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Abstract

Background

Genetic mutation, selective pressure for trangtaliefficiency and accuracy, level of gene
expression, and protein function through naturkdcten are all believed to lead to codon
usage bias (CUB). Therefore, informative measure¢me@UB is of fundamental
importance to making inferences regarding genetimm@and genome evolution. However,
extant measures of CUB have not fully accountedierquantitative effect of background
nucleotide composition and have not statisticaligleated the significance of CUB in
sequence analysis.

Results

Here we propose a novel measure—Codon DeviatiofffiCieat (CDC)—that provides an
informative measurement of CUB and its statistgighificance without requiring any prior
knowledge. Unlike previous measures, CDC estim@t#B by accounting for background
nucleotide compositions tailored to codon positiand adopts the bootstrapping to assesg the
statistical significance of CUB for any given seqoe We evaluate CDC by examining its
effectiveness on simulated sequences and empaataland show that CDC outperforms
extant measures by achieving a more informativienasion of CUB and its statistical
significance.

Conclusions

As validated by both simulated and empirical d&aC provides a highly informative

guantification of CUB and its statistical significze, useful for determining comparative
magnitudes and patterns of biased codon usagefmsgr genomes with diverse sequenge
compositions.
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Background

Codon usage bias or CUB, a phenomenon in whichrgynous codons (that encode the
same amino acid) are used at different frequencegnerally believed to be a combined
outcome of mutation pressure, natural selectiod,gametic drift [1-5]. Within any given
species, genes often exhibit variable degrees @dsCWMoreover, CUB for an individual gene
is related closely with gene expression for trairmhal efficiency and/or accuracy [6-10].
Therefore, the ability to accurately quantify CUBs protein-coding sequences is of
fundamental importance in revealing the underlymechanisms behind codon usage and
understanding gene evolution and function in gdnera

Over the past few years, a number of measuresheere proposed for the quantification of
CUB [11-23], leading to investigations on the pattef CUBs within and across species



[24-30]. Since CUB is primarily shaped by seleciam mutation [5], different measures are
differentially informative with regard to differaating causes. For instance, there are purely
descriptive measures of CUB as caused by the gfi@tts of mutation and selection, such as,
the Effective Number of Codonbl{or ENC) [13] and the Relative Synonymous Codon
Usage [22]. Alternatively, other measures of CUBGcfically accord with selection on

codon usage associated with translation, sucthas édon Adaption Index (CAIl) [12] and
the Frequency of Optimal codons [15]. In additiamumber of studies have attempted to
estimate selection on codon usage based on papulgdnetics [31-35].

These existing measures generally fall into twegaties, as they compare the observed
codon usage distribution of target coding sequaganst the distribution based on a
reference set of highly-expressed genes (e.g., @Ahe distribution based on a null
hypothesis of uniform usage of different synonymooadons (e.gN\.). The former measures
are highly dependent on their corresponding refaresets (from which preferred codons are
derived) and accordingly are limited by the comprediveness and accuracy of reference
sets. Since reference sets are species-specds8e theasures are inappropriate for
comparison of CUBs across species [36]. AdditignaHey are unreliable in cases where
there is inadequate knowledge about the highlyesgqed genes for a given species [37],
such as for newly sequenced species that havatadimumber of annotated genes.

Due to these shortcomings, measures that do notregoyior knowledge of reference gene
sets have been implemented. These measures assuhhéiatribution of uniform usage of
synonymous codons and estimate the departure obsgerved codon usage from the
expected. Among then\. is one of the most widely used measures [13}dt&ant,N.' [19],
incorporates GC content of coding sequence as bawwkd nucleotide composition (BNC)
into CUB estimation. Accounting for BNC refines codusage analysis, providing a
comparable metric for analyses within and amongispeexhibiting various non-uniform
BNCs. In the context of protein-coding sequencasirfstance, bacteria have diverse BNCs
as their GC contents vary widely — from ~20% to %8&ven within a single species, genes
often differ considerably in background GC contastjn the case d&scherichia coli str. K-
12 substr. MG1655xhose genes have GC contents ranging from 26:885 (
length=311aa) to 66.8%y@gF, length=655aa). Therefore, it is crucial to measure the
departure of codon usage from the correspondinggnaand composition (instead of the
presumed uniform codon usage). Due to its apprigpcansideration of BNGY'

outperforms other relevant measures [19].

