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A B S T R A C T

Beginning with Dejerine's report of pure alexia in 1892, numerous researchers have noted that individuals with
acquired impairments of reading may show spared digit identification performance. This digit advantage has
also been found in unimpaired adult readers across a number of tasks, and five main hypotheses have been
proposed to explain how it arises. In this paper I consider these hypotheses in the context of recent theories of a
unified alphanumeric character identification system, and evaluate them according to relevant empirical
evidence. Despite some promising findings, none of the hypotheses currently provide a sufficient explanation of
the digit advantage. Rather than developing new hypotheses to explain a categorical difference between digit
and letter performance, I argue that future work should consider factors that affect identification performance
specific to individual characters.

1. Introduction

Much recent research has focused on the processing of letters and
words, which form a major component of our daily lives. Less work has
considered Arabic digits (0−9), which are also prevalent visual stimuli
that we process with ease. As visual stimuli, digits and letters are fairly
similar in form and consensus is emerging that identification processes
are shared between the two character types (Grainger and Hannagan,
2014; Kinoshita and Lagoutaris, 2010; McCloskey and Schubert,
2014). These theories are backed by a growing body of evidence from
normal and impaired readers supporting the similarity of digit and
letter identification. In the face of these data and corresponding
theories, it has also been noted that digit identification is often more
accurate than letter identification, and many authors have proposed
possible explanations for this phenomenon (Cohen and Dehaene, 1995;
Holender and Peereman, 1987; Ingles and Eskes, 2008; Polk et al.,
2002; Polk and Farah, 1998; Rath et al., 2015; Starrfelt and Behrmann,
2011). However, few of these explanations have been explored or
tested. In this paper I consider hypotheses for the digit identification
advantage, evaluating them with respect to relevant properties of the
characters and within an alphanumeric character identification system.

1.1. Evidence for shared letter/digit processing

Evidence has accumulated over the past few decades for similarities
of performance in letter and digit identification tasks. This evidence has
come not just from unimpaired adult readers but also acquired and

developmental dyslexia. From adult readers, the evidence is largely
from partial report/Reicher-Wheeler tasks in which strings of random
letters, digits, or non-alphanumeric symbols are presented (e.g., Collis
et al., 2013; Hammond and Green, 1982; Tydgat and Grainger, 2009).
After stimulus offset, participants report whether a probe letter was
present, or report the letter in a post-cued position; either version of
the task requires identity and/or position processing for the characters
of the string. A large number of studies have found that performance
(indexed by the shape of the serial position function) is similar for
letter and digit strings (Chanceaux and Grainger, 2012; Collis et al.,
2013; Duñabeitia et al., 2012; García-Orza et al., 2010; Hammond and
Green, 1982; Tydgat and Grainger, 2009), and only one early study
reported a difference between the two character types (Mason, 1982).

Single letter and digit identification in unimpaired adults was
studied by Starrfelt et al. (2010). Adult participants were asked to
name a single briefly presented and masked character (from the digits
0–9 and uppercase letters A-J). The characters were blocked by type
and presented in random order. Performance (as visual processing
speed) was found to be approximately equivalent for digits and letters
(Starrfelt et al., 2010). Other researchers have used priming in the
same/different match task and lexical decision task to demonstrate that
letters and digits activate the same sets of visual features and show
effects of visual similarity across character types, providing further
evidence for shared identification processing (Kinoshita and
Lagoutaris, 2010; Kinoshita et al., 2015; Kinoshita et al., 2013; Perea
et al., 2008).

Similarities between letter and digit identification processing are
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also seen in individuals with dyslexia. There have been three reports of
individuals with acquired dyslexia who have highly similar deficits in
identifying both character types (Katz and Sevush, 1989; McCloskey
and Schubert, 2014; Patterson and Wilson, 1990). The similarities
concern identification error types, serial position functions, as well as
cross-category substitution errors. Furthermore, in a sample of five
individuals with pure alexia studied by Starrfelt and colleagues
(Starrfelt and Behrmann, 2011; Starrfelt et al., 2010, 2009), all showed
impaired performance relative to controls on letter and digit identifica-
tion tasks (four also showed numerically lower performance with
letters than digits). In developmental dyslexia, there has been one
report of a severe letter-identification deficit which also affected digits
(Brunsdon et al., 2006).1 Furthermore, a large group study of children
with developmental dyslexia performing a partial report task also
reported comparable performance for letter and digit stimuli (Ziegler
et al., 2010), as did a study of adults with developmental dyslexia
(Collis et al., 2013).

1.1.1. Shared letter and digit identification theories
The convergence of data from various lines of research onto the

conclusion that letters and digits share an identification system is
highly persuasive, and three research groups have posited theories with
this property. The earliest theory is by Norris, Kinoshita, and collea-
gues (Norris et al., 2010; Norris and Kinoshita, 2012), who describe a
model of letter identification as an instance of general object recogni-
tion. Kinoshita and Lagoutaris (2010) made a more specific claim:
Letter and digit stimuli directly compete, activating both letter and
digit identities due to their shared visual features. No distinction is
drawn between letter and digit identification in this system. The second
theory of a shared alphanumeric identification system, posited by
McCloskey and Schubert (2014), includes a level at which visual
features are represented, a level at which stored visual forms (allo-
graphs) are represented, and finally a level of character identities, with
concurrent access to category information. Though category informa-
tion is available within the system, the authors posit that it does not
affect identity processing. Finally, Grainger and colleagues (Grainger
et al., 2016b; Grainger and Hannagan, 2014) also suggest that letters
and digits are recognized by the same process, contacting position-
dependent character identities (‘alphanumeric detectors’). By contrast
to the other models, Grainger et al. (2016a) posit that letter and digit
processing diverges prior to any position-invariant representations of
character identity. However, the earliest stage of the model makes no
distinction between letter and digit stimuli.

Though the details of these three theories differ, the basic assump-
tion of a shared identification system is present in all of them: Digits
and letters are identified in the same system without distinction based
on the category of the stimulus. One major finding that seems to
challenge shared alphanumeric identification is the alphanumeric
category effect in visual search. This effect refers to searches for a
different-category target (e.g., digit among letters) being more efficient
than searches for a same-category target (e.g., digit among digits) (e.g.,
Egeth et al., 1972; Jonides and Gleitman, 1972; Polk and Farah, 1998;
Taylor, 1978). The alphanumeric category effect has been taken as
evidence for an at least partially segregated character identification
system (Hamilton et al., 2006; Polk and Farah, 1998). However, the
alphanumeric category effect can be accounted for without separate
letter and digit identification by positing that category information is
extracted in parallel with identity information (McCloskey and
Schubert, 2014; Taylor, 1978).

Given the premise of shared identification processing without
regard to category, it would be simplest to assume that digit and letter

identification would be performed with equal accuracy and speed.
However, this is not necessarily the case because identification may
depend on characteristics such as frequency of occurrence, visual
similarity of the stimulus to other characters, and the influences of
downstream processing via feedback. The shared alphanumeric identi-
fication theories have not been implemented to the level of comparing
letter and digit identification accuracy. This is in part due to a lack of
knowledge about the effects of these variables, but also reflects the
difficulty of modelling the full range of human identification perfor-
mance for letters and digits across size, case, font, handwriting style,
and other sources of variability in the input (e.g., Chang et al., 2012;
Finkbeiner and Coltheart, 2009). In fact, empirical evidence suggests
that digits often enjoy a speed or accuracy advantage in identification.

1.2. The digit identification advantage

Though a large body of work, reviewed above, suggests that letter
and digit identification are similar, other findings suggest that digits
may be easier to identify in some contexts. Individuals with dyslexia as
well as unimpaired readers have been found to identify single digits
faster and/or more accurately than single letters in a variety of tasks.

The main body of evidence for the digit identification advantage is
from cases of acquired reading impairment. Possibly the first evidence
was reported in 1892 by Dejerine (as translated and discussed by
Bub et al. (1993)); the individual he described was poor at recognizing
single letters but succeeded at recognizing single digits. A similar
observation is commonly reported in studies of acquired dyslexia,
where letters are often affected more severely than digits (e.g., Cohen
and Dehaene, 1995; Deloche and Seron, 1987; Greenblatt, 1973;
Grossi et al., 1984; Ingles and Eskes, 2008; Larsen et al., 2004;
McCloskey and Schubert, 2014; Perri et al., 1996). In a review of 90
cases of pure alexia, Starrfelt and Behrmann (2011) reported that these
individuals generally have an impairment in both single letter and
single digit processing, though letters tend to be more impaired. They
found no dissociations in which a clear digit identification impairment
was found in the face of intact letter identification. And finally, a recent
paper by Rath and colleagues (Rath et al., 2015) confirms that digit
naming impairment with intact letter naming has not been reported in
the aphasia literature. They also present new evidence that an
advantage for digit processing over letter/word reading was present
in a large unselected sample of individuals with aphasia (Rath et al.,
2015).

According to these studies, and to my knowledge, there have been
no reported individuals with impaired digit identification in the face of
intact letter identification. However, there are a few cases of digit
naming impairment which may be instructive. For example, Cipolotti
(1995) report the case of SF, who was severely impaired in naming
multi-digit numbers, but showed normal reading performance. It is
interesting to note that only a small proportion (14%) of SF's errors in
number naming were classified as lexical errors (e.g., 54 as ‘thirty-
four’); the majority were syntactic errors (e.g., 54 as ‘forty-five’) or
combination errors (e.g., 54 as ‘forty-three’). Lexical errors could arise
due to misidentification of the digits in the stimulus, while syntactic
errors reflect correct identification of the digits but a failure in
constructing the appropriate syntactic frame for the verbal number
response (Dehaene, 1992; McCloskey, 1992). The combination of
intact letter identification (as reading) and a majority of digit errors
which are not based in identification suggests that selective deficits to
digit processing arise after identification, and hence after letter and
digit processing have diverged.

