

"Campagna di promozione del solare termico e del risparmio energetico nell'edilizia pubblica"

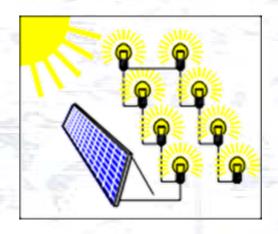
Seminario per tecnici comunali

Verona 19 aprile 2007

Il fotovoltaico nelle scuole e negli edifici pubblici

FOTOVOLTAICC

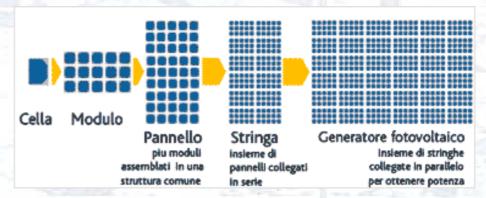
Il fotovoltaico nelle scuole e negli edifici pubblici


La tecnologia

La tecnologia

Il generatore fotovoltaico produce energia elettrica in corrente continua che poi, trasformata in corrente alternata attraverso un inverter, può essere immessa nella rete elettrica del distributore nazionale e/o locale.

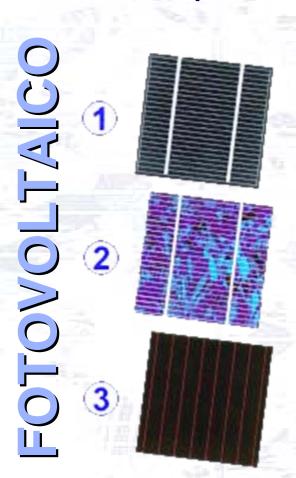
E' possibile in questo modo sia usufruire direttamente dell'energia elettrica prodotta sia utilizzare quella prodotta in eccesso vendendola alla rete.



La tecnologia

Il generatore fotovoltaico

- La componente di base capace di operare la conversione elettrica è la cella fotovoltaica.
- Più celle fotovoltaiche connesse in serie tra loro formano un modulo fotovoltaico (in genere da 36 ma ormai se ne trovano anche da 72)
- Più moduli collegati in serie tra loro formano una stringa.
- Più stringhe collegate in serie tra loro formano un GENERATORE FOTOVOLTAICO.



La tecnologia

I vari tipi di celle solari

Celle monocristalline (1):

Prodotte tagliando una barra monocristallina

- Alto rendimento (fino al 16%)
- Molto costoso

Celle policristalline (2):

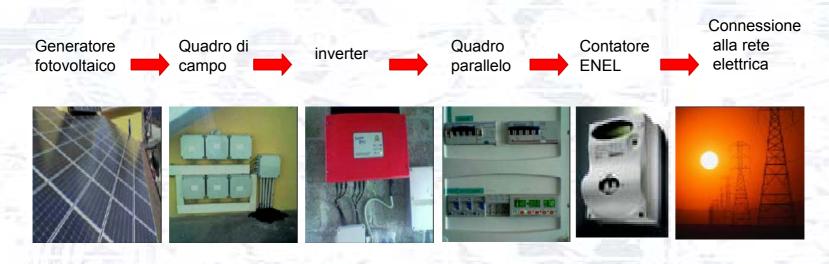
Vengono colate in blocchi e poi tagliate a dischetti

- Rendimento minore (10-12%)
- Più economico

Celle amorfe (3):

Prodotte mediante spruzzamento catodico di atomi di silicio su una piastra di vetro.

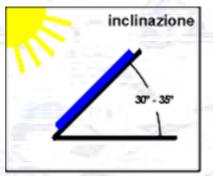
- Rendimento basso (ca. 4-8%)
- Molto economico
- Si adatta anche al caso di radiazione diffusa
- Realizzabili in qualsiasi forma geometrica e su supporti flessibili

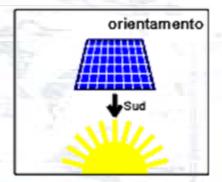

OTOVOLTAICC

La tecnologia

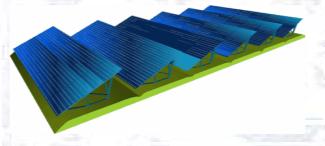
Gli elementi essenziali per realizzare un impianto

- 1. Il generatore fotovoltaico e la struttura di sostegno
- 2. Impianto elettrico: i quadri di campo, gli inverter e il quadro parallelo


OTOVOLTAIC



Aspetti progettuali


Requisiti fondamentali

→ I moduli devono essere orientati preferibilmente a sud con inclinazione dai 25° ai 35° rispetto al piano orizzontale (per le zone dell'Italia centromeridionale);

