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Leaf senescence is an essential developmental process that impacts dramatically on crop yields and involves altered

regulation of thousands of genes and many metabolic and signaling pathways, resulting in major changes in the leaf. The

regulation of senescence is complex, and although senescence regulatory genes have been characterized, there is little

information on how these function in the global control of the process. We used microarray analysis to obtain a high-

resolution time-course profile of gene expression during development of a single leaf over a 3-week period to senescence.

A complex experimental design approach and a combination of methods were used to extract high-quality replicated data

and to identify differentially expressed genes. The multiple time points enable the use of highly informative clustering to

reveal distinct time points at which signaling and metabolic pathways change. Analysis of motif enrichment, as well

as comparison of transcription factor (TF) families showing altered expression over the time course, identify clear groups

of TFs active at different stages of leaf development and senescence. These data enable connection of metabolic

processes, signaling pathways, and specific TF activity, which will underpin the development of network models to

elucidate the process of senescence.

INTRODUCTION

During leaf senescence, the plant recovers and recycles valuable

nutrient components that have been incorporated during growth

that would otherwise be lost when the leaf dies or is shed. Ef-

ficient senescence is essential to maximize viability in the next

season or generation, but premature senescence, a protective

mechanism employed when plants are stressed, results in re-

duced yield and quality of crop plants. During the senescence

process, viability of cells within the leaf is actively maintained

until maximum remobilization has occurred (Hörtensteiner and

Feller, 2002). This requires meticulous control of each step of the

process, regulated by internal and external signals via a series of

interlinking signaling pathways involving gene expression

changes and influenced by the balance of hormones and me-

tabolites. Thus, senescence is a very complex process involving

the expression of thousands of genes and many signaling

pathways (Buchanan-Wollaston et al., 2005; van der Graaff

et al., 2006). Elucidation of the relative influences of each

pathway and the crosstalk between them is crucial in identifying

the key regulatory genes that control senescence.

To date, genes with a role in leaf senescence have been

identified either by forward genetic screening to find mutants

with altered senescence rates followed by cloning of the genes

involved or by using reverse genetics for functional analysis of

genes that show differential expression during senescence

(reviewed by Lim et al., 2007). Many of these altered senescence

phenotypes occur as a result of altered hormone signaling, such

as reduced ethylene signaling (Grbic and Bleecker, 1995) or

increased cytokinin signaling (Kim et al., 2006), both of which

result in delayed senescence. However, traditional molecular

biology approaches in which one gene or mutant at a time is
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identified and analyzed have resulted in interesting information

but have generally failed to reveal a global picture of senescence

regulatory networks, including likely feed-forward, feedback,

and crosstalk mechanisms. To understand a system as complex

as senescence, where the influence ofmany external and internal

signals is balanced to allow controlled disassociation and dis-

persal of cellular components, it is essential to study the system

in its entirety rather than focus on small parts. The first step in this

global analysis is to identify the dynamic changes that are

occurring in transcript levels as senescence progresses. Obvi-

ously, transcripts are only one part of the regulatory process;

factors such as RNA stability, translation rates, protein process-

ing and stability, metabolite concentrations, andmany others will

have essential roles in the fine-scale moderation of cellular

activity. However, transcription plays a key role in regulating

both senescence and hormone signaling; therefore, identifica-

tion of regulatory networks based on transcript levels is an ideal

starting point in identifying key switch points in senescence.

Here, we use high-resolution time series microarray data,

collected over many time points during the development of the

leaf, to identify and characterize the gene expression changes

during the different steps that make up the senescence process.

The resulting detailed measurement of transcript levels for 22

time points during the developmental process is highly valuable

for the investigation of numerous complex processes, such as

the discovery of metabolic pathway switches, the identification

of key regulatory genes that are active at different time points,

and the inference of gene regulatory networks. Analysis of the

expression patterns has enabled us to propose a detailed

chronology of transcriptional and functional changes during

leaf senescence. Promoter motif and transcription factor (TF)

analysis has revealed a progression of regulatory genes that

influence gene expression at different times during development.

Finally, a preliminary model, generated with selected genes from

the array data, is presented to illustrate the value of this data set

for future network inference.

RESULTS

Growth and Biochemical Changes during Senescence

All measurements in this study were made on samples collected

from leaf 7, chosen because senescence and mobilization of

constituents from this leaf occur concurrently with flower devel-

opment and silique filling in our growth conditions and are thus

likely to be controlled by developmental signals. Each sample

was harvested from an independentArabidopsis thaliana plant at

each time point (Figure 1A), and samples were not pooled for any

of the analyses. Arabidopsis Col-0 plants were grown in con-

trolled conditions until leaf 7 was;50%of its final size (19 d after

sowing [DAS]). This leaf was harvested at defined time points

until 39 DAS when it was visibly senescent (;50% of leaf area

being yellow, Figure 1B). Samples were taken in the morning (7 h

into the light period) and afternoon (14 h into the light period)

every other day, resulting in 22 time points in total. Sampling was

carried out at these two time points each day to allow us to

distinguish genes that are altered in a diurnal rhythm, as well as

being differentially expressed over time; the times were selected

based on likely maximum changes in expression. Plants started

flowering from around 21 DAS. Leaf 7 started to show yellowing

at the tip at around 31 DAS andwas 25 to 50% yellow by 37 DAS.

By the final sample time (39 DAS), the plants were fully flowering,

and siliques were filling. Physiological parameters were mea-

sured in the morning samples only (i.e., 11 time points). Sampled

leaves reached full expansion by 23 DAS (Figure 1C). However,

leaf weight increased significantly between time points up to 25

DAS (P < 0.01) and continued to increase, reaching a maximum

at 31 DAS when the first signs of yellowing were visible and

then declined rapidly after 37 DAS (P < 0.05). Once the leaf is

fully expanded, weight may continue to increase due to synthe-

sis of macromolecules, expansion of organelles, and water

uptake. Similarly, loss of fresh weight is primarily due to the

decline in macromolecules and the loss of water as the leaf

begins to dry.

