

By following this tutorial the user will learn how to perform molecular docking by means of Autodock Vina program.

Docking assessment on a given experimental key/lock complex will be carried out by:

- 1) Evaluation of ligand docking starting from the experimental ligand conformation (experimental conformation re-docking ECRD)
- 2) Evaluation of ligand docking starting from a random generate ligand conformation (random conformation re-docking RCRD)

Then the binding mode of a molecule reported in an article will be evaluated.

Here is the sequence of minimal operation to set up a docking study.

First the target and its role has to be inspected.

Then a series of actions are to first validate the docking program and apply it

In this tutorial the reference article is here reported, where a series of selective NOS inhibitors are described. Reading the article it seems compound 17 is the most interesting one, so we will focus on that.

Further info can be gathered in the supporting information included in the article as external files. To get them let's search for the article in the www by googling its title. Then click on the results.

Table Long Call (A) PubMed PubMed Advanced Advanced	Search
Abstract • Send to: •	Full fast links
<u>Med Chem</u> , 2015 Nev 12:56(21):8694-712. doi: 10.1021/acs.jmed:hem.5801330. Epub 2015 Oct 27. "henyl Ether- and Anliine-Containing 2-Aminoquinolines as Potent and Selective Inhibitors of Neuronal Nitric Dyide Synthese.	ACS Publications
Sinelli MA ¹ , Li H ² , Pensa AV ¹ , Kano S ¹ , Roman Lu ³ , Martàsek P ^{3,4,5} , Poulos TL ² , Silverman RB ¹ .	Save items
Author information	☆ Add to Favorites ▼
Excess mitric oxide (NO) produced by neuronal mitric oxide synthase (mNOS) is implicated in neurodegementative disorders. As a result, inhibition of NOS and neducition of NO levels is desirable therapeutically, but many nNOS inhibitors are poorly bioavailable. Promotising members of our reviously reported 2-aminoquinoline class of nNOS inhibitors, although orally bioavailable and brain-penetrant, suffer from unfavorable off-target inding to other CNS neceptors, and they resemble known promiscuous binders. Rearranged pheny (ether- and anline-linked 2-aminoquinoline tervatives were therefore designed to (a) disrupt the promiscuous binders. Rearranged pheny (ether- and anline-linked 2-aminoquinoline tervatives were therefore designed to (a) disrupt the promiscuous binders pharmacophore and diminish off-target interactions and (b) preserve otency, isoform selectivity, and cell perserve otency, isoform selectivity, and cell portexability. A series of these compounds was synthesized and tested against punfied nNOS, endotheial OS(eNOS) and inductibe NOS (NOS) enzymes. One compound, 20, displayed high potency, selectivity, and good human nNOS inhibition, and etained some permeability in a Caco-2 assay. Most promisingly, CNS receptor counterscreening revealed that this rearranged scaffold significantly educes off-target binding.	Similar articles Simplified 2-aminoquinoline-based scaffold for potent and selective neuron; [J Med Chem. 201 Aromatic reduced amide bond peptidomimetics as selective inhibitors of ne; [J Med Chem. 100 N-Phenylamidines as selective inhibitors of human neuronal nitic oxide [J Med Chem. 100 Rowson Design of selective neuronal nitic oxid synthase inhibitors for the [Acc Chem Res. 200 Rowson Progress in the development of selection artic oxide sun (Jour Phorm Des. 200
Srant Support S	See reviews
	See al

Open up the pubmed page and then click on the ACS Publications icon.

... here is the article directly on the ACS web portal.

