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Abstract

Fluctuation theorems, developed over the past 15 years, have resulted
in fundamental breakthroughs in our understanding of how irre-
versibility emerges from reversible dynamics and have provided new
statistical mechanical relationships for free-energy changes. They
describe the statistical fluctuations in time-averaged properties of
many-particle systems such as fluids driven to nonequilibrium states
and provide some of the few analytical expressions that describe
nonequilibrium states. Quantitative predictions on fluctuations in
small systems thatare monitored over short periods can also be made,
and therefore the fluctuation theorems allow thermodynamic con-
cepts to be extended to apply to finite systems. For this reason, we
anticipate an important role for fluctuation theorems in the design
of nanotechnological devices and in the understanding of biologi-
cal processes. This review discusses these theorems, their physical
significance, and results for experimental and model systems.
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1. INTRODUCTION

Our understanding of thermodynamics, which is the study of the flow of heat and
the transformation of work into heat, is largely confined to equilibrium states. Linear
irreversible thermodynamics is an extension of the nineteenth-century concepts of
equilibrium thermodynamics to systems that are close to equilibrium (1, 2). These
traditional concepts are limited in application to large systems or averages over an
ensemble of states, referred to as the thermodynamic limit. In contrast, modern
inventors and engineers endeavor to scale down machines and devices to nanometer
sizes for a wide range of technological purposes. However, there is a fundamental limit
to miniaturization because small engines are not simply rescaled versions of their
larger counterparts. If the work performed during the duty cycle of any machine
is comparable to its thermal energy per degree of freedom, then one can expect
that the machine will operate in reverse over short timescales. That is, heat energy
from the surroundings is converted into useful work, allowing the engine to run
backwards. For larger engines, we would describe this as a violation of the second law
of thermodynamics. Until recently, this received little attention in the nanotechnology
literature, as there was no second law-like relation for finite-sized systems outside
the thermodynamic limit.

In the past 15 years, researchers have proposed several fluctuation theorems that
revolutionized our understanding and use of thermodynamics. First, these new the-
orems lift the requirement of the thermodynamic limit. This allows thermodynamic
concepts to be applied to finite, even small systems. Second, these new theorems
can be applied to systems that are arbitrarily far from equilibrium. Third, for the
first time, these theorems explain how macroscopic irreversibility appears naturally
in systems that obey time-reversible microscopic dynamics. One of these fluctuation
theorems (FI5), the Evans-Searles FT (3-5), results in a generalization of the sec-
ond law of thermodynamics so that it applies to small systems, including those that
evolve far from equilibrium. Another, the Crooks FT (6, 7), provides a method of
predicting equilibrium free-energy differences from nonequilibrium paths that con-
nect two equilibrium states. Both FTs are at odds with the traditional understanding
of nineteenth-century thermodynamics. Nevertheless, these theorems are essential
for the application of thermodynamic concepts to nanotechnology systems that are
currently of such interest to biologists, physical scientists, and engineers.

1.1. The Evans-Searles Fluctuation Theorem

In many areas of physical chemistry, researchers strive to understand new systems
through deterministic equations of motion. They seek to quantify microscopic forces
and understand how a system responds to external perturbations, using techniques
such as molecular dynamics simulation. At the heart of this endeavor is the notion
that if the equations of motion or trajectories of the system are known, then any
question about that system may be answered. However, such deterministic equations
(such as Newton’s equations) are time reversible, so for every trajectory, there exists
a conjugate, time-reversed trajectory or antitrajectory that is also a solution to the
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equations. One can use the relative probabilities of observing bundles of conjugate
trajectories to quantify the macroscopic irreversibility of the system: If the probability
of observing all trajectories and their respective antitrajectories is equal, the system
is reversible; conversely, if the probability of observing antitrajectories is vanishingly
small, the system is irreversible. The second law of thermodynamics stipulates that a
system evolves irreversibly in one time-forward direction (i.e., the probability of all
antitrajectories is zero). However, the second law strictly applies to large systems or
over long timescales and does not describe the reversibility of the small systems that
are of current scientific interest, such as protein motors and nanomachines. In 1876
Loschmidt first noted this long-standing question of how irreversible macroscopic
equations, as summarized by the second law, can be derived from reversible micro-
scopic equations of motion, and it is referred to today as Loschmidt’s paradox (8,
9). Resolution of this irreversibility paradox has defied our efforts for more than 100
years. Boltzmann and his successors simply sidestepped this paradox, with Boltzmann
stating “as soon as one looks at bodies of such small dimension that they contain only
very few molecules, the validity of this theorem [the second law of thermodynamics]
must cease” (10).

The Evans-Searles FT (3-5) describes how a system’s irreversibility develops in
time from a completely time-reversible system at short observation times, to an irre-
versible one at long times. It also shows how irreversibility emerges as the system size
increases. That s, it bridges the microscopic and macroscopic descriptions, relating a
system’s time-reversible equations of motion to the second law, and provides a quan-
titative resolution to the long-standing irreversibility paradox. Specifically, the FT
relates the relative probabilities, p, of observing trajectories of duration ¢ characterized
by the dissipation function, €2,, taking on arbitrary values A and —A, respectively:

p(Qt = A)

=) exp(A). ey

It is an expression that describes the asymmetry in the distribution of Q, over
a particular ensemble of trajectories. The dissipation function, €2,, is, in general, a
dimensionless dissipated energy, accumulated along the system’s trajectory; expres-
sions for ©, differ from system to system. However, any trajectory of the system
characterized by a particular value Q, = A has, under time-reversible mechanics, a
conjugate or time-reversed antitrajectory with €, = —A. In this way, the left-hand
side of Equation 1 has also been interpreted as a ratio of the probabilities of observ-
ing trajectories to their respective antitrajectories. The dissipation function, €2;, is an
extensive property (i.e., its magnitude scales with system size, and it also scales with
the observation time, 7). Thus, Equation 1 also shows that as the system size gets
larger or the observation time gets longer, antitrajectories become rare, and it be-
comes overwhelmingly likely that the system appears time irreversible, in accordance
with the second law. That is, the evolution of a large macroscopic system proceeds
preferentially in one direction. Equation 1 also shows that the ensemble average of
the dissipation function is positive for all ¢, for all nonequilibrium systems, and for
any system size; i.e., (€2;) > 0 (5), which is referred to as the second law inequality.
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1.2. The Crooks Fluctuation Theorem and Jarzynski’s Equality

From classical thermodynamics, the work required to drive a system from one equi-
librium state to another equilibrium state is equivalent to the change of free energy,
AF, between the states, only in the special case in which the path is traversed qua-
sistatically. That is, the path between the two states must be traversed so slowly that
intermediate states, as well as the initial and final states of the system, are all in ther-
modynamic equilibrium. The Crooks FT (6, 7) states something quite remarkable.
In the case of paths that are traversed at an arbitrary rate, ranging from quasistatic to
far from equilibrium, the distribution of trajectories, characterized by the work done
over the duration of the trajectory, follows

where B = 1/(kgT); kg is Boltzmann’s constant; and 7 is the initial temperature of

the system, or equivalently the temperature of the surroundings with which the sys-
tem is initially at equilibrium. This expression is similar to Evans-Searles FT in that

= exp[B(A — AF)], @)

it relates distributions of trajectories, characterized by an energy, specifically to the
work, W. Whereas the Evans-Searles FT (Equation 1) describes the asymmetry in the
distribution of trajectories starting from the same initial distribution, the Crooks FT
(Equation 2) relates trajectories initiated from two different equilibrium states, 4 and
B. That is, it considers () a distribution, pr, of forward trajectories, 4 — B, where
the free-energy change between equilibrium states 4 and B is AF = Fp — F4, and
(b) the distribution, p,, of reverse trajectories, B — A, where the respective equilib-
rium free-energy change is —AF. Similar to the Evans-Searles FT, the Crooks FT
also quantifies how irreversibility evolves out of reversible equations of motion. A
perfectly reversible (quasistatic) system is one in which the work required to traverse
B — Ais equal but opposite in sign to the work required in the time-reversed tra-
jectory, A — B. Thus the right-hand side of Equation 2 is unity for these reversible
paths and W = AF, in agreement with classical thermodynamics.
Taking the ensemble average of exp(—B8 W) and using the Crooks FT give

exp(—BAF) = (exp(=BW)) s 3)