The digit identification advantage has also been found in adults
without reading impairment, typically as a speed advantage. Ingles and
Eskes (2008) compared letter and digit identification performance of
one individual with acquired dyslexia to five control participants with
brain damage but unimpaired reading. All of these participants
completed an attentional blink task requiring identification of two

1 Though developmental dyslexia and developmental dyscalculia have been found to
dissociate (Butterworth, 2005; Landerl et al., 2009), neither generally entails a deficit in
letter or digit identification, except in particular cases discussed here (e.g., Brunsdon
et al. (2006) and possibly: Shalev and Gross-Tsur (1993)).
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target digits or upper case letters (trials blocked by target type) at
varying stimulus onset asynchronies (SOAs). At the only SOA at which
control subjects were below ceiling for identification of the two targets,
they showed an advantage in identifying digits over letters. The
acquired dyslexic individual was at ceiling for identifying the first
target when it was a digit, but had lower accuracy than controls when
the first target was a digit. He showed lower accuracy than controls for
both letters and digits as the second target (Ingles and Eskes, 2008).
The commonality across these results is better performance with digits
than letters, in both speed (SOA length) and accuracy. Starrfelt and
Behrmann (2011) used the same single character naming task as
Starrfelt et al. (2010) with a sample of young adults. At all durations
that did not result in ceiling performance, average digit accuracy was
superior to average letter accuracy. The authors suggested that the digit
accuracy advantage often reported with impaired participants might be
an amplification of a subtle digit speed advantage present in unim-
paired participants (Starrfelt and Behrmann, 2011).

Digit and letter identification is largely trivial for unimpaired adult
participants, which suggests that when a digit advantage has not been
found it could be masked by ceiling-level identification performance.
For example, the Ingles and Eskes (2008), and Starrfelt and Behrmann
(2011) studies found no difference between letter and digit perfor-
mance in the easier task conditions (longer SOA, longer exposure
duration). As far as I know, no one has directly compared performance
on strings of letters and digits in unimpaired adults. Thus it is unclear
whether a digit advantage in unimpaired participants is universal
(given sufficient task difficulty), or whether it arises only in single
character identification tasks, like those reviewed in this section.

The digit advantage has been reported across populations (impaired
and unimpaired readers) and relative to both uppercase and lowercase
letters. Most studies have found it in tasks with blocked presentation of
the letters and digits (e.g., Grossi et al., 1984; Larsen et al., 2004; Perri
et al., 1996; Starrfelt et al., 2010, 2009), but one study also found it in
mixed presentation in a case of acquired dyslexia (McCloskey and
Schubert, 2014). And finally, it seems to arise when the entire alphabet
is presented (e.g., Cohen and Dehaene, 1995; McCloskey and Schubert,
2014) and also when just a subset is used (e.g., Ingles and Eskes, 2008;
Starrfelt and Behrmann, 2011; Starrfelt et al., 2010, 2009).
Unfortunately, the vast majority of studies do not report sufficient
detail to determine all of these properties. Despite the unknowns about
many studies, the details of some studies help constrain the source of
the advantage. As will be discussed in more detail for the relevant
hypotheses, some hypotheses may not be compatible with all of the
digit advantage data based on these properties.

The lack of a double dissociation between letter and digit identifica-
tion suggests that letter and digit processing may not be fully
independent, and the consistent direction of the single dissociation
(letters more impaired than digits) is intriguing. The accuracy advan-
tage for digit over letter identification might be considered evidence for
separate identification systems, with the digit system operating more
quickly or efficiently in some manner. However, even within the set of
letters, some letters are identified more quickly than others, including
by unimpaired readers (e.g., Fiset et al., 2008; Jones and Mewhort,
2004; Mueller and Weidemann, 2012; Pitchford et al., 2008), but this
is not considered evidence for separate identification systems for
different letters. Given the converging evidence across impaired and
unimpaired populations for a shared system, it would be preferable to
explain the digit advantage within a single identification system, rather
than return to separate systems. Across previous studies reporting the
digit advantage, authors have suggested multiple hypotheses to explain
the digit advantage (Cohen and Dehaene, 1995; Holender and
Peereman, 1987; Ingles and Eskes, 2008; Polk et al., 2002; Polk and

Farah, 1998; Rath et al., 2015; Starrfelt and Behrmann, 2011); the
remainder of this paper discusses these hypotheses in the context of
shared alphanumeric identification.

2. What produces the digit advantage?

Five possible sources of the digit advantage have been discussed in
the literature, generally in the context of case reports of acquired
identification impairments. These hypotheses are: (1) differences in
visual properties (Cohen and Dehaene, 1995; Polk et al., 2002; Starrfelt
and Behrmann, 2011), (2) differences in character frequency (Ingles
and Eskes, 2008; Rath et al., 2015), (3) the smaller set of digit
identities (Cohen and Dehaene, 1995; Ingles and Eskes, 2008; Polk
et al., 2002; Polk and Farah, 1998), (4) a boost from number semantics
(Cohen and Dehaene, 1995; Ingles and Eskes, 2008; Rath et al., 2015;
Starrfelt and Behrmann, 2011), and (5) a supporting role for the right
hemisphere (Cohen and Dehaene, 1995; Holender and Peereman,
1987). Confirmation of one or more of these hypotheses would reduce
any perceived tension between the reported digit advantage and an
underlying shared identification system. Furthermore, it would enrich
our understanding of how the identification system functions by
delineating properties of letters and digits relevant to the identification
process.

The viability of the first two hypotheses (differences in visual
properties or frequency) depends on whether their preconditions are
true. For example, a difference between visual similarity of digits and
letters can only explain the digit advantage if such a difference exists,
and further if it is in the direction favouring digit identification. In the
next few sections I evaluate the preconditions of these hypotheses by
comparing digits and letters on a number of metrics. The final three
hypotheses (number of identities, semantics, right hemisphere) are
currently harder to evaluate, but I discuss their viability in a shared
identification system (McCloskey and Schubert, 2014), and sources of
evidence that might be relevant. As the final two hypotheses are not
always distinct, and are often discussed in relation to the neural bases
of number processing, I discuss them in conjunction.

2.1. Hypothesis 1: digits are simpler or more distinctive visual forms

In this section I consider whether there are systematic differences
between letters and digits in visual properties. Full support for the
hypothesis that a particular property (e.g., pixel overlap) is responsible
for the digit advantage requires not only the precondition to be true
(e.g., digits have a smaller degree of pixel overlap than letters) but also
evidence that this difference affects identification performance.
Instances in which a difference arises would invite empirical studies
to determine whether the observed difference impacts character
identification.

When first suggesting that visual properties might underlie the digit
advantage, Cohen and Dehaene (1995) suggested that if letters were
more visually similar to other letters than digits to other digits, it could
be easier to identify a digit from among its competitors than a letter
from its competitors (see also Polk et al., 2002). Their suggestion is
agnostic about the particular visual property that might be relevant, but
visual properties investigated for their role in letter identification
include: degree of visual overlap among letters, visual discriminability
of a given letter from other letters, and visual complexity (e.g,
Arguin et al., 2002; Mueller and Weidemann, 2012; Pelli et al., 2006;
Simpson et al., 2012; Starrfelt and Behrmann, 2011; Starrfelt et al.,
2015).

Starrfelt and Behrmann (2011) were the first to explicitly test for
the presence of a visual discriminability difference between letters and
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digits. Discriminability refers to how easy it is to visually discriminate a
character from others, i.e., how dissimilar it is to other letters. For (dis)
similarity they computed the mean pairwise pixel overlap for lowercase
letters and digits in two common fonts (Times and Arial). Using this
measure, they computed the number of competitors for letter and digit
stimuli: the number of same-category stimuli with an overlap value
higher than a set threshold. At all thresholds they considered, digits
had the same number or fewer competitors than letters, and therefore
they concluded that digits have higher discriminability than letters
(Starrfelt and Behrmann, 2011). (At the lowest threshold this is
necessarily true because there are fewer digits than letters).

This result suggests that digits are easier to pick out from the set of
digits than letters from the set of letters. However, this explanation
assumes that digit and letter identities are being selected from the set
of same-category identities: digits among digits and letters among
letters. Within the proposed shared identification systems described
above, this assumption is not straightforward. In some situations high-
level knowledge elsewhere in the reader's cognitive system, such as a
checking or monitoring process (conscious or unconscious) might
determine whether the selected letter identity matches the expected
category; for example, when reading a telephone number one expects
only digits. This covers pure-category contexts, when only digits or
letters are expected due to external knowledge, or only digits or letters
are boosted by their recent activation. However, pure-category contexts
are not the only ones in which the accuracy discrepancy between letters
and digits has been found. For this reason – to produce a more robust
test for a discriminability effect that would generalise across testing
contexts – I compute a measure that takes into account competitors
from both categories.

I compute and compare letter and digit visual overlap, visual
discriminability, and visual complexity separately, testing multiple
measures to achieve a broad picture of the visual properties of letter
and digit forms. For visual discriminability, it is first necessary to
define the visual forms of the characters, which was done using both
pixel overlap and feature overlap. While pixel overlap has been used to
evaluate visual similarity and discriminability (Marinus et al., 2016;
Starrfelt and Behrmann, 2011; Wong and Szücs, 2013), it is not a
measure of abstract visual similarity because it is dependent on the font
(typeface) used for the stimuli. This sensitivity to low-level visual
attributes (e.g., serifs) may not accurately reflect the level(s) of
representation at which letters and digits are perceptually similar
(see related arguments in Starrfelt et al., 2015). Furthermore, pixel
overlap measures fail to acknowledge that our experience with letters
and digits spans more than a single font. The digit advantage is unlikely
to be font specific, since it has been reported across a range of studies
using an unknown variety of fonts for letter and digit stimuli.
Therefore, visual similarity measures that index somewhat abstract
letter features (e.g., horizontal bar, curve opened left), proposed to
represent visual information at a higher perceptual level, may provide a
more valid visual similarity metric. To this end, I constructed a feature
set to describe basic letter and digit shapes. Throughout this section I
consider uppercase letters, which provides a more conservative test for
visual differences 2 and simplifies the feature set required to describe
the letter forms. Furthermore, all of the studies that report the digit
advantage and indicate the case of their letter stimuli used uppercase
letters.

2.1.1. The fonts
Four common fonts were used for the pixel overlap measures: Arial,

Consolas, Courier New, and Times New Roman (Fig. 1). These fonts
were chosen to provide coverage of two dimensions of typography: serif
presence/absence and fixed/proportional width. Consolas and Arial are
sans serif fonts, while Courier New and Times New Roman are serif
fonts. Consolas and Courier New are fixed width fonts, while Times
New Roman and Arial are proportional fonts. All of these fonts are
reasonably prevalent in printed material; Arial is particularly common
for text displayed on a computer screen (Bernard et al., 2003; Moret-
Tatay and Perea, 2011).