→ In nessun caso ombreggiati in nessun periodo dell'anno, da altri moduli o da corpi esterni;

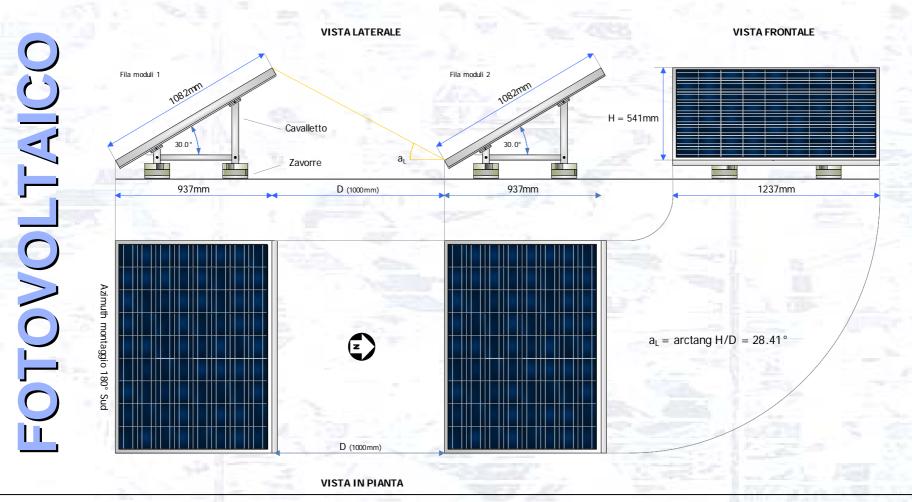
Aspetti progettuali

Tipologie di impianti

I moduli devo avere un'adeguata ventilazione per evitarne il surriscaldamento, che ne determina un calo di produttività; il problema esiste se i moduli sono adagiati all'involucro dell'edificio (esempio 1);

Moduli adagiati sull'involucro (tetto o facciata dell'edificio)

Moduli fissati su una apposita struttura di sostegno a sua volta fissata al suolo



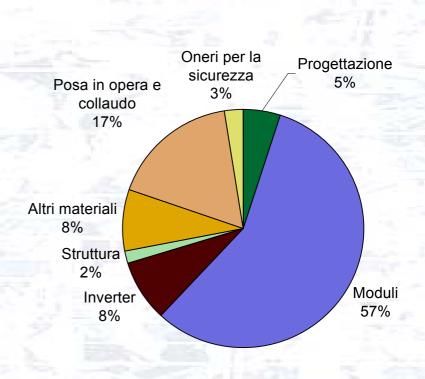
Aspetti progettuali

Progettazione e assemblaggio dei moduli fv

Aspetti progettuali

Integrazione architettonica

Nel progettare l'impianto si deve tenere conto dell'aspetto dell'integrazione architettonica: preferibilmente i moduli dovrebbero andare a sostituire parti dell'edificio: frangisole, rivestimenti di facciata, manto di copertura, tettoie, ecc.


OTOVOLTAICC

Aspetti progettuali

Distribuzione dei costi dei componenti dell'impianto:

- Il costo annuo di manutenzione è abbastanza contenuto: circa l'1% del costo d'impianto;
- Dal diagramma a fianco si evince che la fornitura dell'impianto pesa il 75%, l'installazione il 20%, la progettazione il 5%.

^{*} Esempio valido per un impianto di taglia pari a 18-20 kWp. ** Fonte GSE

Impatto ambientale

Emissioni di CO2 evitate e risparmio di combustibili fossili

Considerando che:

- 1 KWp FV produce circa 1500 KWh/anno (centro-sud Italia);
- Vita media dell'impianto: 20 anni;
- Un impianto da 1 KW produce quindi nell'arco della propria vita 1.500 x 20 = 30.000 KWh;
- per produrre1 KWh elettrico si immettono in atmosfera 0,53 Kg di CO2
- per produrre1 KWh elettrico occorre bruciare circa 0,25 kg di combustibile fossile;

Producibilità dell'impianto:

1 kWp (8 mq di moduli) produce:

Nel Nord Italia 1.000 -1.100 kWh/a

Nel Centro Italia 1.100 -1.300 kWh/a

Nel Sud Italia 1.300 -1.600 kWh/a

UN IMPIANTO FV DI 1 KWp RISPARMIA NELLA SUA VITA L'IMMISSIONE IN ATMOSFERA DI:

 $30.000 \times 0,53 = 15 \text{ Tonn. di CO}_2$

E LA COMBUSTIONE DI:

 $30.000 \times 0.25 = 7$ Tonn. di combustibile fossile

Ing. Mario Gamberale

Alcune realizzazioni su scuole ed altri edifici pubblici

Potenza impianto: 3 KWp Anno di installazione: 2002

Località: Forlì

Tipologia: connesso alla rete

Edificio: Scuola media "P. Zangheri"

Caratteristiche: Installazione retrofit su tetto inclinato con copertura in tegole marsigliesi.

