

By following this tutorial the user will learn how to perform molecular docking by means of Autodock Vina program.

Docking assessment on a given experimental key/lock complex will be carried out by:

- 1) Evaluation of ligand docking starting from the experimental ligand conformation (experimental conformation re-docking ECRD)
- 2) Evaluation of ligand docking starting from a random generate ligand conformation (random conformation re-docking RCRD)

Then the binding mode of a molecule reported in an article will be evaluated.

Here is the sequence of minimal operation to set up a docking study.

First the target and its role has to be inspected.

Then a series of actions are to first validate the docking program and apply it

In this tutorial the reference article is here reported, where a series of selective NOS inhibitors are described. Reading the article it seems compound 17 is the most interesting one, so we will focus on that.

Further info can be gathered in the supporting information included in the article as external files. To get them let's search for the article in the www by googling its title. Then click on the results.

Stational Loary of Vedicines Advanced	Search		
bstract - Send to -			
Med Chem, 2015 Nov 12;58(21):8694-712. doi: 10.1021/acs.jmedchem.5b01330. Epub 2015 Oct 27.	Full text links		
Phenyl Ether- and Aniline-Containing 2-Aminoquinolines as Potent and Selective Inhibitors of Neuronal Nitric Dxide Synthase.	ACS Publications		
inelli MA ¹ , Li H ² , Pensa AV ¹ , Kang S ¹ , Roman Lu ³ , Martàsek P ^{3,4,5} , Poulos TL ² , Silverman RB ¹ .	Save items		
Author information	1 Add to Favorites		
bstract			
ixcess nitric oxide (NO) produced by neuronal nitric oxide synthase (nNOS) is implicated in neurodegenerative disorders. As a result, inhibition of NOS and reduction of NO levels is desirable therapeutically, but many nNOS inhibitors are poorly bioavailable. Promising members of our	Similar articles		
reviously reported 2-aminoquinoline class of nNOS inhibitors, although orally bioavailable and brain-penetrant, suffer from unfavorable off-target inding to other CNS receptors, and they resemble known promiscuous binders. Rearranged phenyl ether- and aniline-linked 2-aminoquinoline	Simplified 2-aminoquinoline-based scatfold for		
erivatives were therefore designed to (a) disrupt the promiscuous binding pharmacophore and diminish off-target interactions and (b) preserve	potent and selective neurons [J Med Chem. 20 Aromatic reduced amide bond peptidomimetic		
otency, isoform selectivity, and cell permeability. A series of these compounds was synthesized and tested against purified nNOS, endothelial IOS (eNOS), and inducible NOS (INOS) enzymes. One compound. 20, displayed high potency, selectivity, and good human nNOS inhibition, and	as selective inhibitors of net [J Med Chem. 2		
etained some permeability in a Caco-2 assay. Most promisingly, CNS receptor counterscreening revealed that this rearranged scaffold significantly iduces off-target binding.	N-Phenylamidines as selective inhibitors of human neuronal nitric oxide [J Med Chem, 19		
MID: 26469213 [PubMed - in process] PMCID: PMC4644118 [Available on 2016-11-12]	Review Design of selective neuronal nitric oxide synthase inhibitors for the [Acc Chem Res. 2005]		
	Review Progress in the development of selective nitric oxide syn (Curr Pharm Des. 20		
ant Support			
and append			

Open up the pubmed page and then click on the ACS Publications icon.

... here is the article directly on the ACS web portal.