Protein and chlorophyll levels are often used asmarkers for the

progression of senescence since both are degraded during the

senescence process. Levels of total chlorophyll and protein were

measured (Figure 1D). Chlorophyll levels did not change signif-

icantly until after 31 DAS, when levels started to fall (P < 0.001

from maximum). However, relative protein levels started to drop

considerably earlier at 23 DAS (P < 0.05 from maximal), which is

before the time at which maximum leaf weight is reached. This

implies that the leaf weight increase seen up to 31 DAS is not due

to new protein synthesis but is probably due to increased water

content and possibly continuing increases in cell wall density

and membrane and other structural developments. Levels of the

small and large subunit (SSU and LSU, respectively) of the pho-

tosynthetic carbon-fixation enzyme ribulose-1,5-bis-phosphate

carboxylase/oxygenase (Rubisco) increased to maximum at 23

DAS (LSU) and 25 DAS (SSU) and then fell steadily during

senescence (P < 0.001 from maximum; Figure 1E). Rubisco is

abundant in a mature green leaf and has been suggested to have

some role as a storage protein (Staswick, 1994). Early degrada-

tion of this protein may provide building blocks for synthesis of

additional proteins required for senescence without affecting the

rate of photosynthesis.

Senescence results in activation of signaling pathways involv-

ing the stress-related plant hormones salicylic acid (SA), jas-

monic acid (JA), and ABA (Weaver et al., 1998;Morris et al., 2000;

He et al., 2002). Levels of these three hormones were measured

in the leaf 7 developmental time series and showed phased

increases during senescence (Figure 2). SA levels were high in

immature leaves, gradually decreased to minimal levels at 31

DAS (P < 0.001 from initial maximum) and then rose significantly

(P < 0.05) from a relatively late stage (35 DAS). ABA levels

significantly increased earlier at around 31 DAS (P < 0.05), with a

subsequent increase tomaximum at 39 DAS; JA levels showed a

complex pattern with peaks at 25, 33, and 39 DAS.

Microarray Analysis over Multiple Time Points Identified

Thousands of Differentially Expressed Genes

Four biological replicates for each time point were used for RNA

isolation (88 samples in total), each hybridized as four technical

replicates to the two channel microarrays. The resulting gene
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expression profiles were analyzed, and time point means were

extracted using a local adaptation of the MAANOVA (MicroArray

ANalysis Of VAriance) package, which quality checks and nor-

malizes the data and produces data files containing predicted

means for each gene; in essence, a single normalized value for

each gene for each biological replicate measured at each time

point (Wu et al., 2003; Churchill, 2004). Two different data sets

were obtained in this way following the completed analysis: the

first contained predicted mean values for each of the four

biological replicates at each of the 22 distinct time points,

therefore including time-of-day variation, whereas the second

contained predicted mean values for eight biological replicates

for each of 11 d, the values calculated by omitting the time-of-

day and day/time-of-day interaction effects from the fitted

model. These data sets were both used in the further analysis

described below.

F tests, constructed from the variance estimates obtained

from the MAANOVA model-fitting process, were used to assess

each gene for significant changes in gene expression between

time points. The model fitting allowed separate assessments of

the variation due to differences between days (averaged across

time-of-day samples), differences between time of day (aver-

aged across days), and the interaction between these terms.

Significance levels for all tests were adjusted across genes for

multiple testing using a step-down false discovery rate (FDR)

controlling procedure (Westfall et al., 1998; Benjamini and Liu,

1999), resulting in 8878 genes showing significant (P < 0.05)

variation due to day of sampling (19–39 DAS). Additional genes

were identified as showing significant (P < 0.05) variation due to

the time of day or the interaction between day of sampling and

the time of day, and the numbers of genes having significant test

results for combinations of these terms are summarized in a Venn

diagram, together with sample expression profiles for each com-

bination (see Supplemental Figure 1 online). The selection pro-

cess that was used to identify the list of differentially expressed

genes used in all further analyses is described in the Methods

section and combined information about the adjusted signifi-

cance levels of the statistical tests with visual examination of

expression patterns. The final list of genes used for the analysis

described below contains probes for 6323 genes (see Supple-

mental Data Set 1 online).

We have generated a web tool that illustrates the expression

levels of each individual probe on the Complete Arabidopsis

thaliana MicroArray (CATMA; Allemeersch et al., 2005) array

Figure 1. Plant Growth Parameters and Protein and Chlorophyll Mea-

surements.

(A) Appearance of the Arabidopsis plants at three different stages of

development, 19, 33, and 37 DAS. White arrows indicate leaf 7, the

sampled leaf from each plant.

(B) An example of leaf 7 harvested from plants at 19 to 39 DAS (picture

shows the morning sample only).

(C) Length (mm, red bars) and weight (mg, blue bars) of the sampled

leaves over the time course. Least significant differences (LSD; 5%, 71

[length] and 99 [weight] df ) calculated based on the minimum sample

size of 6 (length) and consistent sample size of 10 (weight) for comparing

pairs of means is shown for each variable, calculated from the ANOVA.

(D) Total protein (blue bars) and chlorophyll a+b (red bars) levels were

measured in leaf samples at each stage of development. LSD (5%, 42

[protein] and 43 [chlorophyll] df ) is shown for both variables. FW, fresh weight.

(E) Levels of the large (LSU) and small (SSU) subunits of Rubisco were

estimated from stained polyacrylamide gels. LSD (5%, 42 df ) is shown

for both variables. Values shown in (D) and (E) represent the means of

five independent biological replicates per time point.
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using the two alternative summaries of the senescence data.