However, all extant measures (includiNg) still have limitations. First, they give a gerlera
estimate of CUB, but have not been supplied withigitforward procedures for assessing
the statistical significance of the bias in codsages for any given gene. Genes that vary in
length and differ in CUB may exhibit different ldsef statistical significance for their
codon biases. Assessing statistical significanocest@ngthen functional relationships
ascertained considerably by discounting samplingy én correlated gene sets. Second, no
previous measure is fully effective at incorporgtBNC into CUB estimation. AlthougR.’
factors GC content as BNC, it does not accounkmhorwwn variation in BNCs at three
different codon positions [38]. In bacteria, fostanceBartonella quintana str. Toulousend
Clostridium thermocellum ATCC 2740ave very similar GC contents in coding sequences
(40.5% and 40.4%, respectively), but their posispecific GC contents are quite different:
53.3% and 47.3% at the first codon position, 38&6% 34.0% at the second codon position,
and 29.5% and 39.9% at the third codon positipeetively. Likewise, genes within a
given species can also have heterogeneous BN@s Hiree codon positions; i coli, for



example, there are two genesirEandhlyE, that are similar in their overall GC contents
(41.5% and 41.1%) but different in positional GQitemts: 42.7% and 48.2% at the first
position, 46.4% and 32.0% at the second positiod,3.5% and 43.2% at the third position,
respectively. Such differences in positional BNERect the outcomes of diverse
evolutionary mechanisms (e.g., dinucleotide bi&g, [Borizontal gene transfer [40], strand
compositional asymmetry in bacteria [41], isochstrecture in vertebrates [42], etc.), thus
conflating the roles of mutation and selectionragtt different codon positions. Therefore,
incorporation of differential positional BNCs in@UB estimation promises to increase its
effectiveness and reliability.

Moreover, GC content is not the sole parameterMTBAs illustrated in Zhang and Yu [43],
joint use of GC and purine contents effectively msducleotide, codon, and amino acid
compositions. In contrast to a broader variatio®6f content, purine content varies within a
much narrower range fluctuating around 50%, presilyri@decause purines play a
determinative role in physicochemical propertieamwino acids [44,45]. Similar with GC
content, purine content differs not only from opedes to another, but also from one gene to
another, and even between genes with similar G&ots For instancemrEandhlyE in E.
coli, which are similar in their overall GC contentaya entirely different purine contents not
only at the overall level (45.8% and 55.6%, respebt), but also at three codon positions
(54.5% and 68.3% at the first position, 34.5% aB@% at the second position, and 48.2%
and 50.2% at the third position, respectively). §hn addition to GC content, purine content
is also a significant feature of BNC.

Here we present a novel measure, Codon Deviati@ffiCient (CDC), using it to

characterize CUB and to ascertain its statisticaliicance. CDC takes account of both GC
and purine contents, comprehensively addressirggdggneous BNCs, not only in sequences
but also at three codon positions. It adopts tlsneodistance metric to quantify CUB and
employs the bootstrapping to assess its statigtigalficance, requiring no prior knowledge

of reference gene sets. We describe CDC in detdipaovide comparative results in the

form of an in-depth evaluation of simulated seqesrend empirical data.

Methods

Expected codon usage

CDC considers both GC and purine contents as BNiQlarives expected codon usage from
observed positional GC and purine contents. We tégthe content of the four nucleotides
(adenine, thymine, guanine, and cytosine), GC cdnéand purine content &6 T, G, C, S
andR, respectively. As in Zhang and Yu [43], positiogpéndent nucleotide contents can be
formulated in the following way:

A=(@1-S)R,T=(1-S)A-R), Gi= SR, Ci=SI-R), (1)

where§ andR are their corresponding observed contents at cpdsitioni andA;, T, G;, C;

are expected nucleotide contents at codon posifionl, 2, 3). For any sense codyr,
wherex,y,ze {A, T, G,C}, the expected usagyzis defined as the product of its
constituent expected nucleotide conteqyszs, normalized by the sum over all sense codons,
viz.



