

Ligand-Based Drug Design

EVALUATION AND VALIDATION OF A MODEL

	Coefficient	Symbol	Equation	Limits
1	Squared Correlation Coefficient	<i>R</i> ² or <i>r</i> ²	$r^{2} = 1 - \frac{\sum_{i=1}^{N} (Y_{\exp,i} - Y_{calc,i})^{2}}{N}$	$0 \le r^2 \le 1$
2	Cross-Validated R ²	Q^2 or q^2	$\sum_{i=1}^{N} (Y_{\exp,i} - \overline{Y})^2$ $\sum_{i=1}^{N} (Y_{\exp,i} - Y_{pred,i})^2$	$\infty \le q^2 \le r^2 \text{ or } 1$
3	Y-scrambling	r_{ys}^2 and q_{ys}^2	$\sum_{i=1}^{N} (Y_{\exp,i} - \overline{Y})^2$	$r^2_{ys} \leq r^2 \ q^2_{ys} \leq q^2$
4	Prediction Error	SDEP	$SDEP = \sqrt{\frac{\sum_{i=1}^{N} (Y_{\exp,i} - Y_{pred,i})^2}{N}}$	As low as possible

Introduction to Ligand-Based Drug Design

Descriptors for QSAR

Dart: free software for multicriteria decision making

All about Dart

Molecular descriptors are numerical values that characterize properties of molecules The descriptors fall into Four classes

- Topological
- Geometrical
- Electronic
- Hybrid or 3-D Descriptors
- Fingerprints

Descriptors for QSAR

Dragon 7.0 calculates **5,270** molecular descriptors, organized in different **logical blocks** as in the previous versions. Blocks are further divided into sub-blocks to make management, selection, and analysis of descriptors easier. Following, the summary of molecular descriptors blocks calculated by Dragon 7.0 is reported. The <u>complete list</u> of all 5,270 calculated descriptor is also available.

Block	Block name	# Descriptors	Block no.	Block name	# Descriptors
110.			10		0.4.0
1	Constitutional	47	16	RDF descriptors	210
2	Ring descriptors	32	17	3D-MoRSE descriptors	224
3	Topological indices	75	18	WHIM descriptors	114
4	Walk and path counts	46	19	GETAWAY descriptors	273
5	Connectivity indices	37	20	Randic molecular profiles	41
6	Information indices	50	21	Functional groups count	154
7	2D matrix-based descriptors	607	22	Atom-centred fragments	115
8	2D autocorrelations	213	23	Atom-type E-state indices	172
9	Burden eigenvalues	96	24	CATS 2D	150
10	P-VSA-like descriptors	55	25	2D Atom Pairs	1596
11	ETA indices	23	26	3D Atom Pairs	36
12	Edge adjacency indices	324	27	Charge descriptors	15
13	Geometrical descriptors	38	28	Molecular properties	20
14	3D matrix-based descriptors	99	29	Drug-like indices	28
15	3D autocorrelations	80	30	CATS 3D	300

Introduction to Ligand-Based Drug Design

1980: The Goodford's GRID (Toward 3-D QSAR)

849

J. Med. Chem. 1985, 28, 849-857

Articles

A Computational Procedure for Determining Energetically Favorable Binding Sites on Biologically Important Macromolecules

P. J. Goodford

The Laboratory of Molecular Biophysics, The Rex Richards Building, University of Oxford, Oxford OX1 3QU, England. Received August 3, 1984

The interaction of a probe group with a protein of known structure is computed at sample positions throughout and around the macromolecule, giving an array of energy values. The probes include water, the methyl group, amine nitrogen, carboxy oxygen, and hydroxyl. Contour surfaces at appropriate energy levels are calculated for each probe and displayed by computer graphics together with the protein structure. Contours at negative energy levels delineate regions of attraction between probe and protein and are found at known ligand binding clefts in particular. The contours also enable other regions of attraction to be identified and facilitate the interpretation of protein-ligand energetics. They may, therefore, be of value for drug design.