Let's scroll down it till supporting information appear

The «csv» file contains the smiles structures and other info

The «pdf» file contains others info

					_
Data set 7	nNOS-10	nNOS-15	nNOS-17	nNOS-20	_
Data collection					_
PDB code	5AD8	5AD9	5ADA	5ADB	-
Space group	P212121	P212121	P212121	P212121	-
Cell dimensions	51.9 111.9 164.3	51.7 111.6 164.1	51.9 111.4 164.3	51.7 111.0 165.1	-
a, b, c (Å)					
Resolution (Å)	1.91 (1.93-1.91)	2.30 (2.42-2.30)	1.98 (2.05-1.98)	2.05 (2.13-2.05)	1
Rmerge	0.084 (>1.000)	0.141 (2.111)	0.097 (2.350)	0.126 (3.719)	-
Rpim	0.047 (>1.000)	0.105 (1.541)	0.066 (1.569)	0.111 (3.276)	
CC ½	n/a (0.348)	0.995 (0.360)	0.998 (0.506)	0.997 (0.300)	
1/01	22.3 (1.0)	82(0.8)	10.7 (0.7)	8.0 (0.5)	-

Scroll it down and stop to the table describing complex with compound 17 (5ADA)

Now turn to chimera and fetch the 5ADA pdb file through the File ightarrow Fetch

And the 17/NOS complex is then loaded. Note that therea re two copies of the protein complex, as the NOS act as a dimer (chain A + chain B).

We just need one chain and thus we can delete chain B. To do this first select chain B ...

Then open the command line tool ...

... and delete the selected chain B by issuing the «delete selection» command (it is also possible to use the «Action \rightarrow Atoms/Bonds \rightarrow Delete» command)

Now we have only one copy of the ${\bf 17}/{\rm NOS}$ complex

To prepare the complex for the geometry relaxation and the subsequent molecular docking runs it is advisable to remove all non standard residue not necessary for the study. Therefore we remove the crystallization water (solvent) and all not interesting ions and small molecules (in this case there is only the solvent to be removed).

Issue the command "select solvent" in the command line.

And the water moleculs should be selected by being highlighted in green.

Then check for all non standard residues by the "Select ightarrow all nonstandard" menu

The nonstandard residues must be displayed ("Action \rightarrow show")

Deselect everything («Select \rightarrow Clear Selection»)

And hide the ribbon

Select non standar residue again and focus on that selection

- 1) "Select \rightarrow Residue \rightarrow All nonstandard"
- 2) "Action \rightarrow Focus"
- 3) "Action \rightarrow Atoms/Bonds \rightarrow Show only"

There are several nonstandard residues, therefore we have to check on the PDB site for residue information

Small Molecules				
Ligands (Stinger)				
ID	Chains	Name / Formula / InChi Key	2D Diagram & Interactions	3D Interactions
2SN Query on 2SN	A, B	7-[[[3- [(dmethylamino)methyl]phenyl]amino]methyl]quinolin- 2-	200	Ligand Explorer
Download SDF File 🛞		C19 H22 N4	2	Jona .
Download CCD File 🕲		KLVQNBMBSWDRJZ-UHFFFAOYSA-N		
ACT	A, B	ACETATE ION	.0	Ligand Explorer
Query on ACT		C2 H3 O2 QTBSBXVTEAMEQO-UHFFFAOYSA-M	HJC -	JSmol
Download SDF File 🖲			0-	
Download CCD File (9)				
H4B	A, B	5,6,7,8-TETRAHYDROBIOPTERIN		Ligand Explorer
Suery on Heb		FNKQXYHWGSIFBK-RPDRRWSUSA-N	10.	JSmol
Download SDF File @			I.T	
Download CCD File (9)				
Query on HEM	A B	PROTOPORPHYRIN IX CONTAINING FE HEME (Synanym)	25	Ligand Explorer
Download SDF File (9)		FEDYMSUPMFCVOD-UUXFSCMSA-N	SA	- Jamo
Download CCD File 🕲				
ZN	A	ZINC ION		Ligand Explorer
Query on ZN		Zn PTFCDOFLOPIGGS-UHFFFAOYSA-N	Zn ²⁺	JSmol
Download SDF File 🛞				
Download CCD File @				

In the PDB site, go to the 5ADA complex and scroll down to the "small Molecules" description section. Among all the small molecules the only not important residue is the acetate ion. Molecule 2SN is the inhibitor we are studying; H4B is a tetrahydrobiopterin acting as a co-factor, HEM is the active co-factor and Zn is a structural ion.