X Y2273
> WascaubaCs ’ (2)

abc

Trxyz =

1 if abc isasensecodon

where wWan. = _ anda,b,ce{A, T,G,C}.
0, otherwise

Codon usage bias

Any coding sequence can be represented as a \@catalimensions, whose entries
correspond tm sense codon usages in the sequence. The dimensgrals 61 for the
canonical code; although codons ATG and TGG coalddi aside due to the absence of
synonymous codons, calculation based on a vectt dimensions instead of 59 dimensions
makes little substantial difference. To calculatéBfor any given sequence, we employ the
cosine distance metric [46] based on the cosirieeofingle between the two vectorsiof
dimensions. Therefore, when both expectgdafid observeda) codon usage vectors are
available for any given sequence, CDC renderstartie coefficient ranging from 0 (no

bias) to 1 (maximum bias), to represent CUB, exqeeédy the deviation of fromz (Eq. 3).

CDC=1- %~ 3)

Statistical significance of codon usage bias

We implement a bootstrap resampling\bf 10000 replicates for any given sequence to
evaluate the statistical significance of non-umriazodon usage. Each replicate is randomly
generated according to the sequence B§@r(dR, i =1, 2, 3) and the sequence length.
Consequently, we obtain a bootstrap distributioN estimates of CUB. A two-sided
bootstrapgP-value is calculated as twice the smaller of the bme-sidedP-values [47]P
ranges from O to 1. By convention, a statisticalfynificant CUB is identified by <0.05.
CDC features its first application of the bootstrapampling in estimating the statistical
significance of CUB. Bootstrapping may also be aglle to other related measures.

Implementation and availability

CDC is written in standard C++ programming language implemented into Composition
Analysis Toolkit (CAT), which is distributed as apsource software and licensed under the
GNU General Public License. Its software packagauding compiled executables on
Linux/Mac/Windows, example data, documentation, smarce codes, is freely available at
http://cbb.big.ac.cn/software and http://cbrc.kaadi.sa/CAT.



Results and discussion

Comparative analysis on simulated data

To evaluate the performance of CDC and compamgsiinat the most powerful extant
measurelN.’, as well as\., we took an approach based on that of Novembretpl€mulate
coding sequences specifying different positionallNind varying sequence lengths. Five
sets of position-associated compositions were tsgdnerate simulated sequences

(Table 1). It should be noted that CDC ranges fébfno bias) to 1 (maximum bias), whereas
N¢" andN, range from 20 (maximum bias) to 61 (no bias). alitate comparisons of CDC
with N’ andN., we use the formula (6IN:)/41 and (61N)/41 to rescale their ranges,
denoted as scalédt’ and scaled\., respectively, from O (no bias) to 1 (maximum hias

Table 1 Background nucleotide compositions at three codongsitions specified in
simulations

Content None Low Med-1 Med-2 High
1st position 0.5 0.5 0.5 0.5 0.5
2nd position 0.5 0.4 0.3 0.2 0.1
3rd position 0.5 0.6 0.7 0.8 0.9

A good measure should not deviate much from iteebgtion as the amount of data
approaches infinity or any sufficiently large numbBEhus, we first simulated sequences with
a total of 100,000 codons using five positional position sets (PCSs) (Table 1).
Considering the fact that both GC and purine cdstgavern BNC, we fixed one of them to
be uniform at three codon positions and allowedther to have various positional
compositions. We examined heterogeneous positammapositions for GC (Figure 1A to

1 C) and purine (Figure 1D to 1 F) contents, respely. Consistent with expectations, when
the PCS was uniform, CDC and scaMdperformed similarly, both taking a value closéto
(Figure 1). When the heterogeneity of positionahposition increased for GC content
(Figure 1A to 1 C), CDC continued to perform welt &ll cases examined, whereas scaled
N."and scaled\. generated biased estimates, especially in caseewiere was high
heterogeneity in positional BNCs. Similarly, whauripe content had heterogeneous
positional compositions (Figure 1D to 1 F), CDCiagahibited much lower biases than
scaled\." and scaled\.. SinceN. ignores BNCN,' performed better thaN, when the PCS
was non-uniform (Figure 1A, 1 C, 1D and 1 F) arglytexhibited comparable estimates only
in cases where the PCS was uniform (Figure 1B &)dThese results agree well with those
of Novembre [19]. In addition, when we set heteragris positional BNCs for both GC and
purine contents, CDC consistently outperforrigtiandN, for nearly all the parameter
combinations tested (Table 2).

