 andn−2
degrees of freedom. The higher theα, the better is the model.
We used the MATLAB [44] fcdf function to obtainα-values
for our models. Since,α is very close to 1 for good models,
P-values were used instead;P-value is defined as 1− α.

For each example, the variable selection/optimization pro-
cedure described above was performed 10 times for each
value of the descriptor subsetD. Thus, for each experimen-
tal dataset, 160 QSAR models were built. Models were con-
sidered acceptable, if they satisfied all of the following con-
ditions: q2 > 0.5, R2 > 0.6, R2

0 or R′2
0 close toR2, i.e.

[(R2 − R2
0)/R2] < 0.1 or [(R2 − R′2

0 )/R2] < 0.1, and the
corresponding 0.85 ≤ k ≤ 1.15 or 0.85 ≤ k′ ≤ 1.15.

3. Results and discussion

3.1. Steroids dataset

Binding affinities of steroids to corticosteroid binding
globulin were taken from [15]. The same two distributions
of compounds into the training and test sets as in [15] were
used. The first training set included compounds 1–21 and the
corresponding test set included compounds 22–31. All 160
kNN QSAR models for the training set hadq2 > 0.5. They
were used to predict activities of the test set compounds.
Thus, for each of these modelsR2 values were obtained. The
plot of R2 versusq2 is shown in Fig. 2a. Obviously, this plot
indicates no correlation betweenq2 andR2 but does show
several models with high value ofR2. The best predictive
model was characterized byq2 = 0.74, R = 0.93 (R2 =
0.86), R2

0 = 0.82, RMSE= 0.04, F = 49.3, k = 0.98 and
P = 1.1 × 10−4 (see Fig. 2b).

The second training set included compounds 1–12 and
23–31, while the corresponding test set included compounds
13–22. All 160 models obtained with these descriptors had
q2 > 0.5. They were used to predict activities of the test
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set compounds. For each of these models,R2 values were
obtained. Plot ofR2 versusq2 is shown in Fig. 2c. Simi-
larly to the previous case, no relationship betweenq2 andR2

could be found as well. The best model obtained withkNN
QSAR approach and non-chiral as well as some chiral de-
scriptors hadq2 = 0.82,R = 0.91 (R2 = 0.83),R2

0 = 0.79,
RMSE = 0.13, F = 39.9, k = 1.01 andP = 2.29× 10−4

(see Fig. 2d).
Additional calculations were performed with the random-

ized binding affinities of compounds from the training sets.
A total of 160 QSAR models were built for each of the two
cases. In the first case, only 18 models hadq2 > 0.5. The
highestq2 was 0.72. The highestR2 was 0.49. In the second
case, 154 models hadq2 > 0.5. The highestq2 was 0.75,
and the highestR2 was 0.51. These calculations demonstrate
that q2 could be high even if the affinities of compounds
from the training set are randomized. Only the use of ex-
ternal test sets made it possible to establish that all models
based on the training set with randomized affinities were
useless, since they had low predictive power. Actually, in
the absence of the test set calculations, we could have come
to a wrong conclusion. The fact that some models based on
the training sets with randomized affinities appeared to have
highq2 values could be explained by a chance correlation or
structural redundancy [45]. Another reason of highq2 val-
ues for randomized data may be the correlation between the
real and randomized activities [45]. It is particularly actual
for small datasets. In our example, this was not observed.
In the first case, the correlation coefficient between real and
randomized activity was 0.16, and in the second case, it was
0.01. In summary, the majority of the models with high value
of q2 had no predictive power as assessed by the (low) pre-
dictive R2-value. Only 17 models in the first case and only
five models in the second case had predictiveR2 > 0.6.

3.2. Ecdysteroids

This dataset contained 78 analogs of ecdyson [19]. The
−log(ED50) values for ecdysteroids and division into the

Fig. 3. QSAR modeling of ecdysteroids [19]. (a) Correlation between observed and predicted activity values for the best predictive model for the external
test set containing seven compounds. (b) PredictiveR2 vs. q2 for all models withq2 > 0.5.

training and test set were taken from [19]. Thorough 2D
QSAR studies were performed for this dataset earlier, as
the first example to apply our novel chirality descriptors
[38,46]. The training set contained 71 compounds. The test
set contained seven compounds. One of the best models
obtained had the following statistics:q2 = 0.71, R = 0.98
(R2 = 0.96), R2

0 = 0.95, RMSE = 0.34, F = 110.5,
k = 0.85 andP = 1.35× 10−4 (Fig. 3a). The total number
of descriptors was 300; 158 out of 160 models built using
these descriptors hadq2 > 0.5. Plot ofq2 versusR2 for this
example is presented in Fig. 3b.