Seeking for tetrahydrobiopterin information it is possible to find information on its role.

Let's delete the acetate residue: "Select \rightarrow Residue \rightarrow ACT"

And delete it by issuing the "delete selection" at the command line

Make a copy of the clean complex with the "combine #0" command

Rename the two complexes as reported in the slide

At this point we can try to minimize the complex in area #1 ("Tools \rightarrow Minimize Structure")

Consecutive windows will pop up

Complex Minimiz	zation
Specify Net Charges Residue Net Charge 2SN +1 H4B +0 H4B +1 H4B +1 H4B +1 H4D +1 H4D +1 H4D +1 H4D +1 H4D +1 H4D +1 Polications aing AntECI-M4MER charges should	Assign Charges for Hinimize
Molecular Docking	Pagina 34

Unfortunately the minimization did not go thru! The program complains about a lysine residue.

To check we can display all the lysine residues ("select \rightarrow Residue \rightarrow Lys")

... "Actions \rightarrow show"

And zoom out to see all the lysines. In this slide we can se there is a smaller lysine residues. Most of the time this is the last residue of the protein sequence that normally is not complete

Unselect everything and zoom in to that residues and label all the residues ("Actions \rightarrow Label \rightarrow residue")

And the "LYS 717" label will appear.

Delete residue 717 by issuing the "delete :717" command

And try again to minimize "Structure Editing \rightarrow Minimize Structure"

The minimization starts and it will take some minutes to finish.

Select again all nonstandard residues

And focus on those. In this slide it is possible to observe that small movements occurred either in the ligand 2SN and the cofactors H4B and HEM. Note the Fe ion! This is actually an error due to the fact that molecular mechanics calculations are not very good in handle heavy metals.

Move on to prepare lock and key.

Issue the command "combine #1" twice and rename areas #2 and #3 as in the slide.

Delete residue 800 (the ligand) form area #2

Then make the reverse in area #3:

1) Issue the "select #3:800" command

2)

Then make the reverse in area #3:

- 1) Issue the "select #3:800" command
- 2) "Select \rightarrow Invert (selected models) \rightarrow "
- 3) Issue the "delete selection" command

Now we have in areas #2 and #3 the isolated lock and key, respectively

Let's try to perform a ECRD using Autodock Vina ("Structure/Binding Analysis \rightarrow Autodock Vina")

Set the parameters similar to shown in the slide and click OK.

Again there are problems. The program complains.

Very likely the problem is the fact that there are nonstandard residues embedded in the lock (H4B, HEM, Zn)

To workaround we can make the docking using the DOS terminal, but we need to save the molecules.

Save SADA_key as PDB File		Save SADA_lock as PDB File	_10]
der: [2:]DATTLavoro'Universita'[ChimicaFarmaceutica_BofF [coila [maccuble \2015-2016\Esercita:	Folder: [2:/DATTI:Lavoro/Universita/OhimicaParmaceu	ica_BiofFarmaceutiche12015-2016/Esercita icwa.25.1 ilgand.pdb icwa.25.1 ilgand.pdb icwa.ECRD.ilgand.pdb icwa.ECRD.ilgand.pdb icwa.RCRD.receptor.pdb icwa.RCRD.receptor.pdb icwa.RCRD.receptor.pdb icwa.RCRD.receptor.pdb icwa.RCRD.pdgnd.pdb icwa.RD.receptor.pdb
name: [SADA_key.pdb	en ¥	▲] File name: [SADA_Jock.pdb IF Addpdb.suffix	if none given
(A) (a	A V	Save model: Save displayed atoms only Save selected atoms only	
Save relative to model: SADA_original (#0)	Keep datog up after Seve Save Close Help	Save relative to model: SADA_original (#0)	Li Keep Salog up after S Save Close Help

Save both the lock and the key into pdb files

Check you have the files

Then use babel to convert the two molecules by issuing the following command.