2.1.2. The feature set
The feature set developed here was meant to approximate the type

of abstract feature representations hypothesized at the character shape
level (Caramazza and Hillis, 1990; McCloskey and Schubert, 2014;
Schubert and McCloskey, 2013). Much prior work has aimed to
determine the features or sub-feature elements (e.g., line terminations,
intersections/vertices) that are used in identification. Despite a large
number of previous proposals for features that are relevant in letter
identification, few proposed feature sets are specified to a level that
allows computation of feature overlap; for example, most do not
consider position or relative size. None of the existing feature sets
describe digits. Guidance for the feature set described here came from
these previous proposals (e.g., Boles and Clifford, 1989; Briggs and
Hocevar, 1975; Chang et al., 2012; Changizi and Shimojo, 2005; Fiset
et al., 2008; Lanthier et al., 2009; Pelli et al., 2006; Petit and Grainger,
2002; Rosa et al., 2016).

Some attempts to determine the relevant features in letter and word
identification have used particular font forms (e.g., serif letters in Rosa
et al. (2016)) but descriptions of a particular font may not reflect
abstract character features. Accordingly, I intentionally do not account
for the full range of font variability, which tends to be systematic
alterations of the basic letter shapes (through changes of e.g., serifs, x-
height, letter slant Sanocki and Dyson, 2012). In the terms of
Hofstadter and McGraw (1995), the feature set describes the character
“conceptualization” rather than the “letterform” of a specific font. In
cases of possible ambiguity about the standard form, a sans-serif and
fixed-width font (Consolas) served as a basis for the letter and digit
feature descriptions.3

The features include lines and curves, which are assumed to be
invariant to character size and position in the visual field. However,
they can differ in relative size (i.e., one feature can be larger than
another) and position within a character (e.g., feature ‘horizontal line
of length 1 at top of character’ is distinguished from ‘horizontal line of
length 1 at bottom of character’). In feature sets proposed previously,
letters have been split into features at points of discontinuity in the

Fig. 1. The four fonts used in this study: Consolas (sans serif, fixed-width), Arial (sans
serif, proportional), Courier New (serif, fixed-width), Times New Roman (serif, propor-
tional), respectively. Though the fonts differ in physical size when reproduced at the same
font size, this difference is irrelevant because comparisons were always conducted within
font.

2 Upper case letters occupy the same region of space on a line as digits, unlike
lowercase letters that often occupy a smaller region [e.g., x], or extend below the baseline
[e.g., j]. The digit shapes are quite similar in that they all occupy the same region of
space; comparing this degree of similarity to uppercase letters, which have the same
property, increases the measured overlap between letters and digits and reduces the
likelihood of finding a difference between the two types.

3 The only exception is the zero character, which in Consolas is a crossed-zero (0). This
is a particularly unusual form of this character and therefore the standard form (0) was
described in the feature set.
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visual stimulus (Changizi and Shimojo, 2005). In the interest of using a
small set of atomic feature units to describe many letters, some letters
were split into smaller segments in the absence of a discontinuity in the
line. For example, U was split into two straight segments and one
curve, whereas Changizi and Shimojo treat it as single stroke. This
division of the character captures that U contains vertical segments
which are quite similar to those in H, D, etc. It also avoids the use of
whole-character features, which would violate findings that whole-
letter templates are not used in identification (Pelli et al., 2006). A full
listing of the features is in Appendix A.

In computing overlap between two characters, highest overlap was
given for identical features at the same position (i.e., matching
position, size, feature type, and feature class), and reduced overlap
was given when some but not all of these aspects are shared (e.g., 1 of 3
possible points of overlap are given when feature types match despite
differences in size and position). This captures the assumption that
there is similarity in the representation of features that differ only in
these parameters, and also provides a less sparse overlap matrix than
would be obtained if only perfect matches were considered overlapping.
See Table A2 for full details of the procedure for computing feature
overlap.

The feature set combined with the overlap metric captures the
intuitive similarity among characters, for example, giving high overlap
to 1 and T, and 6 and 9. However, it is untested with regards the actual
features used by the visual system. To the extent that the feature set is
based on prior proposals for letter feature sets (themselves based on
different types of empirical evidence) it should approximate features
used in identification. A good test of the feature overlap metric would
be relating it to identification performance, however there are no
studies providing the relevant performance: by-character accuracy (or
RT) for all uppercase letters and digits. As will be discussed in Section
3.2., this type of data is key to further our understanding of the
character identification system.

2.1.3. Visual overlap
The average visual overlap among the set of digits was compared to

the average for the set of letters, for both pixel and feature measures.
Overlap was calculated for every pairwise combination of characters
(1296 combinations), and separately for each font for pixel overlap.
Subsequently, for each character, overlap values for the comparison
between that character and each other character were averaged.
Finally, the average overlap values for the 10 digits were compared
to the average overlap values for the 26 letters. Throughout this paper,
comparisons were conducted using nonparametric statistics
(Spearman's rank-order correlation and Mann-Whitney U-test) and
two-tailed significance testing. These techniques are well suited to the
unequal variances and small and unequal sample sizes (i.e., N1=10
digits, N2=26 letters). The overlap values for each character (as well as
all other visual characteristics compared in subsequent sections) are
given in Appendix B.

2.1.3.1. Overlap: pixel. The pixel overlap metric was computed in
MATLAB2013a (Mathworks) by computing the overlap of black pixels
in images of single letter and digit stimuli. Characters were in 36 pt
font and centred (within 300×300 pixels of white background) for
maximal overlap (Marinus et al., 2016).

Comparisons were made within each font. Numerically, digits have a
lower average pixel overlap than letters in Courier New (letters average:
35%; digits average: 29%) and Times New Roman (letters: 32%, digits:
29%), but not in Consolas (letters: 45%, digits: 47%) or Arial (letters: 37%,
digits: 38%). The difference between letters and digits is only significant
for Courier New (U=66.0, N1=10, N2=26, p< .05).

2.1.3.2. Overlap: feature. The feature overlap metric considered letter

and digit parts, along with their positions within a letter-based frame,
as described above. Average feature overlap of letters and digits were
computed between each character and all other characters and then
these values were compared between letters and digits. The feature
descriptions are font-invariant, corresponding to the canonical form for
each character, and therefore there is only one feature overlap metric
rather than one for each font.

Averaging feature overlap across all letters gives an overlap of .13
(average overlap between any given letter and all other characters,
range: 0–1) and .11 for digits (average overlap between any given digit
and all other characters). The comparison between letters and digits
failed to reach significance (p > .1).

2.1.4. Visual discriminability/closest competitor distance
Starrfelt and Behrmann (2011) developed a measure of discrimin-

ability for letters and digits which considers the closest competitors for
a given character (i.e., other characters with pixel overlap over a set
threshold). I considered a simplified notion of discriminability, defined
by the overlap value of the closest competitor for each character. One
advantage of this approach is that the number of competitors is not
dependent on an overlap threshold. Instead, each character is evalu-
ated by its similarity to its most similar character. However, the term
discriminability is not quite appropriate in this context because higher
values indicate a closer competitor, which would result in harder
discrimination of a character rather than higher discriminability.
Instead, this measure reflects the closest visual competitor, or simply
competitor distance.

Comparison of digit and letter competitor distance involves two steps:
For each character, I calculated the closest competitor character (the one
with the highest overlap value), and then compared the values of the
closest competitors for the letters to those for the digits. The pixel and
feature overlap measures were both used, giving pixel competitor distance
and feature competitor distance. These two measures diverge; for
example, the highest pixel competitor for A (Consolas) considered out
of all the characters is 4, with .65 pixel overlap. Considering features
instead, the highest competitor for A (font independent) is a tie between V
and X, both with .28 feature overlap.

2.1.4.1. Competitor distance: pixel. Considering pixel overlap across
all characters, letters and digits do not differ in the value of their closest
competitor in three of the fonts (ps > .1). However, they do differ in
Times New Roman: Average competitor distance across letters is .68
and for digits is .61 (U=71.5, N1=10, N2=26, p < .05).

2.1.4.2. Competitor distance: feature. Letters and digits do not differ
in competitor distance computed across all characters (U=116.5,
N1=10, N2=26, p > .6). Letters had an average competitor distance of
.44 and digits had an average competitor distance of .48.

Lower competitor distance for digits than letters was found with
only a single font (Times New Roman) but not the other three fonts,
nor the font-independent feature measure. When comparing the digits
to letters using a measure that is not sensitive to an arbitrary threshold
or the number of characters, distance to the closest visual competitor
does not differ. Accordingly, this property of the characters – similarity
to visual competitors – does not seem to underlie the digit advantage.

2.1.5. Visual complexity
Unlike visual overlap and visual competitor distance, visual com-

plexity does not refer to relationships among characters (e.g., how easy
is it to distinguish A from other characters) but to a property of a single
character. It is another possible candidate for a visual property that
might differ between digits and letters, and could thereby produce the
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digit advantage. Visual complexity was calculated three ways for each
character: the number of black pixels (font-specific), the number of
visual features, and perimetric complexity (font-specific). Complexity
via all three methods was compared for the letter and digit sets.

2.1.5.1. Complexity: number of pixels. Table 1 details the number-of-
pixels comparisons for each font. In Consolas, the number of pixels in
letter and digit stimuli do not differ (ps > .1). Arial, Courier New and
Times New Roman display significant differences in number of pixels
between letters and digits (all ps < .05). In all three of these fonts, digits
have fewer pixels than letters.

2.1.5.2. Complexity: number of features. The number of features for
each character was counted from the feature set described above. The
average number of features for letters is 2.65; the average number of
features for digits is 2.3. These values do not differ significantly,
U=97.0, N1=10, N2=26, p > .2.

2.1.5.3. Perimetric complexity. Perimetric complexity has been used
by prior researchers as a metric of visual complexity of letter stimuli
(Pelli et al., 2006; Ziegler et al., 2010). It is defined as the square of the
perimeter of the ink area, divided by total ink area. This can be thought
of as indexing the degree of intricacy of the lines comprising a
character, relative to the character's size. The method described in
Pelli et al. (2006) was implemented in MATLAB and computed from
the same image files used for pixel overlap. In Consolas and Arial, the
two sans-serif fonts, the perimetric complexity of letter and digit
stimuli do not differ (ps > .1). However, Courier New and Times New
Roman display significant differences in perimetric complexity between
letters and digits (ps < .05). In both fonts, digits have lower perimetric
complexity than letters; this is numerically true also for the sans-serif
fonts (see Table 1).