Let's scroll down it till supporting information appear

The «csv» file contains the smiles structures and other info

The «pdf» file contains others info

Data set 7	nNOS-10	nNOS-15	nNOS-17	nNOS-20
Data collection				
PDB code	5AD8	5AD9	5ADA	5ADB
Space group	P212121	P212121	P212121	P212121
Cell dimensions	51.9 111.9 164.3	51.7 111.6 164.1	51.9 111.4 164.3	51.7 111.0 165.1
a, b, c (Å)				
Resolution (Å)	1.91 (1.93-1.91)	2.30 (2.42-2.30)	1.98 (2.05-1.98)	2.05 (2.13-2.05)
Rmerge	0.084 (>1.000)	0.141 (2.111)	0.097 (2.350)	0.126 (3.719)
Rpim	0.047 (>1.000)	0.105 (1.541)	0.066 (1.569)	0.111 (3.276)
CC 1/2	n/a (0.348)	0.995 (0.360)	0.998 (0.506)	0.997 (0.300)
1/d	22.3 (1.0)	8.2 (0.8)	10.7 (0.7)	8.0 (0.5)

Scroll it down and stop to the table describing complex with compound 17 (5ADA)

Now turn to chimera and fetch the 5ADA pdb file through the File ightarrow Fetch

And the 17/NOS complex is then loaded. Note that therea re two copies of the protein complex, as the NOS act as a dimer (chain A + chain B).

We just need one chain and thus we can delete chain B. To do this first select chain B ...

Then open the command line tool ...

... and delete the selected chain B by issuing the «delete selection» command (it is also possible to use the «Action \rightarrow Atoms/Bonds \rightarrow Delete» command)

Now we have only one copy of the ${\bf 17}/{\rm NOS}$ complex

To prepare the complex for the geometry relaxation and the subsequent molecular docking runs it is advisable to remove all non standard residue not necessary for the study. Therefore we remove the crystallization water (solvent) and all not interesting ions and small molecules (in this case there is only the solvent to be removed).

Issue the command "select solvent" in the command line.

And the water moleculs should be selected by being highlighted in green.

Then check for all non standard residues by the "Select ightarrow all nonstandard" menu

The nonstandard residues must be displayed ("Action \rightarrow show")

Deselect everything («Select \rightarrow Clear Selection»)

And hide the ribbon

Select non standar residue again and focus on that selection

- 1) "Select \rightarrow Residue \rightarrow All nonstandard"
- 2) "Action \rightarrow Focus"
- 3) "Action \rightarrow Atoms/Bonds \rightarrow Show only"

There are several nonstandard residues, therefore we have to check on the PDB site for residue information

Small Molecules				
Ligands (Stinger)				
ID	Chains	Name / Formula / InChi Key	2D Diagram & Interactions	3D Interactions
2SN Query on 2SN	A, B	7-[[[3- [(dimethylamino)methyl]phenyl]amino]methyl]quinolin- 2- amine	200	Ligand Explorer
Download SDF File 🛞		C ₁₉ H ₂₂ N ₄ KLVQNBMBSWDRJZ-UHFFFAOYSA-N	-2	Jonan .
Download CCD File 🛞				
ACT	A, B	ACETATE ION C2 H3 O2 QTBSBXVTEAMEQO-UHFFFAOYSA-M	.0	Ligand Explorer
Query on ACT			нас — Ко-	JSmol
Download SDF File 🖲				
Download CCD File (9)				
H4B	A B	5.6.7.8-TETRAHYDROBIOPTERIN C9 His N5 03 FNK0XYHWGSIFBK-RPDRRWSUBA-N	Yri.	Ligand Explorer
Query on H4B				JSmol
Download SDF File 🕲			TIT	
Download CCD File 🖲				
HEM Query on HEM	A, B	PROTOPORPHYRIN IX CONTAINING FE HEIME (Synonym) C34 H32 Fe A4 O4 FEDYMISUPMIFCVOD-UJJXFSCMSA-N	-	Ligand Explorer
Download SDF File (2)				JSmol
Download CCD File 🛞			~	
ZN	A	ZINCION Zn PTFCDOFLOPIGGS-UHFFFAOYSA-N		Ligand Explorer
Query on ZN			Zn ²⁺	JSmol
Download SDF File 🛞			20-	
Download CCD File ④				

In the PDB site, go to the 5ADA complex and scroll down to the "small Molecules" description section. Among all the small molecules the only not important residue is the acetate ion. Molecule 2SN is the inhibitor we are studying; H4B is a tetrahydrobiopterin acting as a co-factor, HEM is the active co-factor and Zn is a structural ion.