Here the notation (.. .) r denotes an ensemble average using the distribution function
of state 4, and the work is measured over forward trajectories, 4 — B. Jarzynski (11,
12) first posed this expression in 1997, before the derivation of the Crooks FT, and
it is known as Jarzynski’s equality. It states that one can determine the free energy by
measuring the work done along dynamical paths that connect the two states. These
forward paths may be traversed at arbitrary rates, so that the intervening states might
not be in thermodynamic equilibrium. This provides a completely new way of treat-
ing thermodynamics. If, instead of averaging the work, you average the exponential
of the work, then you can calculate the equilibrium free-energy difference from in-
formation obtained along nonequilibrium paths. On the practical side, Equation 3
suggests that measuring work on small microscopic processes could yield thermo-
dynamic quantities AF that are traditionally inferred by calorimetric measurements.
The importance here is that to understand molecular-scale processes, one must probe
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them using molecular time/length scales: The FTs and Jarzynski’s equality are nec-
essary for interpreting measurements taken over these small time/length scales.

2. BACKGROUND CONCEPTS

The degrees of freedom of a system of particles are represented by the vectors of
time-dependent coordinates, q, and momenta, p, or a point in the system’s phase
space, denoted I' = (q, p). Let us consider a closed system in thermal equilibrium
with a reservoir. From equilibrium statistical mechanics, the equilibrium probability
distribution of the system is given by the canonical distribution function,

o —AHT)
Z
where Z = [e P dT is the equilibrium partition function, and H is the internal
energy,! which is the sum of the kinetic and potential energies, K(p) and ¢(q), of the

system.
A closed adiabatic system can exchange energy with its environment in the form

Jo(T) = ; )

of work: Work is the form of energy exchange that is directly controllable by the
environment. For example, it might be desirable to change the mean internal en-
ergy, U = (H), of the system, which can be achieved by externally controlling some
parameter A in the potential energy function of the system, ¢. Examples of such A pa-
rameters include the switch on an externally applied electric field in a crystalline salt,
the trapping constant in an optical trap holding a colloidal particle, or a mathematical
agent that changes the size of Lennard-Jones spheres in a computer simulation. We
emphasize this mode of external control by formally making A time dependent and
by writing the internal energy as

H(T,5) = K(p) + &(q, A(65))- Q)

When an external agent does work on a system without changing its underlying
equilibrium state, we refer to that agent as a purely dissipative field, denoted F,. This
dissipative field does not figure in the underlying equilibrium distribution or partition
function, but drives the system away from equilibrium according to the equations of
motion, in which F, is explicit. Although it may be possible to represent an external
agent using either F, or A, we choose the convention that if 4 # 0 and F, = 0,
the system always relaxes to a (nondissipative) equilibrium state, and if F, # 0, the
system never relaxes to a nondissipative state. This distinction may depend on the
state of system (e.g., fluid or solid). Examples of such dissipative fields include a fluid
under a shear flow, a colloidal particle being dragged in a fluid, and an electric field
acting on a molten salt. Under adiabatic conditions (i.e., the rate of heat exchange
with the reservoir is Q = 0), the combined action of both kinds of external agents

More exactly, H is the phase variable corresponding to the internal energy. For simplicity, we use the term
“internal energy” to refer to H and refer to the thermodynamic internal energy U = (H) as the “mean internal
energy.”
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(i.e., a time-dependent potential represented by a A parameter and a dissipative field
F,) results in the equations of motion,

a="09 4 ey ro),
©
b=~ "5 D))

with H(T, 5) given by Equation 5.7 For an externally driven adiabatic system, the rate
of increase of H must be identically equal to the rate of work /¥ done on the system
by the environment. Thus,

. ) COHT,s) . OH(T,s) . OH(T,s)
T,s)=HT,s)=h : :

WE.5) = AT, ) = At 4 g g 2 e = ()
where the superscript #d emphasizes adiabatic conditions. Using Equation 6, we
obtain 36(q. 1))

W) = =528 - V) - F.6). ®)

where V' is the volume of the system; and J(I'), the dissipative flux due to the field
F.(s), is formally defined through the equation

VJ~FEE—(?3—H-C~FZ+&-D-E).
q

» ©)

In the case of small systems such as protein motors or artificial nanomachines, it
is quite difficult to thermally isolate the system to achieve perfectly adiabatic condi-
tions. Moreover, in most applications of interest, such systems typically function in
an environment of constant temperature. Molecular dynamics simulations of small
systems have employed thermostats that involve appending Equation 6 with a math-
ematical constraint to fix the temperature 7. For example, with a Gaussian isokinetic
thermostat, Equation 6 takes the form (13)

q= % +CI)-F.().
(10)
p= _%:s) +D(T) - F.(s) —a(I')S - p.

Here, « is a thermostat multiplier,® and S is a diagonal matrix (with ones and zeros
on the diagonal) that describes which components of the system are thermostatted.*

?We must point out here that the notation does not imply that F, is a force, nor does it have to always be a
vector. For example, it could be a second-order tensor, such as the velocity gradient tensor in a fluid. The
coupling tensors C and D are functions of ', have no explicit time dependence, and are formally one tensorial
order higher than F,.

3Tn the case of a Nosé-Hoover thermostat (14), @ becomes an additional independent variable and is a function

of time governed by an additional equation rather than a direct function of I" (13).

+When the external field is removed, F, = 0, and the potential’s parameter is held fixed, A = 0, the equilibrium
Equation 10 relaxes to is given by f,(I") = Mw&(p -S - p — 2mK), where the Dirac delta function
accounts for the kinetic energy of the thermostatted particles being held fixed to the value K, and 7 is the
particle mass. The partition function is given by Z = [dI" exp(—BH(", .)é(p - S - p — 2mK).
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Several other mathematical constraints can be constructed, which are artificial but
irrelevant to the theory (for a brief discussion, see the Supplemental Appendix;
follow the Supplemental Material link from the Annual Reviews home page at
http://www.annualreviews.org). An increase in the internal energy must equal the
sum of work done on the system by the environment and the heatadded to the system
by the thermostat. However, the rate of work must still be given by Equation 8 regard-
less of whether the system is thermostatted. From the first law of thermodynamics,
the expression for the rate of heat exchange is Q = H — W, with ¥/ given by Equation
8 and Q depending on the thermostat employed in the equations of motion.’

Let us consider a particular trajectory initiated at time s = 0 at I'y = (qo, po) that
terminates after time 7 at I'; = (q,, p;). We let dT'; represent an infinitesimal volume
of phase space at time s about the point I';. As the dynamics is deterministic, the
trajectory is completely determined by the phase-space coordinates at any time s along
the trajectory and the duration or observation time, #, of the trajectory. Consequently,
for every initial state within a volume element dT', there exists a unique destination
point within volume elementdT,. As the trajectories in an infinitesimal bundle around
the initial state, dI"y, form the later bundle 4T, the ratio of the volumes of the
infinitesimal volume elements varies as

dr, 40 !
| = 3 = O (/OA(F_T) ds), (1)

where the right-hand side is a path integral. Here dT", /d T is the Jacobian of the trans-
formation of the initial 'y to the final I';, and A(TY) is the phase-space compression
factor:

I 9 9
AT)=— T, =(—-q+—-p]) . 12
=3r <8q at 5 p)x (12)

Equations 11 and 12 describe how the volume of a small region of phase space
evolves in time. For adiabatic systems, there is no change of phase-space volume along
a trajectory or A” = (. From the equations for an adiabatic system (Equation 6), and
the definition of A, the field F, and the coupling tensors C and D must satisfy

ioC'Fe—{—i~D~Fe=O, 13)
9q Ip
irrespective of whether the system is thermostatted. This condition is known as the
adiabatic incompressibility of phase space (AIT"). However, for thermostatted systems
in a driven steady state, a contraction of phase space occurs continually, as the initial
phase volume shrinks to a fractal attractor of lower dimension than the ostensible
phase space. For appropriately selected thermostats,® the phase-space contraction
factor is directly proportional to the rate of heat exchange with the thermostat (15, 16),

Q@) = kpT A(D). (14

SFor the thermostat represented in Equation 10, Q(I') = —a(l’)% -S-p.