Expression patterns for each gene in the 22– and 11–time point

data can be viewed in the Data section at http://go.warwick.ac.

uk/presta.

Clustering Genes by Expression Pattern Illustrates the

Extensive Metabolic Changes Occurring during

Leaf Senescence

The 6323 differentially expressed geneswere clustered using the

time series-clustering software SplineCluster (Heard et al., 2006).

Clustering analysis of both the 22– and 11–time point data was

performed, and 48 and 74 clusters were obtained respectively.

Supplemental Data Set 1 online shows the cluster number for

each differentially expressed gene in both the 11– and 22–time

point clusters. For reasons of space, only the 22–time point

clusters are analyzed in this article (Figure 3A). The heat map

(Figure 3B) indicates that there are changes in gene expression at

each time point but that there are several time points at which an

obvious step change in the transcriptome occurs. Overall, the

major switch in gene expression in leaf 7, both in genes up-

regulated and downregulated, occurs between 29 and 33 DAS,

and the genes identified as differentially expressed can be

divided into two major groups, genes in clusters 1 through 24,

which are downregulated during this period, and genes in

clusters 27 through 48, which are upregulated. Some of the

clusters in the center of the heat map show a more complex

pattern; for example, cluster 26 genes are downregulated initially

and then increase in expression, and genes in clusters 27, 28,

and 29 show an initial increase followed by a decrease in

expression (Figures 3A and 3B).

A clear diurnal variation in expression is seen with many of the

differentially expressed genes, which show higher expression in

either the morning or the afternoon samples from the same

sample day. Other genes show a distinct morning to night rhythm

that did not alter significantly over the 22 d of the experiment.

These genes were not selected as being differentially expressed

over time but were identified in the MAANOVA analysis as being

significantly affected by the time of day term only (1086 genes;

see Supplemental Figure 1 online). These genes show clearly

that the clock does not decline as late senescence is reached.

Morning genes include well-characterized clock genes such as

LATE ELONGATED HYPOCOTYL (LHY), CIRCADIAN CLOCK

ASSOCIATED1 (CCA1), and PSEUDO-RESPONSE REGULA-

TOR 7 (PRR7; Harmer, 2009) as well as genes involved in

light signaling such as PHYTOCHROME A (PHYA), CRYPTO-

CHROME 1 (CRY1), and PIF4, a phytochrome-interacting factor

(see Supplemental Figure 2A online). Afternoon genes include

EARLY FLOWERING 4 (ELF4) and PHYTOCLOCK1 (PCL1), both

of which are negatively regulated byCCA1 and LHY (Hazen et al.,

2005; Kikis et al., 2005; see Supplemental Figure 2B online).

The 48 clusters of genes identified from SplineCluster analysis

of the 22–time point data were analyzed using the gene ontology

(GO) enrichment tool BiNGO (Maere et al., 2005). Initially, the two

groups of genes showing either decreasing (clusters 1–24) or

increasing (clusters 27–48) expression during leaf development

were analyzed for overrepresented functions using the GoSlim

Plants annotation. TheBiNGO-derived graph (Figure 4) illustrates

the most highly significant enrichment of specific functions.

Downregulated genes are significantly enriched for genes linked

to the plastid and thylakoid, and with functions in metabolic

processes, particularly photosynthesis and carbohydrate and

amino acid metabolism. A more detailed investigation using all

GO terms (see Supplemental Table 1 online) shows overrepre-

sentation for genes involved in chloroplast activity such as

photosystem (PS) I and II, carbon fixation, chlorophyll (tetra-

pyrrole) biosynthesis, and amino acid metabolism. All these

functions are essential for a growing and active leaf but are

downregulated during senescence, when cellular structures are

dismantled.

Figure 2. Hormone Levels during Leaf Development.

Levels of JA (A), SA (B), and ABA (C) were measured in leaf 7 harvested

at different times during plant development. LSD (5%, 41 df ) for

comparisons between pairs of means are shown for each hormone,

calculated from the ANOVA of log10-transformed data. Values represent

the means of five independent biological replicates per time point. DW,

dry weight.

[See online article for color version of this figure.]
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Figure 3. SplineCluster Analysis of Differentially Expressed Genes.
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Upregulated genes show a very different picture, illustrating

clearly the protective steps the plant takes to respond to the

stress generated by the degradative and mobilization functions

that occur during senescence (Figure 4). Only two cellular com-

ponent terms are overrepresented, peroxisome and vacuole.

Within the molecular function annotations, only transporter,

protein binding, and transcription are overrepresented, whereas

there is significant enrichment for stress response and catabolic

processes in the biological process terms. In more detail (see

Supplemental Table 1 online), enrichment is seen for genes

involved in response to stimulus, particularly ABA and ethylene,

and many stress responses such as osmotic, salt, and water

stress. Enrichment of genes involved in metal ion binding is

interesting. Many of these genes (64/222) encode zinc finger

(C3H4-type RING) proteins, which may be involved in targeting

specific proteins for ubiquitination and degradation. Other zinc

binding proteins present have DNA binding activity and may

act as TFs. Also, copper chaperones, metallothioneins, calcium

binding proteins, and metal ion transporters are represented,

which may illustrate the importance of the remobilization of

valuable metal ions. Autophagy genes are a significant group; 15

Arabidopsis genes involved in autophagy are upregulated during

senescence, showing the key role of autophagy in the controlled

degradation of cellular components.