Seeking for tetrahydrobiopterin information it is possible to find information on its role.

Let's delete the acetate residue: "Select \rightarrow Residue \rightarrow ACT"

And delete it by issuing the "delete selection" at the command line

Make a copy of the clean complex with the "combine #0" command

Rename the two complexes as reported in the slide

At this point we can try to minimize the complex in area #1 ("Tools \rightarrow Minimize Structure")

Consecutive windows will pop up

Complex Minimiz	zation
Specify Net Charges Residue Net Charge 2SN +1 H4B +0 H4B +1 H4B +0 H4B +1 H4B +1 H4B +1 H4B +1 H4B +1 H4D +1 H4D +1 H4D +1 H4D +1 H4D +1 H4D +1 Publications aing AINE-(HAMBER charges should	Assign Charges for Hinimize
Molecular Docking	Pagina 34

Unfortunately the minimization did not go thru! The program complains about a lysine residue.

To check we can display all the lysine residues ("select \rightarrow Residue \rightarrow Lys")

... "Actions \rightarrow show"

And zoom out to see all the lysines. In this slide we can se there is a smaller lysine residues. Most of the time this is the last residue of the protein sequence that normally is not complete

Unselect everything and zoom in to that residues and label all the residues ("Actions \rightarrow Label \rightarrow residue")

And the "LYS 717" label will appear.

Delete residue 717 by issuing the "delete :717" command

And try again to minimize "Structure Editing \rightarrow Minimize Structure"

The minimization starts and it will take some minutes to finish.

Select again all nonstandard residues

And focus on those. In this slide it is possible to observe that small movements occurred either in the ligand 2SN and the cofactors H4B and HEM. Note the Fe ion! This is actually an error due to the fact that molecular mechanics calculations are not very good in handle heavy metals.

Move on to prepare lock and key.

Issue the command "combine #1" twice and rename areas #2 and #3 as in the slide.

Delete residue 800 (the ligand) form area #2

Then make the reverse in area #3:

1) Issue the "select #3:800" command

2)

Then make the reverse in area #3:

- 1) Issue the "select #3:800" command
- 2) "Select \rightarrow Invert (selected models) \rightarrow "
- 3) Issue the "delete selection" command

Now we have in areas #2 and #3 the isolated lock and key, respectively

Let's try to perform a ECRD using Autodock Vina ("Structure/Binding Analysis \rightarrow Autodock Vina")

Set the parameters similar to shown in the slide and click OK.

Again there are problems. The program complains.

Very likely the problem is the fact that there are nonstandard residues embedded in the lock (H4B, HEM, Zn)

To workaround we can make the docking using the DOS terminal, but we need to save the molecules.

Save SADA_key as PDB File	-OX	Save 5ADA_lock as PDB File	
Icna. Icna. Icna. Icna. Icna. Icna. Icna. Icna.	maceutohe/2015-2016/Eserota	Folder: [2: [DATT]Lavoro]Universita(ChimicaFarmaceut	ica_BiotYarmaceutiche (2015-2016)Eserota.) Icwa-25.1.ligand.pdb Icwa-25.1.receptor.pdb Icwa-ECRD.ligand.pdb Icwa-ECRD.ligand.pdb Icwa-RCRD.ligand.pdb Icwa-RCRD.receptor.pdb Icwa-RCRD.receptor.pdb Icwa-RD.receptor.pdb SADA (set.pdb
name: [SADA_key.pdb F ² Add .pdb suffix if none gh e type: PDB [.pdb] New	en føder	Fie name: [SADA_lod:.pdb Fie type: PDB [.pdb]	if none given
Kipe (100 (200) Mont (40) SADA_minimized (#1) (40) SADA_lock (#2) (40) Save displayed atoms only (40) Save selected atoms only (40)		Save models: SADA_ord(#2) SADA_bay (#2) SADA_bay (#2) SADA_bay (#2) SADA_bay (#3) Save displayed atoms only Save selected atoms only	1969 (1990) (***
Save relative to model: SADA_original (#0)	Keep datag up after Seve Save Close Help	Save relative to model: SADA_original (#0) -	Li Keep datog up siter Sa Sarve Close Heep

Save both the lock and the key into pdb files

Check you have the files

Then use babel to convert the two molecules by issuing the following command.