Figure 1 Codon usage bias across a variety of positional deground nucleotide
compositions Heterogeneous positional background compositieere considered for GC
content (panels A to C) and purine content (paDelis E), respectively. The expected values
of codon usage bias are zero for all examined cases



Table 2 Codon usage bias across a variety of positional deground compositions for
GC and purine contents

GC Content Purine Content CDC Scad Scaled\'
None 0.00452 0.00001 0.00186
Low 0.00407 0.04843 0.05557
None Med-1 0.00302 0.15130 0.15968
Med-2 0.00164 0.28613 0.29389
High 0.00054 0.40797 0.41146
None 0.00452 0.05505 0.04181
Low 0.00411 0.09548 0.08752
Low Med-1 0.00305 0.19808 0.19091
Med-2 0.00164 0.31892 0.31461
High 0.00060 0.44778 0.44199
None 0.00486 0.20367 0.17790
Low 0.00438 0.23485 0.21262
Med-1 Med-1 0.00305 0.31876 0.29478
Med-2 0.00203 0.42851 0.40322
High 0.00054 0.53585 0.51978
None 0.00529 0.38525 0.36068
Low 0.00460 0.40628 0.38358
Med-2 Med-1 0.00337 0.47542 0.43927
Med-2 0.00182 0.56759 0.52569
High 0.00056 0.65842 0.62645
None 0.00606 0.56671 0.54706
_ Low 0.00520 0.59091 0.56666
High Med-1 0.00371 0.65926 0.61789
Med-2 0.00225 0.71856 0.66928
High 0.00065 0.77246 0.73600

Note: Sequences with 100000 codons were simuld@tezlexpected value of codon usage
bias is zero so that these estimated values avd¢hasdeviations from the expected.

To evaluate CDC in a comprehensive manner, weeadamined all possible quantitative
relationships among positional GC contents (Tapl@lthough there are identified patterns
about quantitative relationships among positionaleotide compositions (e.g., GC content
at the 1st codon position tends to be always latgar that at the 2nd codon position [48]).
On the whole, CDC achieved greater power than dd&leand scaled\; across all examined
cases. Scalel;’ performed better than scalld consisting again with the analysis reported
by Novembre [19]. Similar results were also obtdimdien we considered all possible
guantitative relationships among positional pudnatents (Table 4).



Table 3 Codon usage bias across all possible quantitativelationships among
positional GC contents

GC content Purine contert 0.3 Purine contest0.5 Purine contermt0.7

1st 2nd 3rd Scaled Scaled Scaled Scaled Scaled Scaled

CDC Nc N¢' CDC N N’ CDC N N¢'

0.3

0.5

0.7 0.00153 0.34160 0.23472 0.00586 0.24586 0.23332 0.00481 0.39716 0.21314

0.3

0.7

0.5 0.00147 0.15648 0.05716 0.00551 0.04827 0.06330 0.00498 0.24616 0.05866

0.5

0.3

0.7 0.00146 0.36662 0.19363 0.00470 0.20034 0.17544 0.00441 0.34555 0.17306

0.5

0.7

0.3 0.00143 0.35276 0.21224 0.00519 0.19619 0.21974 0.00417 0.34831 0.21815

0.7

0.3

0.5 0.00069 0.21330 0.01419 0.00236 0.02999 0.02692 0.00233 0.16172 0.03574

0.7

0.5

0.3 0.00066 0.38224 0.22121 0.00257 0.22392 0.23947 0.00236 0.33561 0.24588

Note: Sequences with 100000 codons were simul@teglcompositions in the Med-1 set
(0.3, 0.5 and 0.7) were used. GC content was ceredchon-uniform at three codon
positions, whereas purine content was set unifdrthrae codon positions. The expected
value of codon usage bias is zero so that theseatstl values are also the deviations from
the expected.