1) First move in the correct path

```
cd Z:\DATI\Lavoro\Universita\ChimicaFarmaceutica_BiotFarmaceutiche\2015-2016\Esercitazioni\Docking
```

2) Convert the lock (this will take time!!):

```
"C:\Program Files (x86)\OpenBabel-2.3.2\babel.exe" -xrcp 5ADA_lock.pdb
5ADA_lock.pdbqt
```

3) Convert the key:

"C:\Program Files (x86)\OpenBabel-2.3.2\obabel.exe" -xp -ipdb 5ADA_key.pdb - opdbqt 5ADA_key.pdbqt

Check al the file are present

Then prepare a config file for Autodock Vina, Open the wordpad program

Insert the correct info (your number will be different !!)

Try to run the docking in the DOS terminal by issuing the following command:

Z:\DATI\Lavoro\Universita\ChimicaFarmaceutica_BiotFarmaceutiche\2015-2016\Esercitazioni\Docking>"C:\Program Files (x86)\The Scripps Research Institute\Vina\vina.exe" --receptor 5ADA_lock.pdbqt --ligand 5ADA_key.pdbqt --config config.txt

The program stops outputting an error is in the lock file

Open and fix it!

First remove the line containing the "ROOT" word at the beginning of the file

and the second second	SADA_lock.pd	dbqt - Word	iPad										-1
Pagina	iniziale Visua	lizza					1						
& Taglia	Courier New	- 11	• A*	A.	课课	i≣ • ‡≣•		1 3	1	ab Contribuier			
lla	GCSab	« X, X'	2.1	1 -			Immagine Dis	igno Data	Inserisci	Seleziona	tutto		
Appunti	Tipo	di carattere			Pa	aorato	01	loserisci	oggetto	Modific			
1	-2-1-1-1-5	2-1-1-1	. 2 . 1 .	3 • •	14111	5 - 1 - 6 - 1 -	7 - 1 - 8 - 1 - 9	· · · 10 · · · 1	1 - 1 - 12 - 1	1314 .	1 -15- 1 -1	16 - 人 - 17 - 1 - 18 - 1 - 19	
1	5	1											
	1	REMARK	Name	, =	5ADA_1	ock.pdb					5.50		
		REMARK					×	У	z	vdW	Elec		
		q TY REMARK	pe										
		MOTA	1	N	ARG	A299	51.900	-26.294	-17.56	56 0.00	0.00		
		+0.000	NA 2	Ch	ARG	1299	51,105	-25.078	=17.74	6 0.00	0.00		
		+0.000	c	- Ch	1110	na 2 2	011100	201010		0.00	0100		
	1	MOTA	3	C	ARG	A299	49.768	-25.135	-16.98	32 0.00	0.00		
		+0.000	c	1000		1000	100 000	20 122			10.00		
		ATOM	A 4	0	ARG	A299	49.272	-24.085	-16.60	01 0.00	0.00		
		ATOM	5	CB	ARG	A299	50.927	-24.838	-19.26	56 0.00	0.00		
		+0.000	c										
	1	ATOM	6	CG	ARG	A299	50.296	-23.492	-19.66	52 0.00	0.00		
		+0.000	C	an	a D.C.	1200	49 692	-22 544	-21 07	12 0 00	0.00		
		+0.000	c '	CD	ARG	R233	17.032	-23.344	-21.07	13 0.00	0.00		
		MOTA	8	NE	ARG	A299	49.064	-22.259	-21.46	51 0.00	0.00		
		+0.000	N										
		MOTA	9	CZ	ARG	A299	49.582	-21.312	-22.23	34 0.00	0.00		
			~	~~	-						0.00		