2.1.6. Discussion
Visual similarity and discriminability comparisons were conducted

between letters and digits to determine whether a difference in such a
property might underlie the digit advantage. The necessary precondi-
tion for the visual property hypothesis is that digits must be less
visually similar (confusable) or easier to discriminate than letters.

2.1.6.1. Pixel and feature overlap and discriminability. Pixel and
feature overlap comparisons did not reveal stark differences between
letters and digits. Pixel overlap measures vary widely across fonts and
the comparisons between average pixel overlap of letters and digits
were not statistically significant in three of four fonts (significant only
in Courier New). These results suggest that there is no systematic
difference between letters and digits in this type of visual similarity,

and that it cannot explain the digit advantage.

The results of the feature-based visual similarity analyses are also
straightforward: No differences were found between letters and digits
in feature overlap. The feature set was designed to include features that
are abstract, i.e., invariant to properties such as size, absolute position,
and line thickness, and thus reflect proposed features at the character
shape level. To the extent that this attempt was successful, a lack of
difference between letters and digits on overlap at this level suggests
that at the character shape level the set of digits and the set of letters
differ only in terms of their connections to higher representations (i.e.,
allographs in the McCloskey and Schubert (2014) theory).

A version of discriminability, indexed by the strength of the closest
competitor for a given character, was also calculated using pixel and
feature similarity. Differences were only found between letters and
digits using pixel overlap for Times New Roman, but not for any other
fonts or the abstract feature set. These tests of the visual relationship
between characters took into account the entire character set (letters +
digits) to comply with the properties of the shared identification
system. This is also in accordance with the observation that the digit
advantage arises in both pure and mixed stimulus sets, when digits or
letters cannot be pre-selected for activation due to context or expecta-
tions.

2.1.6.2. Visual complexity. Visual complexity was calculated in three
ways: as number of pixels in each character, number of features in each
character, and perimetric complexity. Considering features, the result
is very straightforward: Letters and digits do not differ in the number of
features that comprise them. For pixels and perimetric complexity,
results varied by font. For both Courier New and Times New Roman,
letters have higher average perimetric complexity and number of pixels
than digits. These differences parallel the font types: Sans-serif fonts
show no difference while serif fonts do (see Fig. 1 the characters in each
font). In serif fonts, the serifs on the letters are more prominent and
frequent than on digits (e.g., 6, 9 have no serifs in either font), which
would reduce the number of pixels and perimetric complexity for digits
relative to letters; this property of the fonts may explain the observed
difference. In addition, Arial showed a significant difference between
letters and digits in number of pixels, but not perimetric complexity.

Where digits and letters were found to differ, digits tend to have
slightly numerically lower pixel overlap, pixel discriminability, number
of pixels, and perimetric complexity than letters, in the direction
required by the visual properties hypothesis. However, the lack of
consistency across fonts is problematic for the hypothesis. The relative
frequency of observing letters and digits in serif versus sans-serif fonts
is not available, but to a reasonable approximation most text read on a
screen uses sans-serif fonts while printed materials tend to use serif
fonts. Furthermore, the studies reporting better digit than letter
performance likely used a mix of fonts. Therefore, despite the
difference found for the serif fonts, the lack of difference found with
sans-serif fonts leaves us with no uniform reason for why digits are
identified more rapidly and accurately than letters. The visual differ-
ences observed may be a general property of the visual forms of letters
and digits in serif fonts, but visual differences are unlikely to be a
primary driver of the digit advantage more generally.

2.2. Hypothesis 2: digits are more frequently encountered

The remaining hypotheses for the digit advantage refer to proper-
ties of letters and digits other than their visual appearance. Ingles and
Eskes (2008) provided the hypothesis that differences in written
frequency of occurrence for digits and letters might explain the
performance discrepancy. Rath et al. (2015) also suggested that greater
familiarity with single digits as opposed to single letters might explain

Table 1
Font-specific complexity comparisons.

Number of pixels Perimetric complexity

Font Digits Letters U Digits Letters U
CONSOLAS 0123456789 1173.6 1224.8 111.5 63.4 68.4 109.0
ARIAL 0123456789 1330.5 1608.6 70.5 67.0 74.7 101.0
COURIER NEW

0123456789

622.9 738.0 70.5 116.8 148.6 23.0

TIMES NEW ROMAN
0123456789

895.5 1251.9 44.0 76.2 107.2 22.0

Significant comparisons (p < .05, 2-tailed, Mann-Whitney U test) are in bold.

T.M. Schubert Neuropsychologia 95 (2017) 136–155

141



higher identification accuracy. To provide an explanation for the
superior performance on digits as a set, the average written frequency
for digits would need to differ from that for letters. Presumably
identification performance would be facilitated by a higher frequency
of occurrence; if digits were more frequent than letters.

Effects of character frequency would suggest that the activation of
allograph and/or abstract character identity representations is modu-
lated by character frequency. This suggestion has already been made
for letter identification, and letter frequency effects have been reported
across a variety of single letter tasks (e.g., Jones and Mewhort, 2004;
New and Grainger, 2011; Walker and Hinkley, 2003). However, digit
frequency is not commonly investigated in this context. Two studies
have investigated letter and digit frequency in the context of grapheme-
color synaesthesia: Beeli et al. (2007) reported significant correlations
between the saturation of synesthetic colors for each character and the
character's frequency, and Smilek et al. (2007) reported significant
correlations between luminance and character frequency. However,
both of these studies considered the relative frequency of letter and
digit sets separately; it is not known whether the relationship holds
across the combined set of characters.

Another instance in which character familiarity has modulated
performance is in the alphanumeric category effect in visual search (see
Section 1.1.). Polk and Farah (1994) compared the performance of
postal employees who sorted mail with postal codes containing digits
only (e.g., 21218) to that of employees who sorted mail with codes
containing both letters and digits (e.g., V6T 1Z4). They found an
attenuated alphanumeric category effect for the employees with
experience with mixed-category codes (Polk and Farah, 1994), suggest-
ing that the identification system is sensitive to experience with the two
character types. In summary, though evidence exists for effects of letter
and digit frequency and co-occurrence of the character types, questions
remain about the specific effect of familiarity on character identifica-
tion.

2.2.1. Character frequency
Of published character frequency metrics (e.g., Benford, 1938;

Jones and Mewhort, 2004; Mayzner and Tresselt, 1965; Solso and
King, 1976), Jones and Mewhort (2004) is the only one to contain
uppercase and lowercase letters as well as digits: These authors tallied
digit and case-specific letter raw frequencies from the New York Times
article archives (containing about 14 million words). In these compar-
isons I tested both cases separately as well as combined because it is
unclear which letter case was used in much of the neuropsychological
literature supporting the digit advantage (e.g., Holender and
Peereman, 1987; Starrfelt and Behrmann, 2011).

Comparing lowercase letters to digits confirmed that on the whole,
lowercase letters are more frequent than digits (Mann-Whitney
U=41.0, N1=10, N2=26, p < .01). The average frequency of lowercase
letters (2.37 million) exceeds that of digits (283,418) by nearly an order
of magnitude. This result is inconsistent with the hypothesis that better
performance for digits than lowercase letters could arise from digits’
higher frequency. In the frequency ranking of lowercase letters and
digits, all of the digits are ranked below 21 of the letters; there is some
interleaving of the letter and digit frequency values at the lower end of
the frequency ranks.

The discrepancy between the frequencies of uppercase letters and
digits is much smaller and in the opposite direction: The average
frequency of uppercase letters (135,677) is lower than that of digits
(283,418). Comparing these sets indicates that digits are significantly
more frequent than uppercase letters (U=44.0, N1=10, N2=26, p < .01).
Unlike with lowercase letters, the four most frequent characters among
the combined set of uppercase letters and digits are digits (0, 1, 5, 2),
and half of the letters are less frequent than all of the digits.

Cross-case letter frequency (i.e., the average of lower- and upper-
case frequencies) differs from both lowercase (U=230.0, N1=26,
N2=26, p < .05) and uppercase frequency (U=41.0, N1=26, N2=26, p

< .001). Cross-case letter frequency, like lowercase letter frequency, is
significantly higher than digit frequency (U=49.0, N1=10, N2=26, p
< .01).

2.2.2. Discussion
The analyses of character frequency revealed opposite patterns

depending on letter case. On average, lowercase letters are more
frequent than digits, while uppercase letters are less frequent than
digits. Considering the two cases combined, letters are more frequent
than digits. Across both cases there is a large amount of intermixing of
character frequencies such that some digits are more frequent than
some letters and some digits are less frequent than some letters. The
frequency hypothesis depends on digits having higher frequency than
letters, which is true exclusively for uppercase letters, suggesting that
this hypothesis is not viable. Overall, the lack of systematic difference
in character frequencies is inconsistent with frequency as the cause of
the digit advantage.

2.3. Hypothesis 3: fewer digit identities boost identification

The third hypothesis for the superiority of digit identification
contends that the smaller set of digit identities facilitates the process
of activating the target digit. A few authors have suggested this
possibility, though generally without describing the mechanism of
facilitation (Cohen and Dehaene, 1995; Ingles and Eskes, 2008;
Piazza and Eger, 2015; Polk et al., 2002; Polk and Farah, 1998).
Starrfelt and Behrmann (2011) made this explanation more explicit,
referring to “guessing rate” (p. 2292), proposing that the digit
advantage may result from the higher chance rate of correctly guessing
one of ten possible digits rather than one of twenty-six possible letters.
However, the guessing rate explanation presupposes that the identifi-
cation system contains knowledge that the target is a digit and
accordingly no letter identities are being considered (or vice-versa).
This explanation is not compatible with evidence suggesting that
character identification is not constrained by knowledge of the category
of the stimulus (McCloskey and Schubert, 2014). Given this property of
the shared identification system, the smaller number of digit than letter
identities seems unlikely to contribute to the digit advantage.

Another possible interpretation of the guessing hypothesis is that
higher-level knowledge, such as knowing that the current block of
experimental trials you are completing only contains digits, can affect
the outcome of the identification process. This might happen via a
monitoring process after identification (but prior to production of the
response), or by feedback into the identification system from elsewhere
in the cognitive system. Such a mechanism likely operates in certain
contexts, but it is not obvious why this would preferentially boost digit
performance over letter performance. Additional details would be
needed to explain how this type of information would interact with
the number of character identities to produce an advantage for
situations when digits are predicted than when letters are predicted.