SThese include the Gaussian isokinetic thermostat and the Nosé-Hoover thermostat. However, we note that
Equation 12 has to be extended in the case of the Nosé-Hoover thermostat as detailed in Reference 13.
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Because the same exclusive set of trajectories passes through both the phase vol-
umes dTy and dT,, the differential probability measures of the two infinitesimal
volumes must be identical:

dP (dTy, 0) = dP (dT;, t). (15)
We can express the probability measure P in terms of the probability density fas
dP (dT,,s) = f(T,,s) 8V (T,), (16)

where f(I';,s) is the time-dependent phase-space probability density. The observa-
tion that the probability measure is conserved in phase space also leads to the Liouville
equation for the probability density:

OFIs) | Of(Ts) | OFT)
s 9T g TPy T

J (T, 5)A(T). (17)

We can recast Equation 17 into the following Lagrangian form,

M = —A®), (18)
ds
from which it can be shown that
f(Ty, 1) = f(To,0) exp (— /OA(FX) ds) . (19)

"This equation is also obtained directly from Equations 11, 15, and 16.

3. FLUCTUATION THEOREMS FROM
DETERMINISTIC DYNAMICS

3.1. Evans-Searles Fluctuation Theorem

The Evans-Searles FT shows how irreversibility emerges naturally in systems whose
equations of motion are time reversible. To fully appreciate the substance of this FT,
we define two fundamental concepts: microscopic time reversibility and macroscopic
irreversibility.

Microscopic time reversibility. The equations of motion in Section 2 describe the
time evolution of a point, I', and may depend explicitly on the time owing to the
possible time dependencies of A and F, (that is, the equations of motion may be
nonautonomous). If the equations of motion are reversible, then there exists a time-
reversal mapping that transforms the point I' = (q, p) to I'* such that if we generate a
trajectory starting at 'y and terminating at I';, then under the same dynamics, we start
atI'; = (I',)* and arrive back at I'j = (I'g)* after time z. We refer to a trajectory and
its antitrajectory as a conjugate pair of trajectories. The time average of properties
that are even under the mapping has equal values for the trajectory and its conjugate,
whereas the time average of properties that are odd under the mapping has values with
equal magnitude, but opposite signs for the trajectory and its conjugate. For many
dynamics (e.g., Newtonian dynamics), the appropriate mapping gives I'* = (q, —p).

Sevick et al.
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For the equations of motion’ (Equations 6 or 10) to satisfy this condition, we must
have®

#(q, A(s)) = ¢(q, Az — ),
CT)-F.(s) = —CI") - F.(t —s),
D) -F.(s) = D) -F.(t — 5). 0)

Let us now consider a system whose overall equations of motion are time reversible.
For every trajectory that is initiated at 'y and terminates at I'; in a system with mi-
croscopically time-reversible dynamics, there exists a unique antitrajectory that starts
at the phase-space point I'f ats = 0 and ends at I'j ats = ¢. The bundle of antitra-
jectories at time ¢ passes through the volume element dI'} centered about the point
I's. However, the size of the volume element dT'} is equal to that of dT",. Moreover,
if there is a volume contraction from dT'y to dT", (as shown in Figure 1), then there
is an equivalent volume expansion associated with the bundle of antitrajectories.

The question of how microscopically time-reversible dynamics gives rise to ob-
servable macroscopic irreversibility is Loschmidt’s paradox. To resolve this, we re-
quire an unambiguous measure of macroscopic irreversibility that is consistent with
classical thermodynamics in the thermodynamic limit and applies to microscopic
time-reversible equations of motion.

Macroscopic irreversibility: the dissipation function. A system undergoes a
macroscopically reversible process in the time interval 0 < s < 7 if two conditions are
satisfied. (#) The system is ergodically consistent. That is, for every trajectory that
initiates at I'y, the starting coordinates of its respective antitrajectory, I, are repre-
sented in the phase space of the system ats = 0, or equivalently the probability density
of the initial coordinates of antitrajectories at time s = 0 is nonzero: f(I'}, 0) # 0,
for all T'y. (b)) The probability of observing any bundle of trajectories, occupying an
infinitesimal volume, is equal to the probability of observing the conjugate bundle of
antitrajectories, or

dP(dT, 0) = dP(dT}, 0). (1)

We can write the latter condition for macroscopic reversibility more conve-

niently in terms of the distribution function of the phase space: f(I'g, 0)§V(I'y) =
(T, 068V(I)) or

f(To,0) |dDy

f(TF.0) |l

"Tn the case of Nosé-Hoover equations of motion, we have an extra degree of freedom owing to the thermostat
multiplier, (¢). This phase-space variable must be reversed along with the momentum upon applying the
time-reversal mapping I'*.

80ften there is an external symmetry; for example, for a fluid we may be able to drive a process in the opposite
direction and consider it equivalent to the original direction, such that we may consider the conditions
C(T) - F.(s) = CI*)-F,(t —s5) and D(T') - F,(s) = —D('™*) - F,(t — 5) to in effect provide time-reversal
symmetry. This is why the Evans-Searles F'T can often allow protocols which have an odd time parity.

www.annualreviews.org o Fluctuation Theorems
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Figure 1

A set of neighboring deterministic trajectories of duration time, #, (top tube) and their
corresponding set of time reverse or antitrajectories (botrom tube) in coordinate, momentum

I' = {q. p} and time, s, space in which an external agent does work on the system. This
external agent (either A parameter in the potential energy or a purely dissipative field, F,
incorporated in the equations of motion) must have even time parity for the dynamics to
remain time reversible. For every trajectory that starts at I'g = {qo, po} in the volume element
3Tp and ends at I'; = {q,, p;} in volume element 8T"; at some time 7 later, there exists the
antitrajectory, whose coordinates, at any time s along the trajectory starting ats = 0, are given
by T}, = {qs—s, —psr—s }. Thus, the antitrajectory starts at I'} = {q;, —p;} in volume element
8T} and terminates after a time s = 7 at I'§ = {qo, —po} in 8T;. For thermostatted systems, if
the action of the external agent does work on the system, there is a contraction of phase-space
volume in time (i.e., 8T"; < 8T as represented in the figure by the shrinking of the tube’s
cross-sectional area in time). As the equations of motion are time reversible, the phase-space
volume increases froms = 0 to s = ¢, and the size of the volume elements 8I"; and 6T} is equal.

The volume of 4I'} is the same as dT',. Thus, from Equation 11, we see that the
condition for macroscopic reversibility (Equation 21) becomes

07 [ -

for any initial coordinate I'y. Indeed, a quantitative measure of irreversibility may be
defined as the inequivalence of Equation 22, which we denote €, or the dissipation
function
dP(dTy, 0)
Q) =In| ——-=
oy =n [dP(dr:, 0

_ f(Fo,O)]_ !
_ 1n[—f(rj’0) /0 A(T) ds. 23)
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The dissipation function €2, is completely determined for a deterministic trajectory
by the initial coordinate, I'y, and the duration of the trajectory, . We note here that
the time reversibility of the dynamics dictates that conjugate pairs of trajectories are
characterized by the same magnitude of Q,, but of opposite sign:

2.(I'7) = —2:(lo). 24

Furthermore, if Q, = 0 for all trajectories initiated anywhere in phase space,
then the system is in equilibrium, and the probabilities of observing any trajectory
and its corresponding antitrajectory are equal. If €, > 0 for a trajectory, then the
corresponding antitrajectory is less likely to be seen, and if the ensemble average is
greater than zero, (€2;) > 0, we have macroscopic dynamics moving in the forward
direction. If (©2,) < 0, then we have macroscopic dynamics in the reverse direction.
Thus (2;) # 0 is the condition for macroscopic irreversibility. Our knowledge of the
second law, however, suggests that the arrow of time points unambiguously in one
firm direction; accordingly,

(€)= 0. 25)

We explain how this comes about below.