Pagina i	III SADA_lock.pdbqt - WordPad				-10
Taglia	Counter New $*$ 11 $*$ $A^* A^*$ G C S also X, X [*] $2 \cdot \Delta$ $*$ Tipo di carattere	ik ik i≣ • i≣•	Immagine Disegno di Paint Interiso	A Trova A Sostituisci Seleziona tutto Modifica	
)	.21	4 5 6	7 • • • 8 • • • 9 • • • 10 • • • 11 • • • 1	2 · · ·13 · · ·14 · · ·15 · · ·16 · 人 ·17 · · ·18	• • •19
	+0.000 C ATOM 4109 C +0.000 OA ATOM 4110 E +0.000 HD ATOM 4111 E +0.000 HD ATOM 4112 E +0.000 HD ATOM 4113 E +0.000 HD	010 H4B A760 13 H4B A760 15 H4B A760 18 H4B A760 121 H4B A760 121 H4B A760	55.291 -12.495 6. 47.471 -11.079 8. 52.150 -10.585 9. 51.097 -15.056 7. 46.756 -14.396 7.	.219 0.00 0.00 .958 0.00 0.00 .001 0.00 0.00 .627 0.00 0.00 .950 0.00 0.00	
	+0.000 HD ATOM 4115 H	109 H4B A760	55.513 -11.716 10	.045 0.00 0.00	
	+0.000 HD ATOM 4116 HC +0.000 HD	010 H4B A760	55.559 -11.610 5.	.908 0.00 0.00	
	ATOM 4117 ZN +0.000 Zn ENDROOT TORSDOF 1677	ZN A1717	57.038 -18.205 -4	4.744 0.00 0.00	

Then remove the ENDROOT and TORSDOF containing lines and correct the charge on the Zn atom!

1	SADA_lock.pdbqt - Wo	rdPad										
Pagina	niziale Visualizza											
Copia	Courier New * 11	• A)	() 律	().	i≣ • ‡≣•				iostituisci			
colla	G C S abe X, X'	2 - <u>A</u>	- 🔳	*		Immagine Dise	gno Data In	serisci	eleziona tu	tto		
Appunti	Tipo di caratter	e		Pari	agrafo		nserisci		Modifica			
5	-2-1-1-1-2-1-1-	1 - 2 - 1 - 3	3 + 1 + 4	5		7 • 1 • 8 • 1 • 9	10 11	· · ·12 · · ·13	14	-15 - 1 - 16	3 . 17 . 1 . 18 . 1	•19
	+0.000	C	010	an .	7.00	EE 001	10 405	6 210	0.00	0.00		
	+0.000	04	010 1	140	A760	33.291	-12.433	0.215	0.00	0.00		
	ATOM	4110	H3 1	14B	A760	47.471	-11.079	8.958	0.00	0.00		
	+0.000	HD										
	ATOM	4111	H5 H	14B	A760	52.150	-10.585	9.001	0.00	0.00		1.0
	+0.000	HD										
	ATOM	4112	H8 H	14B	A760	51.097	-15.056	7.627	0.00	0.00		
	+0.000	HD 4113	821 1	AR	3760	46 756	-14 296	7 950	0.00	0.00		
	+0.000	HD	121 1	140	100	40.750	-14.330	1.950	0.00	0.00		
	ATOM	4114	H22 H	14B	A760	46.099	-12.886	8.514	0.00	0.00		
	+0.000	HD										
	ATOM	4115	H09 1	14B	A760	55.513	-11.716	10.045	0.00	0.00		
	+0.000	HD										
	ATOM	4116 H	1010 1	14B	A760	55.559	-11.610	5.908	0.00	0.00		
_	+0.000	HD				F7 000	10.005		0.00	0.00		
_	ATOM	911/ 2	SIN 4	6D 4	A1/1/	57.030	-18.205	-9./99	0.00	0.00		
	-2.000	211										
											100% (-)	
											1	