In summary, the hypothesis that the smaller number of digits
provides a basis for the digit advantage seems unlikely. A more explicit
and testable version of the hypothesis would need to contend with
existing data suggesting that the digit advantage persists in mixed-
category contexts and that letter/digit category knowledge does not
appear to constrain activation of character identities within the shared
identification system.

2.4. Hypothesis 4: digits are supported by semantics, and/or the
right hemisphere

The final hypothesis that has been proposed to explain the digit
advantage refers to connections between letters, digits and representa-
tions of meaning. Despite their visual similarities, digits and letters
differ in their semantic content. Single digits are logographic symbols
that convey a meaning, while letters typically convey meaning only
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when combined (single-letter words excepted) (Deloche and Seron,
1987; Holender and Peereman, 1987). For example, ‘7’ indicates a
semantic quantity, while ‘T’ does not have any semantic value.

Related to this property of the characters is the fact that when
children learn digit forms they are mapping a visual symbol onto their
pre-existing knowledge of a number, including the number word and
representation of quantity (Benoit et al., 2013; Hurst et al., 2016). Digit
forms are learned largely after children have acquired the ability to
count and understand magnitudes (Benoit et al., 2013; Berteletti et al.,
2010; Hurst et al., 2016; Sinclair et al., 1983). This background may
favor fast acquisition of digit forms. By contrast, letter forms are not
mapped onto existing knowledge, but rather are learned along with
acquisition of the alphabetic principle (correspondence between writ-
ten letters and the sounds of language) and the development of
phonemic awareness in spoken tasks (Castles and Coltheart, 2004;
Castles et al., 2009). The impact of early learning and the strong
relationship between digits and semantic content could conceivably
result in a digit identification advantage later in life.

Based on these considerations, some authors have suggested that
there might be a more direct, or stronger, connection between digit
identification and conceptual processing than between letter identifica-
tion and conceptual processing (Cohen and Dehaene, 1995; Ingles and
Eskes, 2008; Rath et al., 2015; Starrfelt and Behrmann, 2011; for a
related proposal see: Miozzo and Caramazza, 1998). Therefore, these
authors contend, there may be stronger feedback supporting digit than
letter identification, leading to more accurate or faster identification
performance.

Top-down effects on identification have also been proposed to
impact letter identification, facilitating identification in certain situa-
tions. One prominent example is the word superiority effect, which
refers to higher accuracy for identifying a letter when it is presented
within a word relative to when it is presented as a single character
(Reicher, 1969; Wheeler, 1970). This effect has been explained by
appealing to interactivity between word and letter levels boosting letter
identification within a word context, with no such word-level informa-
tion available in single letter identification (e.g., McClelland and
Rumelhart, 1981). Similar effects may be at work in digit identification,
with an identification advantage produced by top-down effects from
semantic/quantity representations.

On this point, it is relevant to consider whether numerical quantity
representations are automatically activated by visually-presented di-
gits. Some researchers have suggested that, unlike in arithmetic or
magnitude comparison tasks, digit naming may not require access to a
semantic (quantity) representation (e.g., Dehaene, 1992; Deloche and
Seron, 1987). The automaticity of semantic access has been assessed
using tasks which do not require this access (e.g., judging whether two
digits are physically identical, or whether a digit is identical to the digit
‘5’), and access to quantity would facilitate or interfere with perfor-
mance. Researchers have argued against automatic semantic activation
(e.g., Cohen, 2009; Wong and Szücs, 2013), in favor of it (e.g., Ganor-
Stern and Tzelgov, 2008), or for automatic but slow access (García-
Orza et al., 2012). Accordingly, it is unclear whether there is automatic
access to semantics for digits in all situations, and if so, what the
indirect effect on identification performance might be.

One test of the relevance of semantic feedback might be possible
with an individual who has damage to higher level knowledge for digits
but not letters, perhaps as an isolated deficit to numerical quantity
knowledge. This hypothetical individual could then be tested on the
relative speed and accuracy of letter and digit identification. To my
knowledge, this specific alignment of impairment and research ques-
tion have not occurred, but it is an open question for future work.
However, some versions of the digit semantics hypothesis, which refer
to the neural instantiation of semantic and identification processes, can
be considered in the light of data from neuroimaging studies.

2.4.1. Neural bases of number semantics
One version of the hypothesis that digit identification performance

is boosted by semantics further specifies that the boost is due to the
neural instantiation of digit semantics in the right hemisphere or in
both hemispheres, contrasted with a unilateral left representation for
letters. In a review of the neuropsychological literature on letter and
digit naming, Holender and Peereman (1987) suggest that the right
hemisphere stores some semantic representations for digits, while
letter and word semantics are stored in the left hemisphere. They posit
that the right hemisphere may provide support for digit naming when
the left hemisphere is damaged, leading to a digit advantage in these
individuals (see also: Deloche and Seron, 1987). Cohen and Dehaene
(1995) made a similar suggestion, positing that digits have bilateral
representations (of visual form and magnitude) while letters are
represented mainly in the left hemisphere. Thus, they contend, in the
case of unilateral brain damage, digits will tend to be fully or more
preserved.

The representation of number semantics (i.e., numerical quantity
representation) is generally bilateral and involves a large network of
parietal, frontal, and cingulate regions, with the degree of laterality
varying among individuals and by task (Butterworth, 2005; Chochon
and Inserm, 1999; Park et al., 2011; Piazza and Eger, 2015; Prado
et al., 2011). This literature suggests that different numerical abilities
may be subserved by different brain areas, but importantly that both
hemispheres are involved. By contrast, it is generally agreed that
linguistic processing, including for reading, is mainly limited to the
left hemisphere (Martin et al., 2015; Taylor et al., 2013; but see:
Hickok (2013), Hickok and Poeppel (2004) for evidence of bilaterality
in speech perception). It is possible that bilateral representation of
number semantics would result in stronger feedback connections to
digit identification than those coming from unilateral letter/word
processing, though a more thorough understanding of neural connec-
tivity and communication would be needed to fully evaluate this
particular hypothesis.

2.4.2. Neural bases of digit identification
An alternative formulation of this hypothesis is that digit identifica-

tion specifically is localised in the right hemisphere and therefore tends
to be preserved in individuals with left brain damage. Naturally, this
explanation cannot account for the presence of digit identification
deficits in individuals with unilateral left hemisphere lesions.
Furthermore, it does not predict the lack of double dissociation
between digit and letter identification, because anatomical indepen-
dence would allow each system to be damaged independently. And
finally, turning to unimpaired individuals, this hypothesis cannot
account for the digit advantage there without further assumptions
about the impact of hemispheric localization on normal performance.

2.4.2.1. Co-occurrence hypothesis. A related hypothesis is the co-
occurrence hypothesis, developed by Polk and Farah (1995, 1998) to
explain the neural localization of identification processes. They posit
that the contexts in which letters and digits are encountered result in
distinct brain areas for letter and digit identification. Specifically,
letters are often identified in close in space and time to other letters
(e.g., in books), but less often close to digits. Polk and Farah (1995,
1998) hypothesise that the result of this environmental segregation is
neural segregation, brought about by Hebbian learning. Neural
segregation could explain how letter identification deficits can occur
absent a concomitant digit identification deficit, and why letters are
often more impaired when the deficits do co-occur. Results of a neural
network simulation support the assertion that when inputs are
segregated by character type distinct sub-areas arise for the
representation of the two types (Polk and Farah, 1995). However, the
simulation is simplified in a number of ways which limit the
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implications for neural representation.4 Furthermore, it is difficult to
assess the degree of letter and digit segregation in the environment.
However, recent neuroimaging studies localizing brain regions for
letter and digit processing can be brought to bear on the question of
neural segregation.

2.4.2.2. Evidence from neuroimaging. Letter (and word)
identification has been localised (using fMRI) mainly to the left
hemisphere, including the so-called Visual Letter Area (e.g., Rothlein
and Rapp, 2014; Thesen et al., 2012). Digit identification substrates
have been researched relatively more recently, and early fMRI studies
often found no neural preference for digit over letter stimuli, or a mix
of left- and right-hemisphere preference (Allison et al., 1994; James
et al., 2005; Polk et al., 2002; Polk and Farah, 1998; Price and Ansari,
2011; Reinke et al., 2008; Roux et al., 2008).

Some researchers have found regions of the right ventral visual
stream showing a preferential response to single digits over letters
(Cantlon et al., 2011; James et al., 2005). Shum et al. (2013) tested the
responses of intracranial electrodes to single digit, single letter,
pseudoletter, pseudodigit, and word stimuli. They discovered five
right-hemisphere electrode sites that showed a preference for digits.
Additional sites that responded more to digits than other characters
(letters and pseudo-characters) were found in the inferior temporal/
fusiform region of both hemispheres (Shum et al., 2013). Following up
on these results, Abboud and colleagues (Abboud et al., 2015) reported
functional connectivity analyses of partially-distinct processing net-
works for letters and digits, mainly involving the left and right
hemispheres, respectively, including a right hemisphere digit-prefer-
ential Visual Number Form Area (VNFA). However, this finding was
not replicated in a follow-up study by another group (Peters et al.,
2015).

A subsequent study found bilateral preference for digits over other
visual stimuli; this preference was stronger in the right hemisphere
when digits were compared to pseudodigits, but stronger in the left
hemisphere when digits were compared to other visual stimuli
(Grotheer et al., 2016b). Grotheer and colleagues (Grotheer et al.,
2016a) applied TMS to the VNFA during a familiar character (letters
and digits) vs. unfamiliar character (pseudoletters and pseudodigits)
decision task. TMS to the right VNFA reduced task performance, while
TMS to the vertex and to a left hemisphere object-preferential region
did not (Grotheer et al., 2016a). The authors concluded that the right
VNFA was causally involved in digit recognition, but importantly, their
results do not suggest that the region is selective to digits over letters.5

The presence of a right-hemisphere region which is involved in both
letter and digit processing but more strongly in digit processing is also
supported by a study of split-brain patients, which revealed higher
accuracy on digit than letter identification when presented to the right
hemisphere (Teng and Sperry, 1973). However, in this study both
character types were identified with some success, suggesting that the
right hemisphere is not exclusive to digit processing.