Description of Molecules with Molecular Interaction Fields (MIF)

http://setosa.io/ev/principal-component-analysis/

Introduction to Ligand-Based Drug Design

*197x-198x: The Wold's PLS (Toward 3-D QSAR)

Reduction of Dimensionality into Few New Highly Informative Entities

----- Principal Components -----

1988: The First 3-D QSAR

$\mathsf{PLS} + \mathsf{MIF} \rightarrow \mathsf{CoMFA}!$

J. Am. Chem. Soc. 1988, 110, 5959-5967

5959

Comparative Molecular Field Analysis (CoMFA). 1. Effect of Shape on Binding of Steroids to Carrier Proteins

Richard D. Cramer, III,* David E. Patterson, and Jeffrey D. Bunce

Contribution from Tripos Associates, 1699 South Hanley Road, St. Louis, Missouri 63144. Received January 5, 1988

CoMFA/3-D QSAR Procedure

- Physical properties are measured for the molecule as a whole
- Properties are calculated using computer software
- No experimental constants or measurements are involved
- Properties are known as 'Fields'
- Steric field defines the size and shape of the molecule
- Electrostatic field defines electron rich/poor regions of molecule
- Hydrophobic properties are relatively unimportant

Advantages over classical QSAR

- No reliance on experimental values (*i.e.* logP)
- Can be applied to molecules with unusual substituents
- Not restricted to molecules of the same structural class
- Improved predictive capability

CoMFA/3-D QSAR Procedure

CRUCIAL POINTS!

- Conformation of the training set molecules
- Superimposition of the training set molecules (molecular alignment rules)

Original CoMFA Tricks:

- Very rigid molecules: steroid scaffold!!!!
- Directed superimposed atom by atom!!!!

CRUCIAL POINTS!

- Conformation of the training set molecules
- Superimposition of the training set molecules (molecular alignment rules)

Original CoMFA Tricks:

- Very rigid molecules: steroid scafe
- Directed superimposed atom by an 2011

1991: The WO CoMFA Patent and 3-D QSAR Development

The Lattice Model: A General Paradigm for Shape-Related Structure/Activity Correlation	PCT WORLD INTEL	ELLECTUAL PROPERTY ORGANIZATION International Bureau LISHED UNDER THE PATENT COOPERATION TREATY (PCT)		
Cramer, R.D., and Milne, M., Abstracts ACS	(51) International Patent Classification ⁵ :	(11) International Publication Number: WO 92/22875		
Meeting, Honolulu, 1979, COMP 44.	G06F 15/46	A1 (43) International Publication Date: 23 December 1992 (23.12.92)		
SLAM J. Sci. and Stat. Comput. / Volume 5 / Issue 3 The Collinearity Problem in Linear Regression. The Partial Least Squares (PLS) Approach to Generalized Inverses	 (21) International Application Number: PCT/US (22) International Filing Date: 17 June 1991 (71)(72) Applicants and Inventors: CRAMER, Richar [US/US]; Tripos Associates, Inc., 1699 S. Har Sta, 2020 St. Lowing: MO. 63144 (US) SXIAN 	 (17.06.91) Published With international search report. a, D., III ley Road, TS Work 		
S. Wold, A. Ruhe, H. Wold, and W. J. Dunn, III SIAM J. Sci. and Stat. Comput. Volume 5, Issue 3, pp. 735-743	 Ste. 305, at. 2018, MO 05144 (OS). SYAN (SE/US); 371 Highland Avenue, Winter, 1) (US). (74) Agent: LIPTON, Robert, S.; Lipton & Famigli Jackson Street, P.O. Box 546, Media, PA 1906 	na (189) o, 201 N. 3 (US).		
J. Am. Chem. Soc. 1988, 110, 5959-5967 Comparative Molecular Field Analysis (CoMFA). 1. Effect of Shape on Binding of Steroids to Carrier Proteins Richard D. Cramer, III.* David E. Patterson, and Jeffrey D. Bunce Contribution from Tripos Associates, 1699 South Hanley Road, St. Louis, Missouri 63144. Received January 5, 1988	(81) Designated States: AT (European patent), BE (patent), CH (European patent), DE, DE (Eur tent), DK (European patent), ES (European patent) (European patent), GB, GB (European patent) ropean patent), IT (European patent), JP, LU (patent), NL (European patent), SE (European	European opean pa- tent), FR. G.R. (Eu- European patent).		
Baroni, M.; Costantino, G.; Cruciani, G.; Kiganelli, D.; Valigi, R.; Clementi, S., Generating Optimal Linear PIs Estimations (Golpe) - an Advanced Chemometric Tool for Handling 3D-QSAR Problems. Quant Struct-Act Rel 1993, 12, (1), 9-20.	(54) Title: COMPARATIVE MOLECULAR FIELD			
J. Med. Chem. 1994, 37, 2589–2601 Comparative Molecular Field Analysis Using GRID Force-Field and GOLPE Variable Selection Methods in a Study of Inhibitors of Glycogen Phosphorylase b Gabriele Cruciani ^{1,4} and Kimberly A. Watson ² Department of Chemistry, University of Perugia, Via Elec di Sotto, 8, 06100 Perugia, Italy, and Laboratory of Molecular Biophysics, University of Oxford, South Parks Road, OXI 3QU, Oxford, England	BLUE	YELLOW BLUE		

- 4-D QSAR, each molecule is represented by an ensemble of conformations, orientations, and protogram states
- 5-D QSAR, inclusion of the induced ft
- 6-D QSAR, the simultance is evaluation of different solvation models
- · CoMSIA DrOP
- Vo'Suri

2009: First Free 3D-QSARs

On 17 June 2011 the patent PLS+MIF restriction dropped and now a new 3-D QSAR explosion is expected.