The Evans-Searles fluctuation theorem. We consider trajectories of duration ¢ in
phase space by selecting all those initial coordinates I'y for which €, takes on some

value A between A & 4 A and thus obtain the probability density

p@ = A) = / AT 8[24(To) — Al f(To. 0). 26)

Recognizing that I’y is merely a dummy variable of integration, the conjugate prob-

ability density is
P = —A) = fdr:a[szt(r;“) + AL, 0). @7)

Using the definition of €, in Equation 23 along with Equation 24 and Equation 11,
we have

p(QT = —A) = exp[—A] /dr() S[Qt(ro) — A)f(r(), 0), (28)
which leads to the Evans-Searles FT:
Q,=A
ﬁ = exp[Al. 29)

Using this, we can average over all values of A to give the second law inequality or
(22,) > 0 (5). In this derivation of the Evans-Searles FT, it was assumed that («) the
dynamics is ergodically consistent with the initial distribution function, () f(T, 0) =
f(T*,0), and (¢) the dynamics are deterministic and microscopically reversible.

For systems of particles, the third condition above implies that the time-dependent
A and F, must have an even time parity 0 < s < z. (If symmetry permits, an odd time
parity is also acceptable.) These are sufficient conditions for the Evans-Searles F'1" to
be valid, but the condition of microscopic reversibility can be relaxed to some degree,
and stochastic versions of the Evans-Searles FT (7, 17) exist.
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Dissipation function for systems initially in a canonical ensemble. Similar to
the work W (T'y, t), we can express the dissipation function in terms of a trajectory
of duration # with an initial coordinate I'y [i.e., Q,(I'g)]. Analogous to W, we restrict
ourselves to trajectories initiated at equilibrium in the canonical ensemble and con-
sider the action of both a time-dependent A-controlled potential where A(s = 0) =
initially and A(s = ) = B finally and a time-dependent dissipative field, F,. For the
definition of the dissipation ﬁmction, Equation 23 becomes

_ ﬁ/ (FO,
() = In fe; = /d A(TY) (30)
= B[H(I?, n = A)— H(Ty, 1 = A)] - B /ods Q). 31)

Noting that the coordinates of the trajectory and antitrajectory, I'; and I'¥, differ only
in the direction of momenta, p, and that H is even in momenta, the left-hand side
can be cast as a time integral over the trajectory

Q) = B fo ds [FUT, 1)) — Q. 5) — (@ 16) + bla. 1 = A)].
so that
Q) = B /0 A [HAEL 06) — bl 2) + bla, & = A)] (32)

=B 0= p [ diar) +dlar = D), 69
or explicitly in terms of the potential and the external field as

A¢(q, A(s))  9p(q, A = A))}
aq aq ’

Q,(Ty)=p /:ds [—J ‘F.V+q ( (G4

3.2. Crooks Fluctuation Theorem for Deterministic Dynamics

We can generate probability distribution functions for W, the work done on the
system, in terms of a A-dependent potential and/or a dissipative field, F,, in the same
way we generate probability distributions in Section 2 for €2,. In contrast to the Evans-
Searles FT, the Crooks FT considers the probability of observing trajectories from
two different equilibrium states. The probability density for a trajectory of duration
t, initiated at equilibrium with 2 = 4, is

prW= A= [Ty 5 V(T 0) = Al fy o= 4), (35)

where W (I'y, t) denotes the work done over a trajectory of duration #, initiated at I'¢;
and f,,(Ty, A = A)is the equilibrium distribution in the canonical ensemble. Now the
reverse trajectory or antitrajectory starts at coordinates I'* and is guaranteed under
deterministic dynamics to give a value of work equal and opposite that of the forward
trajectory (see Figures 2 and 3). In this case, the reverse trajectory must also initiate
under equilibrium conditions, however, with A = B, and the time dependence of

the parameter A and field F, must be reversed. Thus, the probability density for the
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Figure 2

A set of deterministic trajectories generated under the action of an external agent, in which the
agent does work on the system of magnitude W =+ d . The external agent is represented as a
time-dependent A parameter that controls the system’s potential energy and equilibrium state.
The trajectories are initiated under equilibrium conditions under a constant A(s = 0), for
example, equal to A; the shading in the s = 0 phase-space plane represents the equilibrium
distribution, f,,(I', A = A). Here we represent a linearly time-dependent A that varies over the
time interval 0 <5 < #, with W= [j dsAd /9. In this case, A is not applied quasistatically; in
other words, at time 7 when the field has attained its final value of A = B, the system is far
from equilibrium and relaxes over t <s < " toward a new equilibrium state characterized by
» = B. The magnitude of f,,(I", » = B), the equilibrium distribution for A = B, is represented
by the shading in the s = #* plane. The change in free energy brought about by

A = A— & = B is determined by the ratio of the integrals over I of f;; at A = Band A = 4.

time-reverse trajectory is
poW= =2 = [dr: SIVTE 0 + AL (75 = B) (36)

At this point it is useful to note that if the system is driven strongly (i.e., far from
equilibrium), the destination coordinate in the forward trajectory, I';, may not be
significantly weighted in the equilibrium distribution associated with the initial co-
ordinates of the reverse trajectory; in other words,

exp[—BH;—p(I")]

Zg

may be very small. That is, the reverse trajectory can be rare, creating a difficult
challenge in sampling the distribution p,(W = —A) in the Crooks FT, causing the
convergence of the ensemble average in Jarzynski’s equality to become very slow

Jeo(Te 2= B) =

G7)

(18-22). Recasting H;— in terms of the work done on the system, using the first law,

W(* 1) = —W(To, 1) = — /0 tdxﬂﬂd(rf, A(s))

— [Hoea(To) — Hop(TC)] + T /0 AT,
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Figure 3

A set of time-reversed trajectories, conjugate to the trajectory segments in the time interval

0 <s <t in Figure 2. These trajectories are constructed under a time-reverse mapping as
explained in Figure 1, in which the field is also time reversed, A(s =0) = B — A(s =1) = 4.
As these are generated under deterministic dynamics, this bundle of reverse trajectories is
characterized by the same magnitude, but with the opposite sign of as in Figure 2 (i.e.,

—W = W). We note that the initial coordinates of these reverse coordinates are not
significantly weighted in Zp, the partition function of the equilibrium state at A = Bj; in other
words, fo,(T}, 2 = B) is small, and these reverse trajectories, sampled from an initial
equilibrium state, are rare. These reverse trajectories become less rare as the difference in 4
and B becomes small, and A(s) over the interval 0 < s < ¢ is reduced. This provides a practical
challenge when sampling the distribution p, (W = —A) in the Crooks fluctuation theorem
(FT) or ensuring convergence in the average (exp[—B W ]) y in Jarzynksi’s equality. However, it
does not negate the validity of either relation. This same sampling problem can occur with
Evans-Searles FT as well. However, in Evans-Searles FT, the external agents must have even
time parity; it is the fast application of external agents that renders rare trajectories with

Q; < 0 that can be difficult to sample in experiment or simulation.

and noting that 7 is an even function of the momenta, i.e., H; (I'}) = H,(T),

§V(Io)
sV(ry)’

Z
falT = B) = 72 fyTo. b= ) exp [T 1)]

where we use the phase-space compression factor given above. Now § V(I'Y) = s V(I'y),
and the Jacobian is such that

p(W=—A) = g—: fdl“o §[W (T, 1)+ Al exp [BW(TT, )] £,,(To, k= A). (38)

Furthermore, as forward and reverse trajectories have equal but opposite values of
W under time-reversible dynamics, W (I'F, t) = —W (T, t),

2, (W= —A) = exp[B(AF — A)] / ATy 8 W (Do, 1) — A] £,,(To. A = A).
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We can identify the integral on the right-hand side as p (W = A), resulting in the
Crooks FT:
prW=A
pr(W=-A

In the above derivation of the Crooks FT for the deterministic system, it

=exp [B(A - AF)]. (39)

was assumed that (#) the dynamics is such that for any phase point I' for which

f(TC, 2= A)#0, then f(T'F, 2 = B) #0; () f(I,0) = f(I*, 0); and (¢) when the
time evolution of A and F, is reversed, the dynamics remains deterministic and mi-
croscopically time reversible. These are sufficient conditions for the Crooks FT to be
valid, but the condition of reversibility can be relaxed to some degree, and stochastic

versions of this FT exist.