Additional calculations were performed using randomized
training set, and 160 QSAR models were built. The train-
ing set for this example was much larger than for Cramer’s
steroids. Therefore, the chance correlation and largeq2 val-
ues were less likely for the same numberD of descriptors
selected from the whole descriptor set. Indeed, the highest
q2 for the training set with randomized activities was 0.30.

Again, as discussed above for the steroid dataset, with-
out the validation of the models by using the external test
set, a wrong conclusion could be made that all 158 models
with q2 > 0.5 are good. However, only nine models had
R2 > 0.6.

3.3. Histamine H1 receptor ligands

This dataset included 35 analogs of 1-phenyl-3-amino-
1,2,3,4-tetrahydronaphtalenes, 1-phenyl-3-aminotetralins
(PATs) and 31 compounds with other structures (non-PATs)
[20]. Binding affinities of the compounds to histamine H1
receptor were taken from [20]. The same training set (50
compounds) and test set (16 compounds) as in [20] were
used in our calculations. One of the best QSAR models had
the following statistics:q2 = 0.69, R = 0.85, (R2 = 0.72),
R2

0 = 0.72, RMSE = 0.53, F = 35.4, k = 1.02, and
P = 3.5 × 10−5 (Fig. 4a). All 160 models built with these
descriptors appeared to haveq2 > 0.5. Therefore, all of
them were used to predict binding affinities of compounds
from the test set. Plot ofq2 versusR2 for Histamine H1
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Fig. 4. QSAR modeling of histamine H1 receptor ligands [20]. (a) Correlation between observed and predicted activity values for the best predictive
model for the external test set containing 16 compounds. (b) Plot of predictiveR2 vs. q2 for all models withq2 > 0.5.

receptor ligands is presented in Fig. 4b. Despite highq2 for
all models, only one of them had predictiveR2 > 0.6.

Affinities of compounds in the training set were random-
ized. QSAR models based on the randomized training set
were built. The same parameter values as for calculations
with the real training set were used for these calculations
and 160 QSAR models were built. For all these models,
maximumq2 was 0.43.

As in the previous example, without the validation of our
QSAR models by using the external test set, we could have
come to a wrong conclusion about high predictive ability of
all our models. In fact, only one of them appeared to have
a relatively high predictive ability.

4. Conclusions

This paper emphasizes that the predictive ability of a
QSAR model can only be estimated using an external test
set of compounds that was not used for building the model.
We formulate the following criteria for a QSAR model to
have high predictive power.

1. High value of cross-validatedR2 (q2).
2. Correlation coefficientR between the predicted and

observed activities of compounds from an external test
set close to 1. At least one (but better both) of the cor-
relation coefficients for regressions through the origin
(predicted versus observed activities, or observed versus
predicted activities), i.e.R2

0 or R′2
0 should be close toR2.

3. At least one slope of regression lines through the origin
should be close to 1. (It will correspond toR2

0 or R′2
0 that

is closer toR2.)

Based on the calculations and analysis presented in this
paper, we conclude that despite its wide acceptance, a high
value ofq2 alone is insufficient criterion for a QSAR model
to be highly predictive. This conclusion appears to be a com-
mon feature of all QSAR approaches in which the num-
ber of descriptors is close to or higher than the number
of compounds. Indeed, any procedure for QSAR model

development is aimed at the enhancement ofq2 rather than
predictive power (externalR2) of the model. The higher the
number of descriptors relative to the number of compounds,
the higher is a chance to select those of them (or latent vari-
ables in the case of PLS analysis) that give highq2 values.
Another reason for overestimating theq2 can be structural
redundancy of the training set [45]. In the case of non-linear
methods, such askNN applied in this work, the existence of
multiple minima could present an additional problem. Many
models could be characterized by highq2, but only few of
them are really highly predictive as judged by external vali-
dation. That is why the use of an external set of compounds
for the model validation is always necessary. We summarize
this conclusion in a simple statement: “beware of q2!”.
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