IRON METABOLISM IN BACTERIA

MAIN TOPICS

- Role of iron in bacterial metabolism
- Iron-uptake mechanisms in bacteria
- Regulation of bacterial iron uptake systems
- Role of iron homeostasis in bacterial virulence
- Bacterial iron metabolism as drug target

Role of iron in bacterial metabolism

Iron can exist in two oxidation states, the ferric form (Fe³⁺) and the ferrous form (Fe²⁺)

Iron is a very versatile biocatalyst, due to its extremely wide redox potential

Iron is a cofactor of many cellular proteins, which are involved in:

- electron transport
- ROS detoxification
- amino acid and nucleoside synthesis
- DNA synthesis
- photosynthesis

Iron is essential for almost all living organisms

[with few exceptions (Mn instead of Fe)]

Iron bioavailability

In the environment iron is mostly present in the ferric form (Fe³⁺), which is very poorly soluble in <u>aerobic neutral environments</u> [Fe³⁺ + 3OH⁻ \rightarrow Fe(OH)₃]

In the host iron is almost completely sequestered by iron-binding proteins

Iron is not a freely-available nutrient

BACTERIA NEED ACTIVE UPTAKE OF IRON

$\begin{array}{ll} PATHOGEN & \leftarrow IRON \rightarrow \\ \text{(iron-uptake mechanisms)} \end{array}$	HOST (iron-withholding defense)
Siderophores	Lactoferrin
Transferrin & lactoferrin receptors	Transferrin
Heme-uptake systems	Heme-proteins
Fe ²⁺ -uptake systems	Hypoferremic response

General features of the siderophore-mediated iron uptake

- 1. Synthesis
- 2. Export
- 3. Uptake
- 4. Iron release

mycobactin T

Siderophores

Highly variable structures

Common features:

- small peptidic molecules (including non-proteinogenic, modified and D-amino acids)
- functional groups with highaffinity for ferric ions (Fe³⁺)
- synthesized by short, dedicated metabolic pathways

Iron binding by siderophores

The functional groups for Fe³⁺ coordination are limited: siderophores <u>usually</u> contain the following metal-chelating functional (<u>bidentate</u>) groups:

hydroxamic acid

 α -hydroxycarboxylic acid

Fe³⁺ prefers a <u>hexa-coordinate chelation complex</u>, which requires three iron-chelating groups

apo-enterobactin

Ferric enterobactin

Siderophores are classified according to their functional groups

Catecholate Type Hydroxamate Type Carboxylate Type Desferrioxamine B Achromobactin Enterobactin (Erwinia chrysanthemi) (Streptomyces pilosus) (enteric bacteria, Streptomyces spp.) Mixed Types Citrate-Catecholate-Citrate-Catecholate Hydroxamate Hydroxamate Petrobactin Aerobactin Heterobactin B (Bacillus anthracis, (Enterobacter spp., (Rhodococcus Bacillus cereus. Escherichia coli. erythropolis) Marinobacter Shigella flexneri)

hydrocarbonoclasticus)

Siderophore biosynthesis

Siderophore biosynthesis generally occurs through "<u>non ribosomal peptide</u> <u>synthesis</u>"

..which is catalyzed by large multi-modular enzymes (non ribosomal peptide synthetases or NRPSs)

Siderophore export

Siderophore secretion occurs through specific efflux systems (belonging to the same classes of those involved in antibiotic extrusion)

Main types of bacterial drug efflux systems

Siderophore-mediated iron uptake in Gram+ bacteria

Two proteins are involved:

- a membrane-anchored binding protein (the receptor)
- a membrane-associated ABC transporter (energy from ATP hydrolysis)

Siderophore-mediated iron uptake in Gram- bacteria

Many proteins are involved:

- an outer membrane receptor
- a periplasmic binding protein
- an inner membrane ABC transporter (ATP hydrolysis)
- the **TonB system**

The TonB system of Gram- bacteria

- Uptake by OM receptors requires energy
- The OM is not energized
- No readily available energy sources in the periplasm

The TonB system transduces the energy of the proton-motive force from the IM to the specific OM receptor

The TonB system of Gram- bacteria

The TonB system is also involved in the transport of vitamin B12, nickel, different carbohydrates, etc.