Potenza impianto: 20 KWp Anno di installazione: 2002 Località: Capannori (Lucca) Tipologia: connesso alla rete

Edificio: Liceo Scientifico "Majorana"

Caratteristiche: Installazione su tetto piano

con strutture zavorrate

DIOVOLTAICC

Alcune realizzazioni su scuole ed altri edifici pubblici

Potenza impianto: 3 KWp Anno di installazione: 2002

Località: Forlì

Tipologia: connesso alla rete

Edificio: Capannone - "U.N.I.C.A." S.p.A.

Potenza impianto: 2,1 KWp Anno di installazione: 2004

Località: Napoli

Tipologia: connesso alla rete **Edificio:** Università "Federico II"

Alcune realizzazioni su scuole ed altri edifici pubblici

Potenza impianto: 3 kWp Anno di installazione: 2007

Località: CASTELLETTO D'ERRO (AL)

Caratteristiche tecniche:
18 moduli SHARP da 167 Wp
1 inverter Fronius IG30
Emissioni di CO2 evitate:

pari a circa 1,66 t all'anno

Potenza impianto: 1.85 kWp Anno di installazione: 2005 Località: PARMA (PR)

Caratteristiche tecniche: 10 moduli SHARP da 185 Wp 1 inverter Fronius IG 20 Emissioni di CO2 evitate: pari a circa 1,10 t all'anno

=OTOVOLTAICC

Alcune realizzazioni su scuole ed altri edifici pubblici

Potenza impianto: 2.22 kWp Anno di installazione: 2006 Località: MOZZO(BG)

Caratteristiche tecniche:
12 moduli SHARP da 185 Wp
1 inverter Fronius IG 20
Emissioni di CO2 evitate:

pari a circa 1,23 t all'anno

Potenza impianto: 2.1 kWp Anno di installazione: 2006

Località: IVREA (TO)

Caratteristiche tecniche:
12 moduli SHARP da 175 Wp
1 inverter Power One PVI-2000-OUTD-IT
Emissioni di CO2 evitate:

pari a circa 1,16 t all'anno

Alcune realizzazioni su scuole ed altri edifici pubblici

Potenza impianto: 29.52 kWp Anno di installazione: 2007 Località: CESENA (FC)

Caratteristiche tecniche:

164 moduli SHARP da 180 Wp

5 inverter ElettronicaSanterno Sunway M XR

6400

Emissioni di CO2 evitate: pari a circa 17,61 t all'anno

Potenza impianto: 2.45 kWp Anno di installazione: 2007 Località: CERRO MAGGIORE (MI)

Caratteristiche tecniche:

14 moduli SHARP da 175 Wp 1 inverter Fronius IG30 Emissioni di CO2 evitate:

pari a circa 1,36 t all'anno

FOTOVOLTAICO

La normativa

La normativa

Digs 311/06 (Allegato I, punto 12 e 13)

Per tutte le categorie di edifici, pubblici e privati, è obbligatorio l'utilizzo di fonti rinnovabili per la produzione di energia termica ed elettrica.

In particolare, nel caso di:

- 1. Edifici di nuova costruzione;
- 2. Ristrutturazione integrale degli elementi edilizi costituenti l'involucro di edifici esistenti di superficie utile superiore a 1000 metri quadrati;
- 3. Demolizione e ricostruzione in manutenzione straordinaria di edifici esistenti di superficie utile superiore a 1000 metri quadrati;
- è obbligatoria l'installazione di impianti fotovoltaici per la produzione di energia elettrica

La normativa

Finanziaria 2007 (Legge 296 del 27.12.06)

- 1. Il comma n° 350 della finanziaria prescrive per i nuovi edifici l'installazione di un impianto fotovoltaico di potenza minima pari almeno 200 W, per unità immobiliare;
- 2. Tuttavia subordina l'obbligatorietà alla modifica dei Regolamenti Edilizi, i quali dovranno indicare una potenza minima obbligatoria per tali impianti (non inferiore ai 200 W);
- 3. Non prevede nessun termine quindi nessuna sanzione per tale modifica ai Regolamenti Edilizi;

Comma 350: Impianti fotovoltaici nuovi edifici

Ai fini del rilascio della Concessione edilizia, i regolamenti comunali dovranno richiedere obbligatoriamente l'installazione di impianti fotovoltaici negli edifici di nuova costruzione, che garantiscano una produzione energetica non inferiore a 0,2 kW per ciascuna unità abitativa