In view of this event, five years ago, at RCMD, we started an ambitious project aimed to build a 3-D QSAR web server using just open source or free software

3-D QSAutogrid/R

Only Open Source Software!

Introduction to Ligand-Based Drug Design

The Server Engine

Article

pubs.acs.org/jcim

3-D QSAutogrid/R: An Alternative Procedure To Build 3-D QSAR Models. Methodologies and Applications

Flavio Ballante[†] and Rino Ragno^{*,†}

[†]Rome Center for Molecular Design, Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, P. le A. Moro 5, 00185, Rome, Italy

Supporting Information

ABSTRACT: Since it first appeared in 1988 3-D QSAR has proved its potential in the field of drug design and activity prediction. Although thousands of citations now exist in 3-D QSAR, its development was rather slow with the majority of new 3-D QSAR applications just extensions of CoMFA. An alternative way to build 3-D QSAR models, based on an evolution of software, has been named 3-D QSAutogrid/R and has been developed to use only software freely available to academics. 3-D QSAutogrid/R covers all the main features of CoMFA and GRID/GOLPE with implementation by multiprobe/multiregion variable selection (MPGRS) that improves the simplification of interpretation of the 3-D QSAR map. The methodology is based on the integration of the molecular interaction fields as calculated by AutoGrid and the R statistical environment that can be easily coupled with many free graphical molecular interfaces such as UCSF-Chimera, AutoDock Tools, JMol, and others. The description of each R package is reported in detail, and, to assess its validity, 3-D QSAutogrid/R has been

applied to three molecular data sets of which either CoMFA or GRID/GOLPE models were reported in order to compare the results. 3-D QSAutogrid/R has been used as the core engine to prepare more that 240 3-D QSAR models forming the very first 3-D QSAR server (www.3d-qsar.com) with its code freely available through R-Cran distribution.

3-D QSAutoGrid/R → MPGRS

Live View

	-9	S	ar		QM	
Sfer Hoad Au :		235	APIEN	ZA		
				ICI.		
Home Launch Predictor	Datas	ets	Abou	it Char	nge Log	
You are inspecting model AshE A			AchE	Models	Other	Datasets
Tou are inspecting model Ache_A			AchE_e	ň	AC	ň
The AchE dataset was taken from J. Med. Chem. 2004, 47, 5541-5554. Paper al of methods are available for modeling quantitative structure-activity relationships the predictive accuracy of several methods applied to data sets of inhibitors for a enzyme, acetylcholinesterase, benzodiazepine receptor, cyclooxygenase-2, dihy glycogen phosphorylase b, thermolysin, and thrombin. Descriptors calculated with EVA, HQSAR, and traditional 2D and 2.5D descriptors were used for developing least squares (PLS). In addition, the genetic function approximation algorithm, ge propagation neural networks were used for deriving models from 2.5D descriptors and 3D descriptors calculated from CORINA structures and Gastelger-Marsill ch accuracy was assessed using designed test sets. It was found that HOSAR gene CoMFA and CoMSIA; other descriptor sets performed less well. When 2.5D des neural network ensembles were found to be similarly or more predictive than PLS show that many cross-validation procedures yield similar estimates of the interpor methods. However, the lack of correspondence between cross-validated and tes for four sets underscores the benefit of using designed test sets.	bstract: A large (QSAR). We é (QSAR). We é angiotensin cor drofolate reduc h CoMFA, Cch models with p metic PLS, and s (i.e., 2D desa arges). Predict rally performs criptors were u s models. In ad lative accuracy t set predictive	number xamine verting tase, tSIA, artial back- rriptors ve as well as sed, only dition, we r of accuracy	AchE_A AchE_HC AchE_N	بر بر		z
	TT	aining S	Set			
	Show	Mol id	Exp p[act]			
	1.12	94	9.520	-		
		04				
	c c	93	9.220	_		
a l	6	93 141	9.220 8.920			
and the second s		93 141 128	9.220 8.920 8.700			
		93 141 128 140 77	9.220 8.920 8.700 8.550 8.380			
		93 141 128 140 77 81	9.220 8.920 8.700 8.550 8.380 8.270			
		93 141 128 140 77 81 117	9.220 8.920 8.700 8.550 8.380 8.270 8.240			