This global analysis is highly informative, as it shows broad

classes of genes altered in expression during senescence and

indicates the processes that are changing. Analysis of enriched

GO terms in individual clusters should help to elucidate the

chronology of gene expression and associated metabolic ac-

tivities (Figure 3, see Supplemental Data Set 2 online). Not

surprisingly, there was a very strong representation of photo-

synthesis-related genes in many of the clusters of downregu-

lated genes. Clusters 2, 3, and 6, all of which show a strong

diurnal variation with higher morning expression (Figure 3A), are

highly enriched with photosynthesis genes, particularly those for

the light reaction. Cluster 16, which shows less diurnal change,

contains genes encoding enzymes such as Rubisco that are

involved in carbon fixation. Clusters 4, 10, 17, and 21 are en-

riched for chlorophyll biosynthesis genes, and clusters 18 and

19 contain genes involved in cellular biosynthesis such as those

for amino acid, polysaccharide, and lipid metabolism. Cluster 15

contains many genes encoding ribosomal proteins. Downregu-

lation of these groups of genes reflects the shutdown of cellular

biosynthetic activity as senescence occurs, and the coregulation

is an indication of the organized control of this process. Cluster

13 is enriched for cytokinin signaling genes; a reduced level of

cytokinin is a key signal that initiates the senescence process

(Noodén et al., 1990).

GO terms enriched in the clusters of genes showing increased

expression during senescence are less informative than those for

the downregulated gene clusters. Certain clusters are enriched

for stress-related genes, e.g., genes involved in JA and ethylene

signaling are overrepresented in cluster 34. Other clusters are

enriched for genes involved with macromolecule degradation,

such as clusters 40 and 41 containing genes involved in carbo-

hydrate and lipid degradation, respectively. Metal ion binding,

particularly calcium binding, is overrepresented in cluster 43 and

transporter genes in cluster 46.

Distinct Pathways Become Active at Different Times

during Senescence

Although SplineCluster is useful in identifying groups of genes

that are coexpressed and hence may be coregulated across the

entire time series, it is not easy to divide these clusters according

to their time of differential expression because the overall pattern

of expression is the driving factor for cluster membership. To

identify an ordering of events, the rate of change of gene

expression (gradient) was inferred using Gaussian process

(GP) regression applied to the 11–time point data set (described

in detail in Supplemental Methods 1 online). Where data are

sufficiently time resolved, this method can be used to identify the

time points at which the gradient of a gene’s expression profile is

significantly positive (increased), significantly negative (de-

creased), or not statistically different from zero (steady), whereas

for less resolved data, it will identify times of significant change to

the derivative of the global trend. The results are illustrated using

the well-characterized, senescence-enhanced gene SAG12

(Figure 5). Expression profiles (Figure 5A) are used to train a

GPmodel of gene expression (Figure 5B), afterwhich aGPmodel

of the gradient is obtained (Figure 5C) and used to identify

whether the gradient at any time is sufficiently far from zero at

three different significance thresholds (Figure 5D). A numeric

representation of Figure 5C is shown in Figure 5E and suggests

that SAG12 expression first becomes significantly enhanced

around 31 DAS. This method can also be used to show when the

gene expression gradient is maximal, i.e., the time of most rapid

change. For example, themaximumchange of the expression for

SAG12 occurs between 33 and 35 DAS (Figure 5E).

After examining the results for a number of genes, a signifi-

cance stringency of two standard deviations was taken to

Figure 3. (continued).

SplineCluster analysis was performed on the 22–time point data using normalized data for the 6323 differentially expressed gene probes (average of

the four biological replicates).

(A) Forty-eight clusters were obtained. The blue line on each plot represents the mean expression profile for the cluster. The genes present in each

cluster may be viewed in Supplemental Data Set 1 online. Selected enriched GO terms (data shown in Supplemental Table 1 online) are indicated, in

green for downregulated and red for upregulated genes.

(B) The heat map illustrates the expression profiles for genes in each cluster, with red representing high expression and green representing low

expression. Morning (a) and afternoon (p) data are shown for 19 to 39 DAS. Darker shades show intermediate levels of expression. A few cluster

positions are identified to compare with the cluster profiles shown in (A).
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represent a sufficient distance from zero and was used to

generate discrete representations of the state of a gene (Figure

5D) for the 6323 differentially expressed genes. The resulting

data were then sorted according to the time of first differential

expression to identify 19 clusters (see Supplemental Data Set 3

online). GO term enrichment within the 19 clusters or subsets

provided more clarity on the cellular and metabolic activities,

showing step changes at each time point during the experiment

than was gained from the cluster analysis described above

(Figure 6, see Supplemental Data Set 4 online).

Downregulated Gene Clusters Show Step Changes in

Cellular Dismantling

It is clear that there are progressive changes in genes being

downregulated as senescence progresses, and these are highly

informative in indicating changes in metabolic pathways. Genes

downregulated from the first time point (19 DAS, cluster D1; see

Supplemental Data Sets 3 and 4 online), before the leaf is fully

expanded, are enriched for genes involved in amino acid me-

tabolism, including those for biosynthesis of Arg, Trp, Lys, and

Gln. Genes involved in tRNA aminoacylation and over 30 ribo-

somal protein genes are downregulated at 21 DAS (cluster D2),

indicating that expansion of the ribosomal content of the cells

has slowed down. This suggests that large-scale de novo protein

synthesis has ceased and that leaf cells are fully developed and

equipped for activity.

Many tetrapyrrole or chlorophyll biosynthesis genes are first

downregulated at 23 DAS (cluster D3), including the two genes

encodingHEMA (glutamyl- tRNA reductase), which catalyzes the

rate-limiting and first committed step in tetrapyrrole biosynthe-

sis, and two genes encoding the D subunit of Mg-chelatase, part

of the enzyme that diverts the tetrapyrrole pathway toward

chlorophyll biosynthesis (Tanaka and Tanaka, 2007). Thus, the

requirement for de novo chlorophyll biosynthesis appears to

cease at 23 DAS, indicating that all chloroplasts are fully devel-

oped. Three genes involved in a branch of the carotenoid

biosynthesis pathway (LUT1, 2, and 5) show a correlated drop

in expression at this stage. These genes encode enzymes in the

pathway leading from trans-lycopene via a-carotene to lutein,

themajor carotenoid component in the leaf with an important role

in light-harvesting complex-II structure and function and in

photoprotection (Kim and DellaPenna, 2006). In addition, ex-

pression of three cytokinin-inducible transcription repressors

(response regulators ARR4, 6, and 7) that mediate a negative

feedback loop in cytokinin signaling (Hwang and Sheen, 2001)

also drops at this time point.