1) First move in the correct path

```
cd Z:\DATI\Lavoro\Universita\ChimicaFarmaceutica_BiotFarmaceutiche\2015-2016\Esercitazioni\Docking
```

2) Convert the lock (this will take time!!):

```
"C:\Program Files (x86)\OpenBabel-2.3.2\babel.exe" -xrcp 5ADA_lock.pdb
5ADA_lock.pdbqt
```

3) Convert the key:

"C:\Program Files (x86)\OpenBabel-2.3.2\obabel.exe" -xp -ipdb 5ADA_key.pdb - opdbqt 5ADA_key.pdbqt

Check al the file are present

Then prepare a config file for Autodock Vina, Open the wordpad program

Insert the correct info (your number will be different !!)

Try to run the docking in the DOS terminal by issuing the following command:

Z:\DATI\Lavoro\Universita\ChimicaFarmaceutica_BiotFarmaceutiche\2015-2016\Esercitazioni\Docking>"C:\Program Files (x86)\The Scripps Research Institute\Vina\vina.exe" --receptor 5ADA_lock.pdbqt --ligand 5ADA_key.pdbqt --config config.txt

The program stops outputting an error is in the lock file

Open and fix it!

First remove the line containing the "ROOT" word at the beginning of the file

	SADA_lock.pdbqt - Wor	dPad									3
Pagina ini	ziale Visualizza										
X Taglia	ourier New + 11	• A*		(# (# E · ts·			2 3	Trova			
Copia	And the second second second second	0 A			Immanine Dir	ano Data	Inserisci	Sostituisc			
	G C S abe X, X'	2 · A			Immagine Dis di I	Paint e ora	oggetto	Seleziona	tutto		
ppunti	Tipo di carattere			Paragrafo		Inserisci		Modifica	È.		
1.43	2 • 1 • 1 • 1 • 2 • 1 • 1 • 1	. 2 . 1 .	3 - 1 -	4 • 1 • 5 • 1 • 6 • 1 •	7 • 1 • 8 • 1 • 9	· · · 10 · · · 1	1 · · · 12 · · · 1	3 • • •14 •	· ·15· · ·16	· <u>1</u> ·17· · ·18· · ·19	
	U.									1	
		Name	= 5	ADA_lock.pdb							
	REMARK				×	У	z	vdW	Elec		
	q Ty REMARK	pe									
	REMARK										
	ATOM	1	N	ARG A299	51,900	-26.294	-17,566	0.00	0.00		
	+0.000	NA									
	ATOM	2	CA	ARG A299	51.105	-25.078	-17.746	0.00	0.00		
	+0.000										
	ATOM		C	ARG A299	49.768	-25.135	-16.982	0.00	0.00		
	+0.000										
	ATOM +0.000	4	0	ARG A299	49.272	-24.085	-16.601	0.00	0.00		
	ATOM	5	CB	ARG A299	50,927	-24.838	-19,266	0.00	0.00		
	+0.000		00	AND AL	50.527	61.030	17.000	0.00	0.00		
	ATOM	6	CG	ARG A299	50.296	-23.492	-19.662	0.00	0.00		
	+0.000	C									
	ATOM		CD	ARG A299	49.692	-23.544	-21.073	0.00	0.00		
	+0.000	-			1000			141122			
	ATOM	8	NE	ARG A299	49.064	-22.259	-21.461	0.00	0.00		
	+0.000 ATOM			ARG A299	40 500		-22.234	0.00	0.00		
	ATOM		C A	AKG A299	49.082	-21.312	-22.234	0.00	0.00	100%	