Taken together, these results suggest that though digit identifica-

tion may predominate in the right hemisphere, right hemisphere areas
involved in digit identification are not selective to digits. The most
stringent test of the role of the VNFA (Grotheer et al., 2016a) revealed
that it was causally involved in letter recognition as well (for relevant
discussion see: Merkley et al., 2016). Thus, current evidence is
consistent with bilateral identification processing of digits and letters,
suggesting that the precondition for this version of the right hemi-
sphere hypothesis is not true. Though it remains possible that the right
hemisphere makes a stronger contribution to digit identification than
letter identification, this hypothesis would also require additional
explication to be fully tested.

2.4.3. Discussion
Suggestions that digit identification might be boosted by stronger

connections to number semantics, or that the digit representations in
the right hemisphere improve performance do not seem to straight-
forwardly map onto the digit advantage. The existence of more
semantic representation for digits and letters may be accurate, but its
impact is difficult to evaluate. In terms of neural instantiation, number
semantics and digit identification processes have been localised to both
hemispheres. Letter identification is mainly confined to the left hemi-
sphere; the combination of these facts may explain why cases of digit
identification impairment without letter identification impairment
have not been reported. However, as an explanation for higher
accuracy or faster responding among unimpaired individuals, these
hypotheses would need to be extended and the impact of particular
neural bases on performance clarified.

3. General discussion

Four main hypotheses have been proposed to explain the observed
discrepancy between digit and letter identification. However, none of
the hypotheses has provided a satisfactory answer. Some hypotheses
require unsupported assumptions, such as that the category of a
character constrains the identification processes. Others are not backed
up by data to explain the phenomenon. A number of the results in this
study provided partial or suggestive evidence for a role of visual
properties or character frequency in facilitating digit over letter
identification, but overall a consistent picture did not emerge.

The first four variables considered were visual overlap, visual
discriminability, visual complexity, and frequency of occurrence. The
first three were computed for both pixel- and feature-based metrics,
which are assumed to index different levels of processing in the
identification system. I found that digits in serifed fonts tended to
have lower pixel overlap and complexity than letters in those fonts, but
no differences were found in terms of features. As discussed previously,
the digit advantage has been reported across a range of fonts, and the
underlying cause of the advantage should therefore be font-indepen-
dent.

In character frequency, digits are less frequent than lowercase
letters but more frequent than uppercase letters. This is a straightfor-
ward consequence of prose containing mainly lowercase letters (in
English). Studies reporting a digit advantage have used a mix of
uppercase and lowercase letters, suggesting that even the significant
difference between uppercase letter and digit frequency cannot explain
the digit advantage. Instead, the underlying cause should be consistent
across letter case.

Having determined that digits and letters do not systematically
differ in visual properties or frequency (in the required direction), we
are left with set size and support from higher level processing or the
right hemisphere as possible contributors to the digit identification
advantage. The hypothesis that the digit advantage is caused by the
smaller number of digit than letter identities is difficult to assess
empirically. However, this hypothesis is inconsistent with theories of a
shared alphanumeric identification system in which characters are
identified without regard to their category. This lack of category-

4 The limitations of the simulation for neural letter and digit processing are three-fold:
the input representations do not capture visual similarity (or any other similarity)
between characters, equal numbers of “letter” and “digit” inputs were employed, and
each input was presented with equal frequency. These aspects run counter to the
properties of the characters and the statistics of occurrence in the environment, and the
biasing effect of their combined influence is unclear.

5 Grotheer et al. (2016a) were puzzled by the impact of rVNFA TMS on letter
recognition. However, according to the shared identification system account proposed
by McCloskey and Schubert (2014), the task they used relies on the allograph level of
representation (prior to activation of letter and digit abstract identities), which does not
distinguish between letter and digit processing. Accordingly, the finding of an area that is
causally involved in this task for both letters and digits is wholly consistent with
McCloskey and Schubert’s proposal for the character identification system.
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restriction is a key principle of the shared system proposed by
McCloskey and Schubert (2014), and is also consistent with Norris
et al.'s (2010) and Grainger et al. (2016a, 2016b) models. Thus, none of
the current shared system proposals seem to permit an explanation of
the digit advantage on the basis of the number of letter and digit
identities. There may be some contexts in which the identification
system is restricted to letter or digit identities, but this exception
certainly does not apply universally.

The final hypothesis considered concerns the impact of semantic
knowledge on identification and the relationship between cognitive
processing and neural substrates. Because single digits have semantic
content while single letters do not (with the possible exception of A and
I), the suggestion is that feedback from semantics would boost digit
over letter identification. In the case of the digit advantage after brain
damage, a specific version of this hypothesis states that right hemi-
sphere areas support digit semantics and/or identification but not
letter processing. Digit semantics seems to be instantiated bilaterally,
and it is unclear to what extent semantic information for digits impacts
on identification processes in impaired or unimpaired individuals. In
identification, there is a growing body of evidence in support of a right-
hemisphere region that responds preferentially to digits over letters.
However, the most stringent test of this region's processing suggests
that it is causally involved in both digit and letter identification. In
summary, the role of semantics in digit identification remains unclear,
as does the role of right hemisphere processing. Future research will
certainly help clarify the neural bases of numerical processing and
neural overlap between letter and digit identification, which may
provide additional relevant evidence for the right hemisphere/feedback
hypotheses.

3.1. What is the digit advantage?

Critically, all four hypotheses were proposed to explain a difference
in identification performance across the entire set of digit and letter
characters. However, considering set-wise accuracy or RT may obscure
differences in accuracy across individual characters. The phenomenon
of higher digit than letter accuracy may only be true for the mean
accuracy, not for all digits compared to all letters; this level of
performance detail has generally not been reported. For example, the
acquired dyslexic individual reported by McCloskey and Schubert
(2014) showed average identification accuracy for digits that exceeded
her average accuracy for letters (a digit advantage). However, there was
considerable overlap in the accuracy for individual digit and letter
characters. Due to a lack of similar data for other individuals (both
impaired and unimpaired), we are currently in the situation of
attempting to explain a digit advantage which may be more accurately
described as an advantage for particular characters, many of which
happen to be digits. Until this data has been provided, attempts to
explain the digit advantage will always be at a disadvantage.

It may be that the digit advantage is better understood not as an
advantage for one category of stimuli over another, but faster or more
robust processing for particular characters, due to particular factors
relevant in the identification system. As discussed in the introduction
(Section 1.2.), it is well known that letters are not all identified with the
same speed and accuracy. This type of differentiation across stimuli of
the same type is also found in other domains: In lexical processing
(e.g., lexical decision) particular words are processed more quickly than
others, due to a variety of reasons (frequency, neighbourhood size,
regularity, etc.). It seems then that the observation that digits show an
identification advantage may be no different than the observation that
DOG is faster to read than VOW: a result of properties of these items
(frequency, in this example) rather than a categorical difference in
processing.

3.2. Predicting performance on an individual character level

Detailed investigation of letter and digit identification depends on
authors of future studies to report and analyze dependent measures for
individual digit and letter characters. This will allow us to determine
whether the conceptualization of the digit advantage is correct, or
whether it is a generalization that is only true on aggregate. At that
point, more specific hypotheses can be considered for the observation
that digits tend to out-perform letters, and more sophisticated analyses
can be conducted to evaluate the hypotheses. Hypotheses which
currently appear weak may gain more explanatory power when
considered on the level of individual characters. Accordingly, stronger
conclusions about the source of the digit advantage could be drawn by
comparing by-character performance to by-character measures of
frequency, visual similarity, and complexity (which were collapsed
across sets here). Alternatively, none of these hypotheses may be able
to account for the digit advantage alone, but may in combination. For
example, a small effect of visual similarity may combine with a small
effect of visual complexity to result in higher accuracy for 1 than W.
These combinations of factors should be tested against a dependent
measure of accuracy or RT for individual characters, rather than the
average of two large sets.

In line with the suggestion for more in-depth consideration of letter
and digit identification and a renewed focus on character-specific
performance, the by-character values for all of the visual characteristics
considered in this paper (e.g., average pixel overlap, perimetric
complexity) are presented in Appendix B. The purpose of including
these data is twofold. First, it allows researchers to examine the relative
ordering of letters and digits on each metric and observe the degree to
which the two categories are intermixed. Second, it allows for the
construction of stimulus sets which are matched on any of these
variables, should the need arise in future experiments comparing
letters and digits.

3.3. Theoretical considerations

The ability of particular variables to predict identification accuracy
and response times might also inform models of the functioning of the
cognitive character identification system. Though three competing
models of alphanumeric character identification have been proposed,
none of these have been described or instantiated in sufficient detail to
permit an understanding of the effects of variables such as frequency
and visual similarity. Furthermore, while theories of numerical cogni-
tion and magnitude representation exist, they are largely divorced from
consideration of the early stages of digit identification, and vice-versa.
A fully-unified theory of letter and digit processing, from early visual
features to semantic/lexical representations could help predict and
understand the effects of variables on identification performance. In
support of this goal, identification performance also helps to constrain
models of character identification (for recent examples in the context of
children's acquisition of letter and digit processing, see: Grainger et al.,
2016a; Schubert et al., submitted). With additional details that
establish the effects of properties of context, visual properties, and
top-down influences, identification theories such as those discussed in
the introduction can be modified and tested for their compatibility with
the performance advantage of certain characters over others.

3.4. A note on other digit notations

This paper has focused on the comparison between Arabic digits
and Roman letters, reflecting the preponderance of research and
theory-building based on these two notational systems. However,
research has also been conducted using other numerical notations –
such as the Arabic-Indian numerals and Persian-Indian numerals – to
investigate issues such as automatic access to numerical quantity
(Section 2.4.). The extent to which a digit advantage exists in other
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orthographies (e.g., Arabic-Indian numerals compared to Arabic script)
is currently unclear. Hypotheses for the digit advantage which depend
on visual and frequency properties of the characters obviously would
need to be re-evaluated for a new orthography, while those depending
on semantic and neural properties may index more universal proper-
ties of digit processing. However, by-character analyses are likely to
produce the most effective means to evaluate character identification
across orthographies.

3.5. Conclusion

This study has revealed that the hypotheses that have been
proposed to explain the digit advantage generally fall short of that
aim. However, promising avenues exist to explore the hypotheses as
they apply to performance on individual characters. The by-character

approach promises not only to explain a puzzling discrepancy between
letter and digit performance, but to constrain and enrich theories of
alphanumeric character identification more broadly.
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Appendix A. Character feature set

See Tables A1–A3.
The feature classes used are Orthogonal, Slant, and Curve. These describe the large categories of visual features found in uppercase letters.