At the next stage (25 DAS, cluster D4), there is significant

overrepresentation of genes involved in fixation of carbon di-

oxide or the Calvin cycle, including two Rubisco small subunit

genes and sedoheptulose bisphosphatase, a key enzyme in-

volved in the regeneration of the CO2 acceptor molecule, ribu-

lose-1,5-bisphosphate. The reduction in expression of the two

Rubisco small subunit genes correlates with the reduction in

protein levels shown in Figure 1E and indicates that photosyn-

thetic activity probably starts to drop at this stage. At 27 DAS

(cluster D5), expression of genes involved in Gly metabolism

declines, including Gly decarboxylase and Ser trans hydroxy-

methyl transferase 1, both involved in photorespiration, which

presumably is also less important as photosynthesis becomes

less active. Interestingly, five genes designated as HIGH CHLO-

ROPHYLL FLUORESCENCE PHENOTYPE (HCF101, 109, 152,

173, and 208) are downregulated together at 27 DAS. Several

such genes have been shown to have a role in maintaining the

stability of chloroplast-encoded transcripts (Meurer et al., 1996;

Meierhoff et al., 2003), and it may be that reduced expression of

these genes enables enhanced degradation of photosyntheti-

cally related transcripts in the chloroplast. Finally, gene clusters

that show expression that declines at 29, 31, and 33 DAS

Figure 4. Enriched GO Terms in Genes Upregulated and Downregulated

during Senescence.

The network graphs show BiNGO visualization of the overrepresented

GO terms for the combined clusters of genes either downregulated

(clusters 1–24, 2849 genes) or upregulated (clusters 27–48, 3292 genes)

during senescence. Categories in GoSlimPlants (Maere et al., 2005) were

used to simplify this analysis and the same nodes are shown on both

graphs. Uncolored nodes are not overrepresented, but they may be the

parents of overrepresented terms. Colored nodes represent GO terms

that are significantly overrepresented (Benjamini and Hochberg cor-

rected P value < 0.05), with the shade indicating significance as shown in

the color bar. A more detailed analysis of the GO categories is shown in

Supplemental Table 1 online. ER, endoplasmic reticulum.
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(clusters D6, D7, and D8) are significantly overrepresented for

photosynthesis-related genes. Cluster D7 includes the gene-

encoding TF GOLDEN2-LIKE (GLK2) that, together with its

functional homolog GLK1, has been shown to coordinate ex-

pression of the photosynthesis apparatus genes in Arabidopsis

(Waters et al., 2009). Inducible expression of GLK2 resulted in

significantly increased expression of many photosynthesis-

related genes (Waters et al., 2009), including those for the

PSII chlorophyll binding proteins LHCB 2.2, 4.2, and 6 that are

found in the same cluster of downregulated genes as GLK2,

together with many others encoding subunits of the PSI and

PSII complexes. The observation that expression of many

photosynthesis-related genes is maintained until this late stage

of development implies that there must be a continued require-

ment of these transcripts to retain sufficient energy production

for the senescence process to occur.

Upregulated Gene Clusters Illustrate the Complexity of the

Senescence Process and Reveal Novel Groups of

Coregulated Genes

Genes that show increased expression at different time points

during senescence were divided into clusters based on the time

of first significant increase, but these clusters were also sub-

divided further depending on the subsequent expression

patterns (see Supplemental Data Sets 3 and 4 online). This

separation revealed additional enriched GO terms, as shown in

Supplemental Data Set 4 online and Figure 6.

Many autophagy-related (ATG) genes are enhanced in ex-

pression from the start of the experiment (cluster U1), indicating

that there may be a role for these proteins even before the leaf is

fully expanded. Autophagy has a key role in the senescence

process, and accelerated senescence has been observed in a

number of autophagy-defective mutants (Doelling et al., 2002;

Hanaoka et al., 2002; Yoshimoto et al., 2004). Nine of the 15

upregulated autophagy genes show increased expression from

the first time point, with five others upregulated at 21 or 23 DAS

and one,ATG7, being upregulated at 29DAS. Investigation of the

overall expression patterns of the autophagy genes shows four

genes, ATG7, ATG8H, ATG8A, and ATG8B that show correlated

and rapidly increased expression between 29 and 31 DAS (see

Supplemental Figure 3A online). In yeast, ATG7p has been

shown to be required for activation of ATG8p to allow conjuga-

tion with phosphatidylethanolamine (Ichimura et al., 2000), and

the resulting ATG8p-phosphatidylethanolamine conjugates

Figure 5. Gradient Analysis of SAG12 to Identify the Time of First

Significant Change in Expression.

(A) Expression levels from microarray data (output from Gene Viewer).

The blue line shows the mean of the eight replicates (n = 8; error bars =

standard deviation, SD).

(B) Expression levels used by the GP regression, showing the eight

biological replicates and the 95% confidence interval.

(C) GP model of the gradient showing 95% confidence interval.

(D) Change in gradient measured at each time point, shown at three

different significance values: 3 SD, 2 SD, and 1 SD. Positive value of 1

shows an increased expression, 0 shows no significant change in ex-

pression, and �1 shows a significant decrease in expression.

(E) Data output for each significance value, i.e., whether gradient is

significantly positive or steady at each time point, with the actual gradient

value shown below.