3.3. Steady-State Fluctuation Theorems

Above we focus on FTs that apply to a system driven out of an initial equilibrium
state by an external field, characterized by F,, or a parametric change in the potential
characterized by A # 0. Indeed, the Evans-Searles FT applied to systems driven from
a known initial state over transient trajectories is often referred to as the transient
fluctuation theorem. However, according to the derivations of the Evans-Searles
FT, the initial phase-space distribution is not restricted to time-invariant or even
equilibrium distributions. The only requirement the Evans-Searles FT places on
the initial distribution function is that it is known and expressible in the ostensible
dimension of the equations of motion (this is not the case for the Crooks FT). Here
we consider the FTs applied to trajectories under a steady state (i.e., the system is
acted upon by a purely dissipative, constant external field, F,).

There are two steady-state fluctuation theorems (SSFTs) that appear in the lit-
erature. We can trace both back to the original paper on FTs (23, 24) that focused
on isoenergetic equations of motion, but it is only later that the two separate theo-
rems were distinguished: the steady-state version of the Evans-Searles F'T' (4) and the
Gallavotti-Cohen FT (25).

The Evans-Searles steady-state fluctuation theorem. In itssimplest formulation,

the Evans-Searles SSFT involves a rearranged form of Equation 1 applied in the long

time limit to trajectories of a system wholly in a nonequilibrium steady state (i.e.,

the distribution function is time invariant). A more complete derivation of the SSFT

is available (26); however, here we provide a simpler presentation that is physically

compelling and suitable for those primarily interested in a scientific justification.
The argument of the Evans-Searles FT applied to the steady state is

J(To, 0) '
Q’(Ty) =1n [7 — / ATy)ds, (40)

A WA (FNON 1
where f*(dly, 0)is now the phase-space distribution function associated with a steady
state, rather than with an equilibrium state (as in the Evans-Searles F'T applied to tran-
sient trajectories). However, typically this definition of €7 is difficult to implement.
Steady-state distribution functions for the types of deterministic dynamics under
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consideration are not generally known. What is known is that, in the steady state,
the dynamics approaches a strange attractor that has a different fractal dimension
to the ostensible phase space. Even if we knew the details of this attractor, it would
still be difficult to apply the Evans-Searles FT as it describes bundles of phase-space
trajectories in the phase-space dimension and not in the dimension of the strange
attractor. However, there are special cases in which these steady-state distribution
functions can be expressed simply and exactly under stochastic equations of motion,
and Equation 1 may be applied (27).

In general these steady-state distribution functions are not known, and conse-
quently, it is not possible to construct exact expressions for @) for deterministic
trajectory segments of duration # that are wholly at a nonequilibrium steady state.
However, one can construct an approximate steady-state dissipation function from
trajectories initiated at a known equilibrium, in the absence of the dissipative field, F,.
[This distribution function is often referred to as the Kawasaki distribution function
(13) and can be considered to form the basis of the formal proof (26).] At time ¢ = 0,
the dissipative field is introduced, and we express €2, in terms of its instantaneous rate
of change, Q(s), at time s

Q= /OZZ’XQ(S) + /I;LvQ(s). (41)

Here, 7 is some arbitrary long time (e.g., several Maxwell times), so that the fluid
has completely relaxed into a steady state. Thus €2, is cast as a sum of transient and
steady-state contributions with the steady-state contribution, identified as the steady-
state dissipation function, 27, used to approximate €2, with an error or order O(r). It
is instructive to express these dissipation functions as time averages, Q, = Q,/, such
that

A G+ O (;) 42)

We make the physically compelling argument that, in the long time limit, the distri-
bution function for steady-state trajectories asymptotically converges to that for the
full transient trajectories:

lim p™ () = p(Q). (43)

t—00
Finally, the fluctuations in Q¢ vanish in the long time limit, and for the SSFT to
be of any importance, it is necessary that these fluctuations vanish more slowly than
O(z/1), the error in the ¥ approximation, as detailed in Reference 27. Consequently,
we can approximate €, in the FT (Equation 1) with the steady-state dissipation
function Q7, leading to the SSFT or

hmllnMZ

L N—y A. (44)

Gallavotti-Cohen fluctuation theorem. We can write the fluctuation relation of
the Gallavotti-Cohen FT as
lim lln —p(_At =4 =

- A, 45
tmeot p(=Ar=—A) ®
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where the time-average phase-space compression factor (or the divergence of the
flow), measured in the steady state, is given as

- 1 [
A, = - / ds A(s).
t Jo

This F'T" (23) was originally proposed for the special case of isoenergetic dynamics, for
which Q") = —A(I"). However, subsequently, Gallavotti & Cohen’s (25, 28) work
strongly suggests that under appropriate conditions, Equation 45 [with a restriction
on the values of A (29)°] can be applied to a larger class of dynamical systems (e.g.,
constant temperature systems). They arrived at Equation 45 through a formal deriva-
tion (25, 28) that drew upon the Sinai-Ruelle-Bowen measure (for a discussion, see
31), which requires the dynamics to be an Anosov diffeomorphism (32). (An axiom
A diffeomorphism also suffices for the Gallavotti-Cohen FT.) In general, the equa-
tions of motion (Equation 10) do not form an Anosov diffeomorphism. To address
this, Gallavotti & Cohen introduced a new hypothesis, termed the chaotic hypoth-
esis (33),'° which, for the purposes of the Gallavotti-Cohen FT, allows many-body
dynamics to be treated as an Anosov diffeomorphism. Unfortunately, as yet, there
is no way to independently ascertain if a physical system may be treated as Anosov
diffeomorphic. The requirements for the valid application of the Gallavotti-Cohen
FT to physical systems are therefore extremely difficult to establish.

A necessary but insufficient condition for Anosov diffeomorphism is that the dy-
namical system must be hyperbolic (31). This means that the number of expanding
and contracting directions on the attractive set must be equal, or in other words, the
number of positive and negative finite-time Lyapunov exponents must be equal and
no zero exponents are allowed.

There isalarge body of computer simulation results, for various processes, that has
tested the SSFTs (e.g., 17, 23, 24, 34-46). (There are results in the literature that test
the Evans-Searles F'T while erroneously claiming to test the Gallavotti-Cohen FT.)
We know of no case for which the Gallavotti-Cohen FT converges faster than the
Evans-Searles FT. For temperature-regulated dynamics, when the dissipative field
strength is very small, the Gallavotti-Cohen FT can take extremely long times to
converge. Indeed as the dissipative field strength approaches zero, the amount of
time it takes the Gallavotti-Cohen FT to converge diverges (30, 47). To understand
this, we consider the arguments of the Evans-Searles F'T and the Gallavotti-Cohen
FT. When the field strength approaches zero, so does the instantaneous dissipation
function. More precisely, the average value of the instantaneous dissipation function,
to leading order, is Q(I") = 0 + O(F?), and the standard deviation is 0 = 0 + O(F,).
For the phase-space compression factor, the meanis A = 0+ O(F?) and the standard
deviation is o = oy + O(F?), where o is the amplitude of the standard deviation at

9Equation 45 is restricted to values of A bounded by a value A*: A € (=A%, A*). In the small field limit, this
value is given to leading order as A* = 0 + O(F?) (30).