Table 4 Codon usage bias across all possible quantitativelationships among

positional purine contents

Purine content GC content 0.3 GC contert 0.5 GC conter 0.7
1st 2nd 3rd Scaled Scaled Scaled Scaled Scaled Scaled
CDC Nc N CDC Nc N CDC Nc N
0.3 0.5 0.7 0.01743 0.35780 0.186060.01023 0.15974 0.177890.00232 0.34949 0.17267

0.3

0.7

0.5 0.01836 0.21922 0.018800.01036 0.01515 0.015200.00263 0.24157 0.00941

0.5

0.3

0.7 0.00616 0.38200 0.162090.00294 0.15248 0.161120.00063 0.33321 0.16601

0.5

0.7

0.3 0.00566 0.31973 0.150020.00302 0.16556 0.158420.00061 0.37234 0.15754

0.7

0.3

0.5 0.00182 0.27781 0.023400.00079 0.02564 0.028050.00026 0.21360 0.02756

0.7

0.5

0.3 0.00179 0.35410 0.157930.00087 0.16099 0.159390.00024 0.35439 0.15404

Note: Sequences with 100000 codons were simuld@teglcompositions in the Med-1 set
(0.3, 0.5 and 0.7) were used. Purine content wasidered non-uniform at three codon
positions, whereas GC content was set uniformraetbodon positions. The expected value
of codon usage bias is zero so that these estimatads are also the deviations from the
expected.

To examine the effect of variable sequence lengtthe integrity of CDC, we considered a
wide range of sequence lengths from 100 to 3,000r® We set both GC and purine
contents to be heterogeneous at three codon posiiog the four non-uniform PCSs
(Table 1). To avoid stochastic errors, we repeatedilations 10,000 times for each



parameter combination and thus each estimate wasmaed from 10,000 replicates.
Overall, CDC performed better thaly' andN; across all sequence lengths examined
(Figure 2). When the heterogeneity of BNC incredsah low to high, CDC tended to have
less biases, whereb' andN. produced increasingly biased estimates, espedalihe case
where there was high heterogeneity in positionaCBNFigure 2D). For short sequences
(<300 codons), CDC yielded much lower biases amallsnstandard deviations (SD) than
N." andNc, although all three measures produced estimaé¢sth somewhat biased. To
obtain more reliable estimates of CUB, our ressiiggest that input sequences should have
at least 100 codons in length. When sequence |lemagldecreased below 100 codons, CDC
still performed better thaN.’ andN,, although the biases bk’ andN. were in opposite
directions as compared with those of CDC (Figure@BD; not apparent in Figure 2A). For
long sequences, CDC generated less biased estiamatesDs, wheredd,’ andN, continued

to yield more biased estimates and SDs.

Figure 2 Codon usage bias across a range of sequence leng®squences were

simulated with the four non-uniform positional composition sets: Low (panel A), Med-1
(panel B), Med-2 (panel C) and High (panel D)Each estimate was determined based on
10000 replicate simulated sequences. The expeatads/of codon usage bias are zero for all
examined cases

To test the influence of different CUBs on the poaeCDC, we evaluated a range of CUBs
from low to high. Unlike the previous simulationshjch are based on nucleotide
compositions), we generated simulated sequencesniopmly setting different synonymous
codon frequencies and considering variable CUBB witange from 0.1 to 0.9. We repeated
simulations 1,000 times for each case and accdgdeagh estimate was averaged over 1,000
replicates. On the whole, CDC exhibited greatergraw detecting diverse CUBs; compared
with N’ andN,, the estimated CUBs of CDC were very closer toetkgected ones (Table 5).
When the expected CUBSs varied from low to high, Ga@formed consistently to give rise
to close estimates. ContrastingNy andN. yielded biased CUB estimates across all tested
cases and these biases became more pronouncedherexpected CUB was extremely low.
When the expected CUBs increased from low to HighandN. exhibited increasing power
in CUB estimation. While they approached the poafe€DC when the expected CUB was
high, CDC remained more powerful thidg andN.. Taken together, our simulation results
demonstrated that CDC is superioiNg andN..