Assume a charge of 2.0 for the Zn

	SADA_lock.pdbqt - WordPad				
Taglia	niziale visualizza	-	i 📼 🛷 🚃 🗖	Trova	
Copia	Counter New 11 A	A 15 15 12 1 10 1		Ale Sostituisci	
cona	GCS abs X, X' Z · A		di Paint e ora ogg	getto Seleziona tutto	
Appunti	Tipo di carattere	Paragrafo	Inserisci	Modifica	
2	· 2 · 1 · 1 · 1 · 1 · 1 · 1 · 2 · 1 ·	3 • • • 4 • • • 5 • • • 6 • •	.7.1.8.1.9.1.10.1.11.	··12···13···14···15···16· <u>·</u> ·1	7 · · · 18 · · · 19
	+0.000 N				
	ATOM 4090	NC HEM A750	37.991 -9.080	3.301 0.00 0.00	
	+0.000 N	ND HPM 5750	40 750 -9 207	2 246 0 00 0 00	
	+0.000 N	ND HER ATSU	40.750 -5.507	3.246 0.00 0.00	
	ATOM 4092	FE HEM A750	39.502 -9.487	5.082 0.00 0.00	
	+3.000 Fe	NI HAR A760	49,164 -13,702	8.126 0.00 0.00	
	+0.000 NA				
	ATOM 4094	C2 H4B A760	48.129 -12.937	8.348 0.00 0.00	
	ATOM 4095	N2 H4B A760	46.880 -13.397	8.115 0.00 0.00	
	+0.000 NA				
	ATOM 4096	N3 H4B A760	48.305 -11.630	8.788 0.00 0.00	
	ATOM 4097	C4 H4B A760	49.518 -11.036	8.938 0.00 0.00	
	+0.000 C				
	ATOM 4098	04 H4B A760	49.642 -9.932	9.382 0.00 0.00	
	ATOM 4099	C4A H4B A760	50.642 -11.959	8.563 0.00 0.00	
	+0.000 C		FA 444 44 444		
	ATOM 4100	C8A H4B A/60	50.382 -13.239	8.164 0.00 0.00	
					100% 🕒 — (+

Fix also the charge on the Fe by setting to 3.0

Launch the docking and now it should go.

When it will be over

Open File in Chimera Folder: 2:\DATT\Lavoro\LIniversita\ChimicaFarmaceutica_Biot	armaceutiche \2015-2016 \Esercitazioni/Docking	
n for exploratory research and analysis.pdf hape and Electrostatic Potential.pdf for exploratory research and analysis.Balloon.pdf	▲ SADA.py SADA.pv SADA.key.pdb SADA.key.pdb SADA.key.pdbt SADA.jock.pdb SADA.jock.	
4	O Type Selection	×
SADA_key_out.pdbq File name: SADA_key_out.pdbq File type: <u>all (guess type)</u>	Please designate file type for Z:\DATT\Lavoro\Liniversita\ChimicaFarmaceutica_BiotFarmaceutiche\2015-2016\Esercitazion\Dodking\ Neuron trace 208 Prism microscope image Prism microscope image Prism microscope format PxrDue image format Python Rich Molecular Format Seger segmentation Selex	SADA_key_out.pdbqt
	OK Cancel	

Read in chimera the output file (5ADA_key_out.pdbqt) and instruct the program to consider the file as a normal PDB one

The docked conformations will appear in the chimera windows.

Ungroup them and hide all conformations except the first (7.1 here).

As you can see the yellow conformation (re-docked) is well superimposed on the experimental one. It is also possible to calculate the RMSD value by issuing the "rmsd #5 #7.1" command.

We have an RMSD value of 3.5, it is not very good but actually the trimethyl amino methyl side chain have space to move.

Indeed the second conformation is much better with an RMSD value of just 1.1! And it is only 0.4 kcal/mol away from conformation 1 (see slide 65)