Within the Orthogonal class are Horizontal and Vertical features; within the Slant class are Slant-left and Slant-right features, and within the Curve
class are Curve-facing-up, Curve-facing-down, Curve-facing-left, Curve-facing-right, and Curve-Closed (loop) features. Each letter is considered
within a rectangle in letter-space, which has a vertical height of Full and a horizontal width of Half (Half is also used as the size specification for a
feature which extends half the height in the vertical dimension). Slant lengths are approximate; a slant extending from the top to bottom of letter-

Table A1
Features for uppercase letters and digits.

Character Feature class Feature Size Position 1 Position 2

A Slant Slant left Full CM RB
Slant Slant right Full CM LB
Orthogonal Horizontal Half LM RM

B Orthogonal Vertical Full LT LB
Curve Curve facing

left
180 LT LM

Curve Curve facing
left

180 LM LB

C Curve Curve facing
right

180 RT RB

D Orthogonal Vertical Full LT LB
Curve Curve facing

left
180 LT LB

E Orthogonal Vertical Full LT LB
Orthogonal Horizontal Half LT RT
Orthogonal Horizontal Half LM RM
Orthogonal Horizontal Half LB RB

F Orthogonal Vertical Full LT LB
Orthogonal Horizontal Half LT RT
Orthogonal Horizontal Half LM RM

G Orthogonal Vertical Half RM RB
Orthogonal Horizontal Half CM RM
Curve Curve facing

right
180 RT RB

H Orthogonal Vertical Full LT LB
Orthogonal Vertical Full RT RB
Orthogonal Horizontal Half LM RM

I Orthogonal Vertical Full CT CB
Orthogonal Horizontal Half LT RT
Orthogonal Horizontal Half LB RB

J Orthogonal Vertical Full RT RB
(continued on next page)
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Table A1 (continued)

Character Feature class Feature Size Position 1 Position 2

Orthogonal Horizontal Half LT RT
Curve Curve facing

up
180 LM RM

K Orthogonal Vertical Full LT LB
Slant Slant left Half RT LM
Slant Slant right Half LM RB

L Orthogonal Vertical Full LT LB
Orthogonal Horizontal Half LB RB

M Slant Slant left Full LT LB
Slant Slant left Half LT CM
Slant Slant right Half RT CM
Slant Slant right Full RT RB

N Orthogonal Vertical Full LT LB
Orthogonal Vertical Full RT RB
Slant Slant left Full LT RB

O Curve Curve closed 360 CT CB

P Orthogonal Vertical Full LT LB
Curve Curve facing

left
180 LT LM

Q Curve Curve closed 360 CT CB
Curve Curve right 90 CB CR

R Orthogonal Vertical Full LT LB
Curve Curve facing

left
180 LT LM

Slant Slant left Half LM RB

S Curve Curve facing
left

180 RT CM

Curve Curve facing
right

180 CM LB

T Orthogonal Vertical Full CT CB
Orthogonal Horizontal Half LT RT

U Orthogonal Vertical Full LT LB
Orthogonal Vertical Full RT RB
Curve Curve facing

up
180 LB RB

V Slant Slant left Full LT CB
Slant Slant right Full RT CB

W Slant Slant left Full LT LB
Slant Slant left Half CM RB
Slant Slant right Half CM LB
Slant Slant right Full RT RB

X Slant Slant left Full LT RB
Slant Slant right Full RT LB

Y Orthogonal Vertical Half CM CB
Slant Slant left Half LT CM
Slant Slant right Half RT CM

Z Orthogonal Horizontal Half LT RT
Orthogonal Horizontal Half LB RB
Slant Slant right Full RT LB

0 Curve Curve closed 360 CT CB

1 Slant Slant right Half LM RT
Orthogonal Vertical Full CT CB
Orthogonal Horizontal Half LB RB

2 Slant Slant right Full RT LB
Orthogonal Horizontal Half LB RB
Curve Curve down 180 LM RM

(continued on next page)
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space gets a length of Full even though it is physically longer than an Orthogonal feature extending from the top to bottom. Curves have a size
parameter indicating the length in degrees covered by the curve.

To specify positions in letter-space, the FullxHalf grid is subdivided into 4 sections, with the vertices of the grid labeled by their position in the
horizontal dimension (Top, Middle, Bottom) and in the vertical dimension (Left, Center, Right). These vertices are abbreviated by their first letter,
and each feature is defined by two positions approximating the two ends of the feature. The system is arbitrarily set such that Position 2 is always
downward and/or to the right of Position 1. For example, the Slant left feature in A is described by Position 1 of Center-Middle (CM) and Position 2
of Right-Bottom (RB).

To generate the overlap matrix for all characters, the rules in Table A.2 were followed for each feature in every pairwise combination of
characters. The overlap values for a character-pair where then summed and divided by the following: 3 times the product of the number of features
in each of the two characters. This produces overlap values in the range 0–1, with 1 overlap for identical characters.

Table A2
Rules for computing feature overlap.

Overlap type Units of overlap assigned

Feature class only .5
Feature class and feature 1
Feature class, feature, and feature size 2
Feature class, feature, feature size, and position 3 (maximum)

Table A1 (continued)

Character Feature class Feature Size Position 1 Position 2

3 Curve Curve left 180 LT LM
Curve Curve left 180 LM LB

4 Slant Slant right Full CT LM
Orthogonal Vertical Full RT RB
Orthogonal Horizontal Half LM RM

5 Orthogonal Vertical Half LT LM
Orthogonal Horizontal Half LT RT
Curve Curve left 180 LM LB

6 Curve Curve closed 360 CM CM
Curve Curve right 90 LM RT

7 Orthogonal Horizontal Half LT RT
Slant Slant right Full RT LB

8 Curve Curve closed 360 CT CT
Curve Curve closed 360 CM CM

9 Curve Curve closed 360 CT CT
Curve Curve left 90 RM LB

T.M. Schubert Neuropsychologia 95 (2017) 136–155

148



T
a
b
le

A
3

F
ea
tu
re

ov
er
la
p
m
at
ri
x
(l
ow

er
tr
ia
n
gl
e
on

ly
).