Iron release from siderophores

Two mechanisms:

- 1. Fe-siderophore hydrolysis (specific enzymes)
- Reduction of siderophore-bound Fe³⁺ to Fe²⁺(Fe-siderophore reductases)

Siderophore degradation !

Siderophore recycling !

The same molecular mechanisms are involved in iron uptake mediated by:

- transferrin
- lactoferrin
- heme (and heme-binding proteins)
- other iron chelators (exogenous siderophores)

Based on specific outer (Gram-) or inner (Gram+) membrane receptors

A second heme uptake system: the hemophore HasA

HasA is a secreted protein with a structure resembling a "fish biting the heme"

Present in some Gram- bacteria, such as *Pseudomonas* spp., *Serratia marcescens* and *Yersinia* spp.

biliverdin + CO + Fe^{3*}

Ferrous iron uptake: the Feo system

Unlike the ferric form, ferrous iron is relatively soluble (0.1 M for Fe²⁺ versus 10^{-18} M for Fe³⁺ at pH 7).

However, Fe²⁺ oxidizes spontaneously to Fe³⁺ unless it is under reducing conditions (<u>anaerobic</u> conditions or <u>low pH</u>).

The Feo gene cluster (*feoA, feoB, feoC*) is present in about 50% of completely sequenced bacterial genomes

Two types of "Feo system": one that is Fe²⁺ specific and another (Meo) that is Mn²⁺ specific

The dual role of iron: essential but toxic

Intracellular Fe²⁺ catalyses the formation of hydroxyl radicals (a highly ROS) in the presence of hydrogen peroxide (through the Fenton reaction)

$$Fe^{2+} + H_2O_2 \rightarrow Fe^{3+} + OH^- + OH^-$$

Hydroxyl radicals (as other ROS) can damage almost all macromolecules, including proteins, lipids and nucleic acids

BACTERIA NEED MECHANISMS TO SENSE AND CONTROL INTRACELLULAR LEVELS OF IRON

Fur and DtxR as master regulators of iron metabolism

Fur (ferric uptake regulator)

Gram-negative bacteria

DtxR (Diphtheria toxin repressor)

Gram-positive bacteria

Fur and DtxR are transcriptional repressors

Fur (or DtxR) dependent gene repression

The Fur binding site (Fur box) is present in all <u>iron-repressed genes</u> directly controlled by Fur

Bacteria also need to express specific iron-using proteins in response to high iron levels

Gene name	Gene number	Function or activity
E. coli ^a		
ftnA	b1905	Fe storage
cyoA-E	b0428-0432	Cytochrome bo oxidase
cydAB-ybgE	b0733-0735	Cytochrome bd oxidase 1
appCB	b0978-0979	Cytochrome bd oxidase 2
narK	b1223	Nitrite exporter I
narGHJI	b1224-1227	Respiratory nitrate reductase 1
paaY	b1400	Phenylacetate degradation?
narZY	b1468-1467	Respiratory nitrate reductase 2
nap-ccmA	b2208-2201	Periplasmic nitrate reductase
nuoA-N	b2276-2288	Complex I
tdcG-A	b3112-3118	Anaerobic Thr dehydratase
garPLRK	b3127-3124	Glycerate kinase 2
nirBDC	b3365-3367	NAD(P)H nitrite reductase
frdABCD	b4154-4151	Fumarate reductase
nikABCDER	b3476-3481	Ni transport
sodB	b1656	Fe superoxide dismutase
pyrL	b4246	Asp transcarbamoylase
P. aeruginosa ^b		
antABC	PA2512-2514	Anthranilate dioxygenase
HUU	PA2511	Transcriptional regulator?
HUU	PA2682	Dienelactone hydrolase
fdnH	PA4811	Formate dehydrogenase
HUU	PA4880	Bacterioferritin?
KatA	PA4236	Catalase
napA	PA1174	Periplasmic nitrate reductase
sodB	PA4366	Superoxide dismutase
sdhCDAB	PA1581-1584	Succinate dehydrogenase
bfrB	PA3531	Bacterioferritin B

Genes induced under iron-replete conditions are involved in:

- iron storage
- defense against oxidative stress
- basic intermediary metabolism
- other cellular processes

.. by coupling two <u>negative</u> regulatory systems

The case of the small RNA RyhB in *E. coli*

Mechanism of action of the small RNA RyhB

A <u>fine-tuned balance</u> between Fur and RhyB activities allows bacteria to mantain iron homeostasis

RhyB is **functionally** conserved in bacteria

...a second step of complexity

Bacteria can produce multiple siderophores..