YQuoting from Reference 33, “Chaotic hypothesis: for the purpose of studying macroscopic properties, the
time evolution map S of a many-particle system can be regarded as a mixing Anosov map.” In References 25
p y-P Y g g P

and 28, the term “transitive Anosov map” was used to mean “mixing Anosov map.”
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equilibrium. The difference between the behavior in the amplitude of the fluctuations,
o, for these two quantities is crucial. As F, approaches zero, so too does the amplitude
of the fluctuations in € but not those in A. Now the form of the fluctuation formulae
is asymmetric. In the limit , — 0, Equation 44 (the SSFT) remains consistent with
a given trajectory segment being equally likely to occur as its antitrajectory segment.
Thisis a necessary condition for equilibrium. In contrast, Equation 45 (the Gallavotti-
Cohen FT) is not consistent with this, owing to the fluctuations in A remaining finite
when F, — 0. One resolution is for the time averaging, or the time for which the
Gallavotti-Cohen FT is given to converge, to be so long that there are no significant
fluctuations remaining. However, theory (30) specifies that the largest fluctuations for
which the Gallavotti-Cohen FT may be validly applied vanish in the small field limit.

3.4. The Einstein Relation and Green Kubo Theory

Above we review the Evans-Searles F'T as well as the Crooks FT as recent theorems
in nonequilibrium statistical mechanics. Here, we show that the F'T5, and in particular
the Evans-Searles F'T; are consistent with the long-standing and well-known relations
in the field, namely the Einstein-Sutherland relation (48-50) and the Green-Kubo
relations. The Einstein-Sutherland relation dates back to the early days of nonequi-
librium statistical mechanics; we can write it as

(v}, = BDF.. (46)

This important relation describes the average steady-state velocity of a particle,
(v)F,, under an applied field, F,, to the variance in the particle’s displacement over
time in the absence of the field, which is commonly referred to as the diffusion
constant, D = lim,_, o, (Ax(t)?)o/(2t), where Ax(t) = fot dsx(s). Starting from the
Evans-Searles FT, we reformulate a generalized form of this Einstein-Sutherland
relation, and, from that, the Green-Kubo relations. Although this does not produce
new results, it demonstrates the FT$’ consistency with important existing theorems
in nonequilibrium statistical mechanics, and it also emphasizes and clarifies the
conditions necessary for the application of these theories, as we show below, in the
case of supercooled liquids.

To derive the more generalized version of the Einstein-Sutherland relation
(Equation 46) from the FT, we identify the product of the particles’ drift velocity
and the applied field, —F, - v(z), as a specific example of a dissipative field flux, which
we represent by JI7 - F,, which, in the case of the flux and constant field being in the
same direction, we write more simply as JI'F,. Under steady state, the time-averaged
dissipative flux is defined as

_ 1 T+t
J, = ;/ ds J(s), 47)
where 7 is a time long enough after the application of the field so that the system is
at a steady state. The SSFT (Equation 44) may then be written as
1 PJ,=A
n—t=vY

= = —BVF,A. 48
t—oo P(JtZ_A) :3 A ( )
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In the limit of long time, we may invoke the central limit theorem, which states that
close to the mean, the distribution of J; is Gaussian. Additionally, in the limit of small
field strength, values of J; close to the mean dominate:

_ ENTATR::
P(J,=A) = G\}Eexp<('/4 Z;Z)Fﬂ) ) (49)

Now as the variance in the distribution of J, is independent of the field direction or

sign of F,, then, to leading order in F,, the variance behaves as

of =0y +O(F}) =(J}), + O(F}). (50)
The SSFT (Equation 48), the central limit theorem (Equation 49), and Equation 50
combine to give a generalized Einstein-Sutherland relation:

(J)p, = lim —%,BVFe ()t +O(F)). (51)

1—>00

The Einstein-Sutherland relation is only valid to linear order in the field, F,.
However, the FT provides more detailed understanding of how this relation fails
under large fields. When the field is increased, the mean dissipative flux, (J,), also
increases (Figure 4). When the mean is large relative to the standard deviation, then
for every typical value of the flux J, = A, its conjugate value J, = —A in the SSFT
is represented in the wings of the distribution in which the central limit theorem no
longer applies. In this instance, the generalized Einstein-Sutherland relation is invalid,
even if the equilibrium variance (J?)y is replaced with the variance under steady
state, or (J?) . Molecular dynamics simulations of planar shear have shown that the

0.5 T T T T T T
—jt=—(J)/:e —jt= <J)Fe
04} .

0.3F i
20

P(-J)

0.2} -

0.1} -

Figure 4

A typical Gaussian distribution, of unit variance o2 = 1, for the time-averaged flux J, with the
ensemble average (J)p, = —2 denoted by the dashed line. The other dashed line is at

J: = —(J)r, = 2, which is the value the fluctuation theorem compares to the mean. As time
proceeds, in the limit # — oo, the variance decreases like ~1/1z.
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breakdown of the central limit theorem dominates the approximation of ignoring
terms of O(F?) or the variance that describes the distribution near its mean (36). In
the case of a single, tagged particle, interacting with a constant field, and embedded in
a supercooled liquid, the amount of time it takes for the steady-state FT to converge,
as well as the time it takes for the distribution to become Gaussian, increases rapidly
upon approach to the glass transition (51). Moreover, the variance decreases with
time. As this time increases, the variance decreases inversely proportionally. As the
nominal glass transition is approached, the strongest field for which a linear response
may be observed in the steady state vanishes.
"The variance of the flux may be expressed in terms of the integral,

1 t t
(2, = > /O ds /0 du (J(s)J(w)), (52)

2 [ )
== /0 ds (JOJ)o — /0 ds s (J(0)J(s))g - (53)

In the long time limit, the second term on the right-hand side vanishes and

2 t
lim V2, = - / ds (J(0)J(s)), - 54
—00 0

Combing this with the generalized Einstein-Sutherland relation (Equation 51) gives
the celebrated Green-Kubo theory for the steady state:

(/)s, = —BVF, lim / ds {JOME)), - (59
t— 00 0

We can use this to obtain a transport coefficient in terms of equilibrium fluctuations
in the form of an autocorrelation function. One might wonder why the Green-Kubo
theory holds such important status given that the presentation here shows it to be
equivalent to the Einstein-Sutherland relation. In contrast to the Einstein-Sutherland
relation, the Green-Kubo theory is also applicable to time-dependent phenomena. A
time-dependent version of the Green-Kubo theory cannot be obtained from the FT,
which must satisfy definite time parity conditions.

The FT has been used in Couette flow or planar shear (23, 36) employing the
SLLOD equations of motion (13), which, in the absence of a fictitious thermostat
and for the case of constant shear rate y, are equivalent to Newton’s equations of
motion. As we are controlling the shear rate externally, we identify it as the external
field F, = y and the fluxas J = P,,, where P, is the xy element of the pressure tensor.
The dissipative field or entropy production for Couette flow is then

JVF, =yVP,. (56)

The shear viscosity 7 is the rate at which work is being done on the fluid divided by
the product of the volume and the shear rate squared. The Green-Kubo expression
for the viscosity is thus

— R/ 00
n= <y@) = ﬂV/O dt (Py(0)Py(®)), . (7)
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and the Einstein-Sutherland expression is

1 -
n=5pVtlim (P ). (58)
If the system is very viscous, the Green-Kubo expression (Equation 57) requires a long
time to converge, and consequently, the generalized Einstein-Sutherland expression
(Equation 58) is probably the better method to extract the viscosity in such a situation
(52). In contrast, if we wish to calculate the self-diffusion coefficient for a very viscous
system, the Einstein-Sutherland expression for the diffusion, (Ax(¢)*)¢/(2t), can be
very slow to converge, whereas the Green-Kubo expression, D = fooo ds (v(0)v(s))o,
usually converges quite rapidly (53).

4. APPLICATIONS OF FLUCTUATION THEOREMS
TO EXPERIMENTAL AND MODEL SYSTEMS

Theoreticians and mathematicians interested in nonequilibrium statistical mechanics
accomplished much of the work done in developing and extending the FTs. Un-
til 2002, demonstrations of the theorems were limited to computer simulations,
and there were no practical experimental demonstrations of the theorems, despite
the range of interests in nano/micromachines or molecular devices that impose
nanometer-scale displacements with pico-Newton scale forces. Such small machines
include single biomolecules that act as molecular motors and whose experimental
observation highlights the nonequilibrium phenomena described by the FTs. Linear
motors, such as the actin-myosin or the kinesin-microtubule motor, are fueled by pro-
ton currents or AT'P hydrolysis and function as integral parts of cellular metabolism,
and consequently, they work under inherently nonequilibrium conditions (54). Over
time, on average, these molecular engines must not violate the second law; however,
occasionally they run backwards, converting heat from the surroundings to generate
useful mechanical/chemical energy. This work, done on molecular time and length
scales, has a natural variation or spread of values that is governed by the FTs.