0
1

2
3

4
5

6
7

8
9

A
B

C
D

E
F

G
H

I
J

K
L

M
N

O
P

Q
R

S
T

U
V

W
X

Y
Z

0 1
0

2
.0
6

.1
7

3
.1
7

0
0

4
0

.2
6

.1
7

0
5

.0
6

.1
5

.1
1

.1
9

.1
5

6
.1
7

0
.0
6

.1
7

0
.0
6

7
0

.1
9

.2
8

0
.2
5

.1
9

0
8

.3
3

0
.0
6

.1
7

0
.0
6

.5
0

0
9

.1
7

0
.0
6

.2
5

0
.0
8

.2
9

0
.5

A
0

.1
5

.1
7

0
.2
2

.0
9

0
.1
7

0
0

B
.1
1

.0
9

.0
6

.5
6

.0
9

.2
4

.1
1

.0
3

.1
1

.1
7

.0
2

C
.1
7

0
.0
6

.1
7

0
.0
6

.2
5

0
.1
7

.1
7

0
0

D
.0
8

.1
4

.0
6

.3
3

.1
4

.1
9

.0
8

.0
4

.0
8

.1
3

.0
3

.3
9

.0
8

E
0

.3
1

.2
1

0
.3
1

.2
8

0
.3
1

0
0

.2
1

.1
3

0
.1
9

F
0

.2
8

.1
7

0
.3
1

.2
8

0
.3
1

0
0

.2
0

.1
5

0
.2
2

.4
7

G
.0
6

.1
5

.1
1

.0
6

.1
5

.2
0

.0
8

.1
4

.0
6

.0
6

.0
7

.0
9

.3
3

.1
1

.1
3

.1
3

H
0

.2
8

.1
1

0
.3
5

.2
0

0
.1
7

0
0

.1
5

.2
0

.3
1

.4
3

.4
6

.2
0

I
0

.3
5

.2
0

.2
8

.2
8

0
.3
1

0
0

.1
7

.1
1

0
.1
7

.5
1

.4
8

.2
4

.3
9

J
.0
6

.1
9

.1
1

.0
6

.2
2

.2
.0
6

.1
9

.0
6

.0
6

.0
9

.1
3

.0
6

.1
7

.3
1

.3
1

.1
7

.3
1

.3
1

K
0

.1
9

.1
1

0
.1
9

.0
6

0
.0
8

0
0

.1
7

.1
1

0
.1
7

.1
3

.1
5

.0
6

.2
.1
1

.0
9

L
0

.3
3

.1
9

0
.2
8

.2
2

0
.2
1

0
0

.1
4

.1
9

0
.2
9

.5
0

.4
7

.2
2

.4
7

.4
7

.2
8

.1
9

M
0

.1
1

.1
4

0
.1
1

0
0

.1
7

0
0

.2
2

0
0

0
0

0
0

0
0

0
.2
2

0
N

0
.2
0

.0
6

0
.2
4

.1
1

0
.0
8

0
0

.1
3

.1
9

0
.2
8

.2
2

.2
6

.1
1

.4
1

.2
2

.2
2

.2
4

.2
8

.1
1

O
1

0
.0
6

.1
7

0
.0
6

.1
7

0
.3
3

.1
7

0
.1
1

.1
7

.0
8

0
0

.0
6

0
0

.0
6

0
0

0
0

P
.0
8

.1
4

.0
8

.4
2

.1
4

.1
9

.0
8

.0
4

.0
8

.1
3

.0
3

.4
4

.0
8

.4
2

.1
9

.2
2

.0
8

.3
1

.1
7

.1
7

.1
7

.2
5

0
.2
8

.0
8

Q
.5
8

0
.0
6

.1
7

0
.0
6

.2
9

0
.2
5

.1
7

0
.1
1

.1
7

.0
8

0
0

.0
8

0
0

.0
6

0
0

0
0

.5
8

.0
8

R
.0
6

.1
1

.0
6

.2
8

.1
1

.1
3

.0
6

.0
6

.0
6

.0
8

.0
7

.3
0

.0
6

.2
8

.1
3

.1
5

.1
1

.2
0

.1
1

.1
1

.2
0

.1
7

.1
0

.2
2

.0
6

.3
3

.0
6

S
.1
7

0
.0
6

.3
3

0
.1
4

.2
1

0
.1
7

.2
1

0
.2
8

.4
2

.2
1

0
0

.1
4

0
0

.0
6

0
0

0
0

.1
7

.0
8

.1
7

.1
4

T
0

.3
3

.1
4

0
.2
8

.2
8

0
.2
9

0
0

.1
4

.1
4

0
.2
1

.4
6

.4
7

.2
2

.4
2

.5
3

.3
3

.1
4

.4
2

0
.2
8

0
.2
1

0
.1
4

0
U

.0
6

.1
9

.0
6

.0
6

.2
2

.1
3

.0
6

.0
6

.0
6

.0
6

.0
4

.2
2

.0
6

.3
1

.2
2

.2
6

.1
3

.4
1

.2
2

.3
0

.1
9

.3
3

0
.3
7

.0
6

.3
1

.0
6

.2
0

.0
6

.2
8

V
0

.0
8

.1
4

0
.1
4

0
0

.2
1

0
0

.2
8

0
0

0
0

0
0

0
0

0
.1
7

0
.3
3

.1
4

0
0

0
.0
8

0
0

0
W

0
.1
1

.1
1

0
.1
1

0
0

.1
7

0
0

.2
2

0
0

0
0

0
0

0
0

0
.2
2

0
.3
3

.1
1

0
0

0
.1
1

0
0

0
.3
3

X
0

.0
8

.1
9

0
.1
4

0
0

.2
9

0
0

.2
8

0
0

0
0

0
0

0
0

0
.1
7

0
.3
3

.1
9

0
0

0
.0
8

0
0

0
.4
2

.3
3

Y
0

.1
5

.0
7

0
.1
1

.0
9

0
.1
1

0
0

.1
3

.0
2

0
.0
6

.0
7

.0
7

.0
9

.0
9

.0
7

.0
6

.2
2

.0
6

.2
8

.1
3

0
.1
1

0
.1
3

0
.0
8

.0
7

.1
7

.2
2

.1
7

Z
0

.2
6

.3
0

0
.2
2

.2
2

0
.4
4

0
0

.2
4

.0
4

0
.0
6

.4
2

.3
7

.1
9

.2
2

.4
1

.2
2

.0
9

.3
3

.1
.0
9

0
.0
6

0
.0
6

0
.3
3

.0
7

.1
4

.1
1

.1
9

.0
9

T.M. Schubert Neuropsychologia 95 (2017) 136–155

149



Appendix B. By-character metrics

see Tables B1–B5.

Table B1
Font-dependent visual properties: Arial.

Character Average visual
overlap: Pixel

Competitor
distance: Pixel

Number of
pixels

Perimetric
complexity

0 .4215 .8119 1431 70.223
1 .2053 .5293 801 43.812
2 .4057 .6511 1323 68.178
3 .4289 .847 1288 69.876
4 .2827 .5196 1297 62.919
5 .4292 .7961 1437 77.476
6 .4513 .8096 1565 76.791
7 .3112 .5989 1004 52.384
8 .4573 .847 1607 71.935
9 .4315 .8119 1552 76.395
A .3137 .5341 1555 69.608
B .512 .7997 2099 83.773
C .4334 .7937 1505 68.04
D .4501 .7567 1826 82.586
E .4778 .7821 1706 98.374
F .4168 .7422 1358 66.716
G .4219 .8314 1849 88.856
H .3728 .7638 1700 83.015
I .2045 .729 718 36.552
J .3086 .6164 938 50.665
K .3798 .639 1701 62.991
L .3332 .5296 998 53.314
M .269 .5722 2448 118.38
N .3698 .7638 1992 79.387
O .4043 .9065 1786 73.373
P .4274 .7685 1563 70.097
Q .3997 .9065 2002 82.877
R .4407 .7685 1945 83.087
S .4867 .7997 1710 76.634
T .3035 .729 1079 59.949
U .3944 .7567 1565 74.592
V .2869 .5722 1278 68.249
W .2638 .5341 2321 128.13
X .3249 .5786 1507 59.192
Y .2853 .492 1120 51.286
Z .42 .6534 1554 72.073

Table B2
Font-dependent visual properties: Consolas.

Character Average visual
overlap: Pixel

Competitor
distance: Pixel

Number of
pixels

Perimetric
complexity

0 .5432 .8234 1534 67.032
1 .386 .7396 977 57.007
2 .4621 .6794 1071 55.741
3 .4711 .7427 1024 65.846
4 .3504 .6507 1194 65.193
5 .5027 .8156 1087 70.248
6 .5061 .7654 1260 67.979
7 .3859 .6137 855 52.732
8 .5565 .8356 1489 62.611
9 .4992 .6921 1245 69.584
A .3562 .6507 1314 63.709
B .5824 .8356 1491 75.568
C .4631 .8041 996 55.92
D .5195 .8001 1428 70.519
E .527 .8695 1148 79.973
F .4717 .8695 998 60.637
G .5128 .8041 1327 76.365
H .4539 .7715 1367 76.635
I .4148 .8559 1024 65.34
J .4264 .726 921 56.278
K .4289 .6183 1221 64.516
L .3809 .7052 772 52.159

(continued on next page)
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Table B2 (continued)

Character Average visual
overlap: Pixel

Competitor
distance: Pixel

Number of
pixels

Perimetric
complexity

M .406 .6978 1542 99.483
N .4699 .7603 1516 86.282
O .5037 .9048 1354 63.838
P .4845 .7467 1124 63.9
Q .4593 .9048 1630 76.303
R .5265 .7843 1383 68.741
S .5075 .8156 1137 63.17
T .3449 .8559 878 53.797
U .4699 .7853 1246 70.318
V .3477 .5119 1151 61.474
W .4048 .7014 1518 99.855
X .384 .6184 1228 57.33
Y .3419 .5315 955 51.297
Z .4781 .6794 1175 64.831

Table B3
Font-dependent visual properties: Courier New.

Character Average visual
overlap: Pixel

Competitor
distance: Pixel

Number of
pixels

Perimetric
complexity

0 .3288 .6349 671 123.33
1 .2983 .8593 447 110.26
2 .3499 .566 617 111.25
3 .3306 .6691 588 108.29
4 .227 .4068 684 118.47
5 .3035 .5693 638 125.53
6 .2582 .4394 691 121.43
7 .1638 .3581 423 99.673
8 .3632 .6691 775 126.68
9 .3142 .5578 695 123.24
A .2718 .4285 776 163.63
B .4347 .7976 931 154.56
C .3429 .8021 591 112.05
D .3869 .6347 714 150.37
E .444 .7976 867 172.45
F .363 .6457 706 152.39
G .3454 .8021 718 149.23
H .4119 .7518 862 164.01
I .3479 .8593 491 121.92
J .2968 .4312 540 123.59
K .3703 .7077 843 145.87
L .3141 .5114 573 141.09
M .2726 .4516 960 213.13
N .3462 .6532 912 169.35
O .3384 .8672 678 122.34
P .3436 .6457 694 142.67
Q .2974 .8672 881 151.22
R .3778 .7556 861 143.36
S .4012 .5863 703 134.94
T .3466 .8246 632 156.01
U .3683 .6532 671 149.45
V .2389 .3737 608 135.79
W .2986 .5545 960 204.12
X .332 .6082 754 126.63
Y .3492 .6082 591 117.93
Z .4068 .616 672 144.86

Table B4
Font-dependent visual properties: Times new roman.

Character Average visual
overlap: Pixel

Competitor
distance: Pixel

Number of
pixels

Perimetric
complexity

0 .3122 .6085 1102 81.488
1 .216 .8768 601 57.977
2 .3195 .5576 856 79.784
3 .3017 .5866 788 73.503
4 .2535 .4541 1017 71.859

(continued on next page)
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Table B4 (continued)

Character Average visual
overlap: Pixel

Competitor
distance: Pixel

Number of
pixels

Perimetric
complexity

5 .2984 .5866 835 71.301
6 .2922 .6068 1014 83.321
7 .2694 .5576 654 71.119
8 .3488 .6664 1070 89.427
9 .2958 .6085 1018 82.423
A .2587 .4541 1084 103.53
B .4157 .7051 1642 108.28
C .3089 .745 1014 95.386
D .3613 .7025 1578 97.876
E .4019 .7918 1220 146.43
F .3561 .7937 1016 114
G .3049 .7514 1327 113.06
H .3525 .689 1560 140.6
I .2565 .8768 706 63.66
J .2712 .624 778 55.966
K .3491 .666 1485 115.6
L .3428 .7918 932 85.528
M .2032 .3706 1860 172.03
N .3103 .6119 1292 139.36
O .2942 .9156 1380 87.253
P .3523 .7937 1156 86.745
Q .277 .9156 1617 97.798
R .3893 .666 1497 103.35
S .3818 .6664 1148 92.386
T .288 .785 922 98.483
U .3147 .683 1137 125
V .2611 .5877 1008 90.281
W .2811 .3928 1742 147.75
X .3267 .6119 1277 112.68
Y .3104 .5877 1017 90.274
Z .3523 .5395 1155 104.65

Table B5
Font-invariant visual properties.

Average visual overlap:
Feature

Competitor distance:
Feature

Number of features

0 .096 1 1
1 .1423 .3519 3
2 .1144 .2963 3
3 .1008 .5556 2
4 .1481 .3519 3
5 .136 .2778 3
6 .0766 .5 2
7 .1367 .4444 2
8 .0865 .5 2
9 .0778 .5 2
A .1091 .2778 3
B .1409 .5556 3
C .0698 .4167 1
D .1534 .4167 2
E .1744 .5139 4
F .1772 .4815 3
G .1149 .3333 3
H .18 .4722 3
I .1747 .5278 3
J .1429 .3333 3
K .1149 .2407 3
L .1802 .5 2
M .073 .3333 4
N .1479 .4074 3
O .096 1 1
P .1558 .4444 2
Q .0861 .5833 2
R .131 .3333 3
S .0853 .4167 2
T .1746 .5278 2
U .145 .4074 3
V .075 .4167 2
W .0714 .3333 4
X .0821 .4167 2

(continued on next page)
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Table B5 (continued)

Average visual overlap:
Feature

Competitor distance:
Feature

Number of features

Y .0837 .2778 3
Z .1507 .4444 3
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