[See online article for color version of this figure.]
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assist in the formation of the autophagosome. Thus, the timing of

expression of ATG7 (around 29 DAS) may be the key control

point for autophagy activation in senescing leaf cells.

Genes induced at 21 DAS (cluster U2) are enriched for re-

sponse to oxidative stress. These include TFs such as DREB2A,

a key regulator in drought and heat stress responses (Sakuma

et al., 2006), and LSD1, a zinc finger that monitors superoxide

levels and regulates cell death (Epple et al., 2003). Increased

expression of themitogen-activated protein kinaseMPK7, which

is also induced by hydrogen peroxide treatment and enhances

plant defense responses (Dóczi et al., 2007), and heat shock

proteins such as HSP70, a stress-enhanced heat shock chap-

erone with a protective role, also indicates that the plant is

protecting itself from the detrimental effects of oxidative stress

caused by the early stages of senescence. Genes involved in

response to water deprivation are also overrepresented; DRE-

B2A described above, Arabidopsis HISTIDINE KINASE3 (AHK3),

a stress-responsive gene that has been shown to influence

cytokinin control of leaf longevity (Kim et al., 2006), dehydration-

responsive genes such as ERD1 and ERD14, and RAB18, ABF2,

and other ABA-responsive genes.

Genes involved in both JA and ABA responses are clearly

overrepresented in those whose expression increases at 23 DAS

(cluster U3). Many of these show a peak of activity at this time

point followed by a drop, and this subset is highly enriched for JA

biosynthetic genes (cluster U3_1). JA-related genes upregulated

at this time point include genes required for JA biosynthesis such

as two lipoxygenases, two allene oxide cyclase genes, AOC1

and AOC4, and 12-oxophytodienoate reductase. This increase

correlates with a peak in levels of JA detected at 25 DAS (Figure

2). Also, genes implicated in controlling JA responses are up-

regulated, including the TF MYC2, and jasmonate ZIM-Domain

genes, JAZ1, JAZ6,and JAZ8. JAZ proteins are repressors of JA

signaling, binding toMYC2 and preventing its action (reviewed in

Staswick, 2008). MYC2 is also involved in expression of ABA

response genes, and this may be the cause of the increased

expression of ABA-related genes at this time point. ABA levels

only show a large increase later in senescence (Figure 2), but

several ABA-signaling genes (e.g., ABI1 and AFP1) and dehy-

dration response genes whose expression is induced by ABA

(e.g., RD20 and RD26; Fujita et al., 2004; Choudhury and Lahiri,

2011) are upregulated at 25 DAS. This suggests a potential

coordination of JA and ABA responses at this early stage of

senescence.

Many genes encoding TFs are first upregulated at 23 DAS,

including four WRKY factors, eight NAC domain (for Petunia

hybrida NAM and for Arabidopsis ATAF1, ATAF2, and CUC2)

proteins, 10 zinc finger proteins, and the Nuclear Factor Y sub-

unit NF-YA4, which has been implicated in regulating endo-

plasmic reticulum stress (Liu and Howell, 2010). Many of these

genes show an increased expression followed by a fall in ex-

pression later in senescence (cluster U3_3), whereas others

Figure 6. Metabolic Processes Initiated or Repressed at Different Time Points during Development.

Enriched GO termswere identified using BiNGO (Maere et al., 2005) in groups of genes that show first significant upregulation or downregulation at each

time point during leaf development and senescence. ROS, reactive oxygen species; white numbers indicate DAS.
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show a continued increase from this time until later in senes-

cence (see Supplemental Data Set 3 online). These are likely

candidates for the control of later senescence-related pro-

cesses.

At 25 DAS, the cluster of genes upregulated (cluster U4) is

enriched for metal ion binding proteins, including many genes

encoding DNA binding proteins, TFs, calcium-signaling genes,

etc. The subgroup of this cluster that shows a pattern of

increased followed by decreased expression (cluster U4_1) is

enriched for genes with a protein binding function. There are five

C3HC4-type RING finger protein binding genes in this group,

which presumably have a role in regulating specific protein levels

via the ubiquitination pathway.

At 27 DAS, there is an interesting overrepresentation of genes

involved in carotene metabolism (cluster U5). The three genes

involved are a b-carotene hydroxylase and two carotenoid

cleavage dioxygenase genes, CCD7 and CCD8. Carotenoids

are precursors of signaling molecules that regulate shoot branch-

ing in Arabidopsis, and CCD7 and CCD8 mutants, max3 and

max4, respectively, show increased lateral branching (Ongaro

and Leyser, 2008). These genes are involved in the production of

a strigolactone-related signaling molecule (Gomez-Roldan et al.,

2008). Interestingly, another gene that has a shoot-branching

role, MAX2, was originally identified as ORE9, encoding an

F box leucine-rich repeat protein required for normal leaf senes-

cence (Woo et al., 2001). Mutants in MAX2 show increased

branching, indicating that this protein is a regulator of the

strigolactone signal. The ORE9/MAX2 gene also shows senes-

cence-enhanced expression and is upregulated at 21 DAS.

Enhanced expression of all three genes that regulate shoot

branching in a senescing leaf and the fact that a mutant in

ORE9/MAX2 shows delayed senescence indicate that there

may be a role for the novel strigolactone-like hormone in regu-

lating an aspect of leaf senescence.

Caspase activity is also an enriched GO term in genes

upregulated at 27 DAS due to increased expression of two of

the nine Arabidopsis genes encoding potential caspase coun-

terparts, metacaspases MC6 and MC9. The other seven Arabi-

dopsis metacaspase genes do not show differential expression

during senescence. In other organisms, caspases play an es-

sential role in controlling and executing programmed cell death

(PCD), and two metacaspase genes, MC1 and MC2, have been

shown recently to control pathogen-induced PCD in Arabidopsis

(Coll et al., 2010). Links between senescence and plant PCD are

tenuous, but the coregulated expression of these two caspase-

like genes at this time point may indicate that they have a role in

the degradative processes and/or cell death that occur in leaf

senescence. The autophagy gene ATG7 also shows initial en-

hanced expression at this time point as described above, and

this may be a significant link showing that, under our growth

conditions, the first degradative processes of senescence are

initiated at 27 DAS.