In 2002, two independent groups experimentally demonstrated the FIs, each with
a unique focus and both using optical tweezers. Wang et al. (55) demonstrated the
Evans-Searles FT by monitoring the transient trajectory of a single colloidal bead in
a translating optical trap. Simultaneously, Liphardt et al. (56) used optical tweezers to
pull the ends of a DNA-RNA hybrid chain, measuring the work required to unravel
or unfold a specific domain in the chain. These experiments had complementary aims:
The colloidal experiment was a classical model system constructed to clearly demon-
strate, as rigorously as possible in experiment, the Evans-Searles FT. In contrast,
Liphardt’s RNA-unfolding experiment importantly demonstrated the application of
the Crooks FT" to a complex biomolecular system, highlighting the potential practical
use of FI5 to a wider range of scientists. In this section, we review both experiments
in some detail before more briefly mentioning other more recent experimental appli-
cations of the FTs, as well as other proposed experimental systems and implications.

Optical tweezers, or an optical trap, are formed when a transparent, micron-sized
particle (whose index of refraction is greater than that of the surrounding medium)

www.annualreviews.org o Fluctuation Theorems

623



Annu. Rev. Phys. Chem. 2008.59:603-633. Downloaded from arjournals.annualreviews.org

by Universita degli Studi di Roma La Sapienza on 10/30/08. For personal use only.

624

is located within a focused laser beam. The refracted rays differ in intensity over the
volume of the sphere and exert a subpico-Newton force on the particle, drawing it
toward the region of highest intensity, the focal point or trap center. The optical trap
is harmonic; a particle located a distance r from the center of the trap has an optical
force, f,,, = —kr, acting to restore its position to the trap center. k is the trapping
constant, which is determined by the distribution of particle positions at equilibrium
and is tuned by adjusting the intensity of the laser. Using an objective lens of high
numerical aperture, the optical trapping is strongest in the direction perpendicular to
the focal plane, such that the particle remains localized entirely within the focal plane,
fluctuating about the focal point. As the particle position r is measured at kilohertz
frequency (over timescales significantly large that inertia of the colloidal particle is
negligible), the measured optical force, f,,,, balances any applied forces, either forces
arising from the surrounding solvent, such as Brownian or drag forces, or the tension
associated with a tethered chain molecule such as DNA or RNA.

4.1. Single Colloidal Particle in an Optical Trap

Wang et al. (55) carried out the first experiment demonstrating the F'Ts. They mon-
itored the trajectory of a single colloidal particle, weakly held in a stationary optical
trap that was translated uniformly with constant, vanishingly small velocity v, start-
ing at time s = 0. Initially, the particle’s position in the trap is distributed according
to an equilibrium distribution with an average particle velocity of 0. With trap trans-
lation, the particle is displaced from its equilibrium position until, at some time later,
the average velocity of the particle is equal to the velocity of the trap. From this point,
the system is in a nonequilibrium steady state. The external agent is purely dissipative
(.e,A=0andF, ~ Vope), s0 the dissipation function is

Q, = —/3/ dsJV - F, = ,B/ ds £,pr - Vopr. (59)
0 0

With the ability to resolve nanometer-scale particle displacements and femto-Newton
scale optical forces, they determined €2(s) with sub-kz T resolution. As there is no
change in the underlying state of the system, and the field has even time parity, the
Evans-Searles F'T and Crooks FT reduce to the same expression as 2, = W. We
expect, from the second law, that work is done to translate the particle-filled optical
trap, or W > 0, but according to the FTs, there should also be a nonvanishing
probability of observing short trajectories where I < 0; that is, thermal fluctuations
provide the work. Indeed, Wang et al. (55) showed that trajectories with W= Q, < 0
persisted for 2-3 s, far longer than had been demonstrated by simulation. However,
in this initial experiment, there was an insufficient number of trajectories to properly
sample the distribution, p(€2,), and the authors instead tested a coarse-grained form
of the FT, the integrated Evans-Searles FT:

(2 <0) _

m = (CXP[—QJ)Q,>0, (60)
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where the brackets on the right-hand side denote an average over that part of the dis-
tribution for which Q, > 0. Later, Wang et al. (27) revised this experiment and
sampled a larger number of trajectories, enabling a direct demonstration of the
Evans-Searles FI. Moreover, they also translated the particle-filled optical trap in
a circular or race-course pattern, producing one long single trajectory, which, out-
side the initial short time interval, was at steady state. Using contiguous segments of
this single steady-state trajectory, they demonstrated the steady-state version of the
Evans-Searles FT (27).

A particle in an optical trap was also used to demonstrate the distinction between
the Evans-Searles FT and Crooks FT in the so-called capture experiment (57, 58).
For this experiment, a particle is equilibrated in a stationary trap of strength k. At
time s = 0, the optical strength is increased discontinuously from & to ky, k; > k¢, so
the particle is more tightly confined or captured. Alternatively, the trap strength can
be decreased from k; to ko, to release the particle. The external parameter, A, is the
time-dependent trap strength, k(s), which varies discontinuously, A(s) = (k; —ko)3(s),
and in the absence of a purely dissipative field, or F, = 0. The particle’s position is
recorded as it relaxes to its new equilibrium distribution, and # and €, are evaluated
over an ensemble of nonequilibrium trajectories. Work is the change in the internal
energy that occurs with the change in the trapping constant:

t
. do,,
W:fm L 1/2(ky — ko)t
0 dx

As all trajectories must initiate under equilibrium conditions under &, the probability
distribution W is then

[k koW
pkO‘)kl(W) - T[(kl _ kO)W eXp[ kl _ko] N

The ensemble average, (exp[—BW]), confirms Jarzynski’s equality, or (exp[—BW]) =

exp[—BAF], where AF = kpTIn[/k;/ko] from classical thermodynamics. Further-
more, if we consider the probability distribution of W for both the forward or capture
direction and the reverse or release direction (i.e., W}, _,), then it is straightforward
to show that the Crooks FT is obeyed. We note that in the context of the capture
experiment, the Crooks FT depends only on the equilibrium distribution of initial

particle positions: These equilibrium distributions are independent of the viscoelastic
response of the suspending fluid, for example. In contrast, the dissipation function, €2,,
depends sensitively on the nonequilibrium trajectory and on the material properties
of the surrounding fluid (59). The dissipation function for capture is

Q _ ,3/ |:d¢ext()\ - k()) d‘pex;(:“'(s))jl — ﬂ(koz ) ( ’ r(z))

If we consider a cyclic protocol in which the A parameter had even time parity—i.e.,
A(s) = (k1 — ko)[8(s) — 8(t — 5)], that is, we would capture at s = 0 and release at
s = t—then Q, = W4, + Wi, 4, and the Evans-Searles and Crooks FTs would
again reduce to the same expression.
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These experiments were simple, but important demonstrations of the FTs. They
also demonstrate FTs derived under stochastic equations of motion, a topic not cov-
ered in this review. The motion of a single colloidal particle in a purely viscous solvent
isaccurately described by a stochastic Langevin equation; the Evans-Searles FT can be
constructed from the stochastic, inertialess Langevin equation of motion, in much the
same manner as was done for deterministic dynamics (27). This is important evidence
against the notion that macroscopic irreversibility results from coarse graining or the
separation of timescales of the system’s degrees of freedom: For the optically trapped
particles, both Langevin equations of motion as well as fictitious thermostatted
deterministic equations (molecular dynamics) show a monotonic decrease in €2, with
time, #. Conversely, if a system’s dynamics are well described by stochastic Langevin
dynamics, with uncorrelated Gaussian noise, then we are assured that the FTs hold.
Indeed, several simple model experiments, including optically trapped colloidal par-
ticles in purely viscous media, can be described using stochastic Langevin dynamics,
and consequently one could argue that these experiments confirm the Langevin
dynamics rather than the FTs. However more recently, Carberry et al. (59) confirmed
the FT using an optically trapped bead in a viscoelastic solvent, in which the stochastic
equations of motion require a dissipative term with memory, from which the FTs have
yet to be directly derived. This experimental confirmation is indeed a confirmation
of the FT5, rather than a confirmation of the dynamics that satisty the FTs.