Table 5 Differences between estimated and expected codorage biases
(Estimated CUB) - (Expected CUB)

Expected CUB CDC Scaled\, Scaled\’
0.1 0.00137 0.60854 0.61438
0.2 0.00174 0.47951 0.52490
0.3 -0.00245 0.38428 0.43524
0.4 0.00186 0.27647 0.35793
0.5 -0.00060 0.17750 0.21300
0.6 0.00437 0.08031 0.15215
0.7 0.00542 0.01312 0.06657
0.8 -0.00014 0.04816 -0.02663

0.9 - - -




®Each estimate was averaged over 1000 replicatdatieousequences that each had 100000
codons.

PSequences with the expected codon usage bias weéenot possible to successfully
simulate.

Application to empirical data

It is generally acknowledged that CUB correlatesely with gene expression level in both
unicellular [6-10] and multicellular [11,49-51] amgsms. Different species may have
different heterogeneities in positional BNCs. Topamoally test CDC and compare it to three
popular measuredl.’, Nc and CAl, we collected multiple expression data &etm five
different species in this study: (Escherichia colfrom Bernstein et al. [52] (in LB and M9
media), (2)Saccharomyces cerevisitem Holstege et al. [53], (rosophila melanogaster
from Zhang et al. [54], (4&Caenorhabditis elegarfsom Roy et al. [55], and (5)rabidopsis
thalianafrom Wuest et al. [56] (Additional file 1). We aataited CUB by CDC, scaled,,
scaled\. and CAlI, and correlated their estimates with gexggession levels in these five
species (Table 6).

Table 6 Correlation coefficients of codon usage bias withemne expression level

Datd E. colit S. cerevisiae D. melanogastér C. elegan$ A. thaliana
LB (n=1762) M9 (n=2766) (n=5147) (n=165F) (n=12184) (n=1332)
CcDC* 0.433 0.367 0.654 0.460 0.374 0.228
ScaledN.” 0.315 0.187 0.664 0.302 0.328 0.130
ScaledN. 0.257 0.125 0.600 0.321 0.192 0.063
CAI° 0.443 0.288 0.675 0.386 -0.118 0.034

Expression data were obtained froBernstein et al3Holstege et al.>Zhang et al.Roy et
al., and®Wuest et al. (see details in Additional file 1).

PNumber of genesn.

“P<0.0001 for all values.

On the whole, CDC outperformed scaldand scaled\. in correlating closely with gene
expression level. Although CDC and scaMdproduced comparable correlation coefficients
in yeast (detailed below), CDC exhibited largerrelation coefficients than scal&d’ and
scaled\. for all the rest cases (Table 6). When comparibg@o CAI, we found

comparable correlation coefficientshn coli (LB medium) and yeast, but in general CDC
performed better than CAIl (Table 6 and Additionkd 1). However, it should be noticed that
the values of CAl are calculated from expressida @since it requires a reference set of
highly-expressed genes), whereas those of CDCadr&\fhen we restricted the above
analysis to the top 10% genes referring to thgiression levels, CDC continued to perform
better than scalel.’, scaled\,, and CAI (Additional file 1). In addition, considieg the
correlation coefficients among these five speciesfound that the smallest values always
belonged tAA. thaliana(regardless of metric used), indicating relativeaker selection on
A. thalianacodon usage by comparison with those of the dtherspecies (Table 6). Such
phenomenon was discovered previously in a comparanalysis betweeh. thalianaand



Oryza sativg57]. Overall, CDC correlated positively with geaxpression level, much
better than scaleld.’, scaled\;, and CAI.

As noted, the correlation coefficients producedd®BC and scaledll,’ were similar in yeast
but different in others (Table 6). Since CDC tagesitional GC and purine contents as BNC
andN¢' considers only GC content as BNC and ignores iposit heterogeneity, this result
can be probably explained by relatively lower hegeneity of positional BNCs in yeast. To
further investigate this possibility, we examinbd heterogeneities of positional GC and
purine contents in these five species (Figure 8ndidtent with our expectation,
heterogeneities of positional GC contents wereaddewer in yeast by comparison with
other species (Figure 3A to 3 C), especially atsteond and third codon positions. In
contrast, higher heterogeneities of positional @Gtents were apparentkn coli (Figure 3A
and 3B for the first and second codon positiorspeetively) and. melanogaster