At the next time point (29 DAS, cluster U6), senescence-

related degradation processes are shown by enrichment in

genes for cell wall degradation. Six upregulated genes encode

pectinesterase, involved in the degradation of plant cell wall

pectin components. These enzymes and others such as xylosi-

dase, glucosyl hydrolase, b-glucosidase, pectate lyase, and

pectin methylesterase inhibitor, may have a role in controlling the

degradation of cell wall components and releasing sugars for

respiration (Lee et al., 2007). Similarly, genes upregulated at

31 DAS (cluster U7) are highly enriched for catalytic activity,

reflecting the considerable degradation that is underway. These

include additional carbohydrate-degrading enzymes such as pec-

tinesterases, glycosyl and glucosyl transferases, and polygalactu-

ronase, and several proteases including the well-characterized

senescence-enhanced Cys protease SAG12, which may have a

role in chloroplast degradation (Martı́nez et al., 2008). Two upregu-

lated genes, LACS6, encoding a long-chain acyl-CoA synthetase

(Shockey et al., 2002), andACX1 (acyl-CoA oxidase), encoding the

enzyme that catalyzes the first step in fatty acid b-oxidation in the

peroxisome (Fulda et al., 2002), are involved in mobilizing mem-

brane lipids via b-oxidation, likely to provide an energy source to

fuel the senescence process. This could act as an initiator of

precursors for jasmonate biosynthesis because levels of this

hormone increase after this time point (Figure 2).

By the later time points in this experiment, after 31 DAS, the

senescing leaf becomes more and more heterogeneous, with

some cells within the leaf being at a more advanced stage of

senescence than others and more variability between biological

replicates. This means that there is less clarity in the functions of

different groupings of genes that are differentially expressed at

each time point after 31 DAS. GO term enrichment analysis of the

31, 33, and 35 DAS groups combined (clusters U7, U8, and U9)

illustrates the degradation and mobilization of nutrients, with

44% of these genes involved in catalytic activity, with lipid

catabolism highly represented, and 10% involved in transport.

Response to chemical stimulus is also high, with two of the three

Arabidopsis genes annotated detection of ethylene stimulus, i.e.,

ethylene ETR1 and ACC OXIDASE2 (ACO2) being upregulated

late in senescence, indicating that the ethylene regulation of

senescence may have a significant role at this time.

A surprising group of genes identified by this analysis is

downregulated for most of the time course followed by a signif-

icant increase in expression at 35 or 37 DAS (clusters U8_1 and

U9). This group is highly enriched for genes involved in the

cytoskeleton (see Supplemental Figure 3B online), with mem-

bers of the a-tubulin family (TUA2, 4, and 5), actin genes, ACT3

and ACT11, and two aurora genes (AURORA1 and AURORA2)

encoding kinase proteins that have a role in histone phospho-

rylation and have been reported to be associated with microtu-

bule spindles and abundantly transcribed only in dividing cells

(Demidov et al., 2005, 2009). Downregulation of this group of

genes after completion of the cell division and expansion stages

of leaf development is to be expected, but the increase in

expression at the end of senescence is unanticipated. AURORA1

has been shown to phosphorylate histone H3 at Ser10 (Demidov

et al., 2009), and, in mammalian cells, this modification has been

suggested to have a crucial role in transcription and apoptosis

as well as in cell division (Prigent and Dimitrov, 2003). These

proteins may alter chromatin structure in late senescence to

allow DNA fragmentation and eventual degradation. Histone

modification and chromatin restructuring is a key regulator in

Arabidopsis stress responses (Kim et al., 2010), and H3 phos-

phorylation increased in response to salinity, osmotic stress, and

ABA treatment of cultured cells (Sokol et al., 2007).
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The increased expression of actin and tubulin genes late in

senescence could reflect an autophagy role (Monastyrska et al.,

2009). Evidence from yeast and mammalian systems indicates

that efficient autophagy requires microtubule action to facilitate

autophagosome movement, and actin microfilaments have a

role in selective types of autophagy in yeast. The Arabidopsis

autophagy ATG8 gene family shows significant homology to

mammalian microtubule binding proteins and bind to microtu-

bules in vitro (Ketelaar et al., 2004). Therefore, plant autophagy

may involve the action of microtubules and microfilaments,

explaining the increased expression of these genes late in

senescence when the autophagic degradation of cellular com-

pounds is active.

Chlorophyll degradation is a key step in the senescence

process, and several of the genes involved are under transcrip-

tional control (Hörtensteiner, 2009). The STAYGREEN gene,

SGR1 regulates the first step in the dismantling of chlorophyll

from the chlorophyll binding proteins. Key genes involved in

chlorophyll degradation, SGR1, SGR2, NYC1 (chlorophyll b

reductase), and PaO (pheophorbide a oxygenase), all show

enhanced expression during senescence. All of these genes

increase in expression during early time points, leveling out

between 25 and 29 DAS, followed by a sudden increase in

expression after 29 DAS (see Supplemental Figure 3C online). It

is likely that it is the expression of SGR after 29 DAS that initiates

the dismantling of the protein chlorophyll complexes, releasing

chlorophyll for detoxification.