Pagina i	SADA_lock.pdbqt - Wo	rdPad								_10
Taglia	and the second s		-				Trova			
Copia				(第) [三 ·] (□ ·]		1	Sostituisci			
olla	G C S abe X, X'	2 - <u>A</u>	•		Immagine Disegno Data I di Paint e ora di	nserisci oggetto	Seleziona tutto			
Appunti	Tipo di caratte	e		Paragrafo	Inserisci		Modifica			
	. 2 1	1 + 2 + 1 + 3		1 - 5 - 1 - 6 - 1	.7	12 - 1 - 13		· · · 16 · 2 · 1	7 · · · 18 · · · 19	
	8						12	-		
	+0.000	-								
	ATOM		010 H	4B A760	55.291 -12.495	6.219	0.00 0.	.00		
	+0.000									
	ATOM		нз н	4B A760	47.471 -11.079	8.958	0.00 0.	.00		
	+0.000									
	ATOM		H5 H	4B A760	52.150 -10.585	9.001	0.00 0.	.00		
	+0.000 ATOM		u0 u	4B A760	51.097 -15.056	7.627	0.00 0.	0.0		
	+0.000		no n	1D A/60	51.097 -15.056	1.021	0.00 0.	.00		
	ATOM		121 H	4B A760	46.756 -14.396	7.950	0.00 0.	00		
	+0.000		n21 n	15 A/60	10.756 -14.556	7.950	0.00 0.	.00		
	ATOM		122 H	4B A760	46.099 -12.886	8.514	0.00 0.	00		
	+0.000		nzz n	15 2/60	40.033 -12.000	0.014	0.00 0.			
	ATOM		H09 H	4B A760	55.513 -11.716	10.045	0.00 0.	00		
	+0.000									
	ATOM	4116 H	1010 H	4B A760	55.559 -11.610	5.908	0.00 0.	00		
	+0.000									
	ATOM	4117 2	N Z	N A1717	57.038 -18.205	-4.744	0.00 0	.00		
	+0.000	Zn								
	ENDROO	T								
_	TORSDO	F 1677								
									100%	
									and C	0

Then remove the ENDROOT and TORSDOF containing lines and correct the charge on the Zn atom!

Statement Statements	5ADA_lock.pdbqt - WordPad						
Pagina	iniziale Visualizza						
Taglia Da Copia	Courier New * 11 *	X 水 词 (第三・論・	🔛 🐠 🔣	Trova Sostituisci		
Incolla	GCS also X, x' 2.	A -		Immagine Disegno Data In di Paint e ora og	serisci		
Appunti	Tipo di carattere		Paragrafo	Inserisci	Modifica		
	-2-1-1-1-2-1-1-2-	1 - 3 - 1 - 4 -					19
	8						
	+0.000 C						1
		9 010 H4	B A760	55.291 -12.495	6.219 0.00	0.00	
	+0.000 OA						
	ATOM 411 +0.000 HD	0 H3 H4	B A760	47.471 -11.079	8.958 0.00	0.00	
		1 H5 H4	B A760	52.150 -10.585	9.001 0.00	0.00	
	+0.000 HD						
		2 H8 H4	B A760	51.097 -15.056	7.627 0.00	0.00	
	+0.000 HD						
	ATOM 411 +0.000 HD	3 HZI H4	B A/60	46.756 =14.396	7.950 0.00	0.00	
		4 H22 H4	B A760	46.099 -12.886	8.514 0.00	0.00	
	+0.000 HD						
		5 HO9 H4	B A760	55.513 -11.716	10.045 0.00	0.00	
	+0.000 HD						
	ATOM 411 +0.000 HD	6 HO10 H4	B A760	55.559 -11.610	5.908 0.00	0.00	
		7 ZN ZN	A1717	57.038 -18.205	-4.744 0.00	0.00	
	+2.000 Zn	•					
							1
							1 0
						100% 👄 -	