..but synthesize a given siderophore only when it is effective in delivering iron

Bacteria can also prey on heterologous siderophores and

utilize exogenous iron chelators..

..but express the specific receptors only in the presence of the cognate ligand

NEED FOR POSITIVE REGULATION AND SIGNALING

Siderophore signaling: different strategies, same result

Each siderophore is only produced when it is effective in delivering iron

Surface signaling receptors have a specific N-terminal signaling domain

Role of iron homeostasis in virulence

Many virulence factors are specifically expressed under low iron conditions

Shiga and Shiga-like toxins (Shigella, E. coli)

Diphtheria toxin (*Corynebacterium dyptheriae*)

Exotoxin A (*Pseudomonas aeruginosa*)

Fur box

DtxR binding site

No Fur box

Role of iron homeostasis in virulence

Iron-dependent regulation of virulence factors in *P. aeruginosa*: the role of pyoverdine and PvdS

pvd genes

Pyoverdine <

Iron as "biofulcrum" in bacterial infectious diseases

PATHOGEN ← (iron-uptake mechanisms, adaptation)	$- \text{IRON} \rightarrow \text{HOST} $ (iron-withholding defense)
Siderophores	Lactoferrin
Transferrin & lactoferrin receptors	Transferrin
Heme-uptake systems	Heme-proteins
Virulence-related factors	Hypoferremic response

Iron is a master regulatory signal of bacterial pathogenicity

Stimulus = low iron concentration *in vivo*

Response = co-ordinate regulation of virulence and iron-uptake genes

Development of siderophore-antibiotic conjugates (the Trojan horse strategy)

Research article

The transition metal gallium disrupts *Pseudomonas aeruginosa* iron metabolism and has antimicrobial and antibiofilm activity

> Yukihiro Kaneko,¹ Matthew Thoendel,² Oyebode Olakanmi,³ Bradley E. Britigan,^{3,4} and Pradeep K. Singh¹

> > Use of the transition metal gallium (Ga) to disrupt bacterial iron metabolism

RATIONALE:

- Ga has an ionic radius nearly identical to that of Fe
- many biological systems do not distinguish Ga³⁺ from Fe³⁺
- unlike Fe³⁺, **Ga³⁺ cannot be reduced**

Ga could inhibit Fe-dependent processes, by inhibiting Fedependent redox reaction critical for many biological functions

Pseudomonas aeruginosa cells take up Ga in a concentration-dependent manner

In Pseudomonas aeruginosa Ga inhibits:

Biofilm formation

Biofilm persistence

Ga has been proved to inhibit many other bacterial pathogens,

and it is currently in phase I clinical trials for the treatment of *P. aeruginosa* pulmonary infection in cystic fibrosis patients

DRUG DEVELOPMENT

Gallium disrupts bacterial iron metabolism and has therapeutic effects in mice and humans with lung infections

Christopher H. Goss^{1,2}, Yukihiro Kaneko³, Lisa Khuu⁴, Gail D. Anderson⁵, Sumedha Ravishankar⁴, Moira L. Aitken¹, Noah Lechtzin⁶, Guolin Zhou⁷, Daniel M. Czyz⁸, Kathryn McLean⁹, Oyebode Olakanmi¹⁰, Howard A. Shuman⁸, Mary Teresi¹¹, Ellen Wilhelm¹, Ellen Caldwell¹, Stephen J. Salipante⁹, Douglas B. Hornick¹¹, Richard J. Siehnel⁴, Lev Becker⁷, Bradley E. Britigan¹², Pradeep K. Singh^{4,1}*

> Pooled data (cohorts 1 & 2) 250 200 Change in FEV₁ (ml) P = 0.004150 P = 0.004100 50 ſ -50-IV Ga -100-14 5 28 Treatment day

Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works