4.2. Stretching of Biopolymers

In 2002 Liphardt et al. (56) measured the tension-induced, unfolding transition of
a P5abs domain in a single RNA molecule. To do this, they tethered the ends of a
single DNA-RNA hybrid molecule containing the PSabc domain to micron-sized
colloidal beads whose surfaces were chemically functionalized. These beads act as
handles to grab and manipulate the single molecule in an optical trap. One bead is
weakly held in an optical trap while the other bead is held in a micropipette whose po-
sition/translational speed is controlled by a piezoelectric actuator. As the micropipette
is translated relative to the optical trap, the chain is stretched and the stretching force
is measured. In this way, Liphardt etal. constructed force-extension profiles of a single
biomolecule, focusing specifically on a window of extensions over which the P5abs
domain unfolded. Over a ~30-um extension range, they found that typically the force
increased monotonically against the entropic elasticity of the chain, but at ~10 pN,
the force was either constant or decreased slightly for a further ~10 pm indicative of
unfolding of the domain, before increasing monotonically again. The time-reverse
path corresponds to retraction of the chain ends, creating a force-extension profile
for the refolding of the domain. When the chain was unfolded slowly (corresponding
to small 1), the folding-unfolding process was reversible; in other words, the work
done (force integrated over extension) of the forward (unfolding) and reverse (re-
folding) paths was roughly equal but of opposite sign. When the chain was unfolded
quickly, a hysteresis loop appeared in the forward-reverse force profile, and the W/
to fold and unfold differed in magnitude owing to macroscopic irreversibility. The-
oretically, the distributions p (/W) and p, (W) at any given protocol or stretching
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rate, A, should obey the Crooks FT: However, variation in 1 owing to experimen-
tal error or approximations in analysis clearly must be minimal in comparison to
the inherent variation in W that arises from the irreversibility of the process. Fur-
thermore, it is important to sample a sufficient number of trajectories, N: As the
protocol rate, A, increases and the process is driven further away from a quasistatic
process, the required number N grows as rare trajectories in the distribution become
important (Figure 3). Successive single-molecule manipulations in an optical trap
can be difficult, limiting the maximum possible number of trajectories. However,
Liphardt et al. (56) constructed N = O(300) stretching profiles, unfortunately an
insufficient number to describe the distributions, but fortunately sufficient to show
that AF obtained from Jarzynski’s equality could be determined to within k37" In
later work from the same group, Collin et al. (60) similarly used optical tweezers to
construct experimental work distributions and demonstrate the Crooks FT for the
folding/unfolding of an RNA hairpin and an RNA three-helix junction. These results
demonstrate that nonequilibrium single-molecule measurements, when analyzed in
conjunction with the FTs, can provide thermodynamic information, even though
these single-molecule events may not be at equilibrium. More importantly, these pa-
pers introduced the proper analysis/interpretation of force measurements necessary
in single-molecule force spectroscopy.

4.3. Other Model Systems

Several other more recent experimental demonstrations of the F'Ts have appeared
in the literature in the past couple of years. Garnier & Ciliberto (61) demonstrated
the FTs by measuring the fluctuating voltage of a resistor in parallel with a capacitor,
driven out of equilibrium by a constant current flow; Schuler et al. (62) excited a single
defect center in a diamond using an intensity-modulated laser, forming a two-state
system; and Douarche et al. (63, 64) experimentally checked Jarzynski’s equality and
the Crooks FT against the thermal fluctuations of a mechanical oscillator in contact
with a heat reservoir. Applications of FTs to model systems need not be experimen-
tal. To date FIs have been used in theoretical descriptions/computer simulations
of sheared liquids, (23), chemical reactions (42, 65-70), molecular motors (71, 72),
granular systems (73, 74), and glasses (51, 75).

Finally, through applications to time-dependent shear of viscoelastic fluids, FTs
have been used to resolve a long-standing problem in linear irreversible thermody-
namics (76). The reference of JV'F, to the entropy production is taken from linear
irreversible thermodynamics, which asserts that, in local equilibrium, the entropy
source strength is the sum of products of irreversible thermodynamic fluxes and
forces (1, 2). By the second law, we then expect that (J) F, is always negative. How-
ever for time-dependent processes in viscoelastic fluids, this is not always the case. In
the steady state, the free energy F, the mean internal energy U, the temperature 7,
and the entropy S are all constant. In local equilibrium, at which the entropy trans-
ported to the reservoir is given by S,. = Q/ T, we have F = —JVF, + Q — TS = 0.
This leads us directly to the conclusion that JV'F, = — TS}I,, where S}p =8-S, is the
rate at which entropy is being spontaneously produced, owing to the external field
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F,. If we are not in the steady state or are not in local equilibrium, we cannot show
that JI'F, = —TS.p. Indeed for time-dependent processes in viscoelastic fluids, (J) F,
may be positive for periods of time. For a system initially in equilibrium, subject to
a purely dissipative process (i.e., A = 0V¥¢), the time-averaged value of the entropy
production, rather than the more traditional instantaneous entropy production, can
be shown from Jarzynski’s equality to form the inequality that specifies the time di-
rection. This was demonstrated in simulations of time-dependent planar shear of
viscoelastic fluids (76) in which the instantaneous value of (J) F, was indeed negative
for periods. Furthermore, this inequality is valid for time-dependent processes that
may be arbitrarily far from equilibrium.

5. CONCLUSIONS

This brief review focuses on two new and fundamental relations in the field of
nonequilibrium statistical mechanics: the Evans-Searles F'T and Crooks F'T. We pro-
vide here a unifying description of these F'Ts under deterministic dynamics and show
that these provide a quantitative resolution of Loschmidt’s paradox and new insight
into the treatment of experimental trajectories of systems that are small, outside the
thermodynamic limit, and evolve under nonequilibrium conditions. Recent experi-
mental systems have demonstrated the use of these FTs, providing confirmation in
a simple colloid system and showing potential practical use in single-molecule force
spectroscopy. Among many challenges that remain, foremost is the application of
the FTs in the development of nanotechnology and our understanding of biological
systems.

SUMMARY POINTS

1. The Evans-Searles FT is a quantitative description of the emergence of
thermodynamic irreversibility from time-reversible equations of motion.
The theorem can be understood as a generalized second law that applies
outside the thermodynamic limit, that is, where the system is small and
observation time short.

2. From classical thermodynamics, the work done on a system over a quasi-
static trajectory is equal to the equilibrium free-energy change. Crooks F'T
is an important extension of this to nonequilibrium thermodynamics. It
relates the distribution of work, evaluated over ensembles of nonequilibrium
trajectories, to an equilibrium free-energy change.

3. A simplified derivation of FTs starts from the system’s equations of motion,
which can include thermostat or heat exchange with a surrounding, and a
definition of macroscopic reversibility.

4. Recentexperiments that, for example, measure the work required to displace
a colloidal bead or stretch a biopolymer have demonstrated applications of
FTs to small systems under nonequilibrium conditions.
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FUTURE ISSUES

1. Although recent interest has been focused on experimental demonstra-
tions of F'Is, FTs should be useful in gaining an improved understanding
of molecular-scale processes, particularly in the biomolecular sciences and
nanotechnology fields.

2. As small systems and their processes deviate further from equilibrium, the
energy distributions described by FTs become broad and difficult to sample
in experiment or simulation. New techniques, such as importance sampling
in simulation or repetitive experimental sampling, will be required to fully
elucidate these distributions for small systems driven far from equilibrium.
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