(Figure 3B and 3 C for the second and third codusitpns, respectively). These results
agree well with the observation that the differeateorrelation coefficient between CDC
and scaled\;’ in yeast was smaller than thatdncoli or D. melanogaste(Table 6). As a
consequence, CDC correlated more closely with dédfen yeast than itE. colior D.
melanogaste(Figure S13 in Additional file 1). In contrast@C content, heterogeneities of
positional purine contents were relatively smadled similar among the five species tested,
presumably attributable to the fact that GC contanges more broadly (20%—80%) than
purine content (40%—60%) [48,58,59].

Figure 3 Heterogeneity of positional background nucleotide@mpositions inE. coli

(2,766 genes in M9 medium)S. cerevisiae (5,142 genes)). melanogaster (1,651 genest.
elegans (12,184 genes), and. thaliana (1,332 genes)Heterogeneities of positional GC
contents are represented by absolute differendesbe overall GC content and its
positional contents: GC-GCL1 for the first positipanel A), GC-GC2 for the second position
(panel B), and GC-GCS3 for the third position (pa@gl respectively. Likewise,
heterogeneities of positional purine content asohtie differences between overall purine
(AG) content and its positional contents: AG-AGt tlee first position (panel D), AG-AG2
for the second position (panel E), and AG-AG3 fa third position (panel F), respectively

We proceeded to calculate CDC values (as well ag@JQourine contents) for dl. coli

genes (Additional file 2). CDC values ranged fro®4® to 0.550 and the mean and median
values were 0.239 and 0.187, respectively (Figlir&He majority of genes (69%) exhibited
CDC values between 0.15 and 0.25. The gene withigrest CDC value igspL, a key
component in the attenuation system that conth@skpression of the trpLEDCBA operon
in response to tryptophan availability [60]. Howeusootstrap resampling illustrates that the
CUB value oftrpL gene is not statistically significarR € 0.77), most likely due to its short
length (14 aa), consistent with our simulation hsstlnat short sequences tend to have biased
CUB estimates. The gene with the highest CDC vahgestatistical significance in CUB is
rpml (CDC=0.481), which encodes ribosomal protein L35. Intcst, scaled.’ and scaled
N identifiedrpIL (encoding the ribosomal protein L7/L12) aswb(catalyzing the
interconversion of 2-phosphoglycerate and phosptipgruvate) genes, respectively, as
having the strongest CUBs (Additional file 2).



Figure 4 Comparison of CDC distributions between ribosomal potein (54 RP genes
vary from 0.244 to 0.481) genes and all genes (4lgenes range from 0.046 to 0.550) in
E. cali

Ribosomal protein (RP) genes are, in general, sslential and highly expressed, and it is
believed that their CUB values are greater thasdla other genes [61]. In the casd=of

coli, CDC values for 54 RP genes vary from 0.244 t8D.4arger than the mean and median
values of alE. coligenes (Figure 4). Nearly all RP genes have stailt significant CUBS,
with three exceptions (Additional file 3): (igmE CDC=0.267,P=0.1136; encoding RP
L31, which may be loosely associated with ribos¢&2, (2) rpomF. CDC=0.329,

P=0.1096; encoding RP L32, which locates near théighdfyansferase center [63], and (3)
romJ: CDC=0.422,P=0.0564; encoding RP L36, which is non-essentiapfotein

synthesis [64]. These results suggest that an atecaoreasure such as CDC has the potential
to illuminate the evolutionary process that hasraigel on each gene.

Conclusions

In summary, we have described a novel measure &,@é¢ Codon Deviation Coefficient.

As validated by simulated sequences and empiretal, €DC outperforms other measures by
providing informative estimates of CUB and its statal significance. CDC features no
necessity for any prior knowledge regarding gern@e&ssion or function, properly accounts
for BNC, and utilizes a bootstrap assessment tluatathe statistical significance of CUB.
Therefore, CDC promises a significant advancewanalysis of codon usage, providing the
means to better reveal aspects of the historic@lidenary pressures on gene function
without the assumptions of underlying reference dats.
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