Assume a charge of 2.0 for the Zn

	SADA_lock.pdbqt - WordPad				
Pagina ir	niziale Visualizza				
Taglia	Courier New • 11 • A A	iff fff [Ξ・ \$≣・	📄 💕 🔣 🛓	P A Trova	
colla	GCS abs X, x' 2 · A ·		Immagine Disegno Data Inse di Paint e ora ogg	erisci	
Appunti	Tipo di carattere	Paragrafo	Inserisci	Modifica	
12	2 - 1 - 1 - 1 - 2 - 1 - 1 - 1 - 2 - 1 - 3 -	4 5 6	7 • • • 8 • • • 9 • • • 10 • • • 11 •	· ·12 · · ·13 · · ·14 · · ·15 · · ·16 · 2	17 1 18 1 19
	+0.000 N				
	ATOM 4090 NO	HEM A750	37.991 -9.080	3.301 0.00 0.00	
	+0.000 N ATOM 4091 NI	HEM A750	40.750 -9.387	3.246 0.00 0.00	
	+0.000 N	HEN A/50	40.750 -9.387	3.246 0.00 0.00	
	ATOM 4092 FE	HEM A750	39.502 -9.487	5.082 0.00 0.00	
	+3.000 Fe	H4B A760	49.164 -13.702	8.126 0.00 0.00	
	+0.000 NA	AND ATO	13.101 -13.702	0.120 0.00 0.00	
		H4B A760	48.129 -12.937	8.348 0.00 0.00	
	+0.000 C ATOM 4095 N2	H4B A760	46.880 -13.397	8.115 0.00 0.00	
	+0.000 NA	HAD A/60	46.000 -13.357	8.115 0.00 0.00	
	ATOM 4096 N3	H4B A760	48.305 -11.630	8.788 0.00 0.00	
	+0.000 N ATOM 4097 C4	H4B A760	49.518 -11.036	8.938 0.00 0.00	
	+0.000 C	HID A/60	49.510 -11.036	0.930 0.00 0.00	
		H4B A760	49.642 -9.932	9.382 0.00 0.00	
	+0.000 OA ATOM 4099 C4	A H4B A760	50.642 -11.959	8.563 0.00 0.00	
	+0.000 C	A NID A/60	30.042 -11.333	0.000 0.00	
	ATOM 4100 C8	A H4B A760	50.382 -13.239	8.164 0.00 0.00	
					100%

Fix also the charge on the Fe by setting to 3.0

Launch the docking and now it should go.

When it will be over

Open File in Chimera Folder: 2:\DATT\Lavoro\LIniversita\ChimicaFarmaceutica_Biot	armaceutiche \2015-2016 (Esercitazioni \Docking	
n for exploratory research and analysis.pdf hape and Electrostatic Potential.pdf for exploratory research and analysis.Balloon.pdf	▲ SADA.py SADA.pvc SADA.key.pdb SADA.key.pdb SADA.key.pdb SADA.jock.	
1	O Type Selection	×
SADA_key_out.pdbq File name: SADA_key_out.pdbq File type: <u>all (guess type)</u> —	Please designate file type for 2:\DATI\Lavoro\Liniversita\ChimicaFarmaceutica_BiotFarmaceutiche\2015-2016\Esercitazion\Docking\5 Neuron trace 208 Prism microscope image Prism microscope image PROFEC free energy grid Purdue image format Python Rich Molecular Format Segger segmentation Selex	ADA key out.pdbqt
	OK	

Read in chimera the output file (5ADA_key_out.pdbqt) and instruct the program to consider the file as a normal PDB one

The docked conformations will appear in the chimera windows.

Ungroup them and hide all conformations except the first (7.1 here).

As you can see the yellow conformation (re-docked) is well superimposed on the experimental one. It is also possible to calculate the RMSD value by issuing the "rmsd #5 #7.1" command.

We have an RMSD value of 3.5, it is not very good but actually the trimethyl amino methyl side chain have space to move.

Indeed the second conformation is much better with an RMSD value of just 1.1! And it is only 0.4 kcal/mol away from conformation 1 (see slide 65)