Additional information can be gained from the gradient anal-

ysis described above if the time of maximum gradient is also

considered. For example, statistical analysis of gene clusters

based on time of first differential expression indicated that

photosynthetic genes were overrepresented in clusters showing

downregulation at 29 to 33 DAS. However, if all the down-

regulated genes annotated as photosynthesis are examined,

many of these show initial significant downregulation earlier in

the time series (see Supplemental Figure 4A online), but the

size of the clusters at these time points means this annotation

does not show up as being significantly enriched. When the

maximum absolute gradient for each of the photosynthesis

genes was calculated (see Supplemental Figure 4B online), the

vast majority of photosynthesis genes showed the most rapid

drop in expression between 31 and 35 DAS, confirming the ob-

servation that photosynthesis-related gene activity is maintained

until late in the leaf’s development (Figure 6).

The maximum absolute gradient analysis was also applied to

investigate genes responding to JA and ABA stimulus. In both

cases, the majority of genes were first significantly upregulated

at 21 and 23 DAS, early in senescence (see Supplemental

Figures 4C and 4E online). However, although several of the

genes had amaximum gradient early, at 23 DAS, there were also

many showing maximum gradient much later in the time series,

up to 35 and 37 DAS for the JA response genes and 33 and 35

DAS for the ABA response genes (see Supplemental Figures 4D

and 4F online). This correlates with the data on the levels of JA

and ABA shown in Figure 2 where a maximum level of both

hormones is measured late in the process (increasing at 33 and

31 DAS, respectively). The timing of expression of specific hor-

mone biosynthesis genes (see Supplemental Figure 5 online)

clearly illustrates the rapid increase in JA biosynthesis genes

between 23 and 25 DAS, whereas ABA and SA biosynthesis

genes show a later increase in expression with amaximum at the

final stage of senescence. Although ethylene levels were not

measured during the time course, the ethylene biosynthesis

genes ACS2 and ACS7 also show increased expression from

around 29 to 31 DAS, with a steady increase as senescence

progresses. Thus, ABA, ethylene, and probably SA synthesis

appear to be coordinately regulated in senescence, whereas JA

synthesis shows a different pattern. Interestingly, some JA

biosynthesis and signaling genes are only expressed at the early

time point (e.g., OPR3), whereas others (e.g., LOX3) are also

upregulated late, presumably enabling the accumulation of JA

later during senescence.

Our detailed expression profiles and novel tools have enabled

us to distinguish biological processes initiated at different stages

of senescence and hence tease apart some of the components

of this complex phenomenon. We now have a timeline that can

be built upon to link these different processes and to identify the

overarching regulatory mechanisms as well as candidate genes

for specific senescence processes.

TF Binding Motifs Show Specific Enrichment in

Differentially Expressed Gene Clusters

The SplineCluster analysis of differentially expressed genes

(Figure 3) identified groups of genes that exhibit similar expres-

sion profiles and thus may be coregulated. Analysis of such

coregulated gene sets should help pinpoint potential TF binding

motifs important for gene expression during leaf development.

To gain an initial understanding of the regulatory mechanisms of

genes differentially expressed during senescence, promoters

corresponding to 500 bp upstream of the predicted transcription

start site of genes in each cluster were screened for overrepre-

sentation of known TF binding motifs.

This analysis shows clearly that certain sequence motifs are

selectively enriched in clusters that exhibit similar expression

patterns (Figure 7, data shown in Supplemental Data Set 5

online), and there is an obvious difference in the range of motifs

distributed over the different clusters. Consistent with the GO

term analysis results, several of the downregulated clusters

(clusters 1–24) are significantly enriched for sequence motifs

associatedwith the regulation of photosynthesis and cell growth.

For example, the G box variant motif is linked with the regulation

of photosynthetic genes and responses to light (Martı́nez-Garcı́a

et al., 2000) and the TCP motif binds members of the TCP family

of TFs, which have been implicated in the regulation of growth

and cell division (Li et al., 2005). Binding sites for E2F TFs, key

regulators of cell proliferation (Ramirez-Parra et al., 2003) are

enriched in cluster 22, which is consistent with this cluster being

enriched with genes annotated with the GO term cell cycle.

Genes in this cluster are downregulated from the start of the

measured time course, and this would be expected since cell

division has ceased before the leaf is fully expanded.

Sequence regions upstream of genes in upregulated clusters

(clusters 27–48) contain a number of sequence motifs that can

bind TF families that are themselves upregulated during senes-

cence. For example, NAC domain and WRKY TFs constitute a
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large proportion of the senescence-regulated TFs and are known

to play significant roles in regulating leaf senescence in Arabi-

dopsis (Miao et al., 2004; Guo and Gan, 2006; Kim et al., 2009).

Binding sites for NAC andWRKYTF families are overrepresented

in several upregulated clusters sharing similar expression pro-

files. Sequencemotifs associated with stress responses are also

enriched. The heat shock element is overrepresented in a single

cluster, and several heat shock factors are upregulated during

senescence. The CGCG motif, which has been implicated as a

calcium-signaling element in a range of stresses, is enriched in

several upregulated clusters. This motif has been shown to bind

CAMTA TFs (Yang and Poovaiah, 2002) involved in signaling

responses to wounding, cold, and other stresses (Walley et al.,

2007; Doherty et al., 2009). The ABA-responsive element (ABRE)

is overrepresented in multiple upregulated clusters, and enrich-

ment correlates with the observed increase in levels of ABA

during senescence. ABRE-binding factors are known to activate

target genes in an ABA-dependent manner (Nakashima et al.,

2006). The ABRE contains an ACGT-core and, therefore, is a

subset of the G box sequence (CACGTG). However, the pattern

of overrepresentation of these two similar motifs across the

senescence clusters is different, suggesting that divergent func-

tional roles can be identified. G box–like motifs can bind many

members of the bZIP and bHLH TF superfamilies (Toledo-Ortiz

et al., 2003; Jakoby et al., 2002), and TFs fromboth these families

are upregulated during senescence.

TFFamiliesAreActiveatDifferentTimesduringSenescence

To complement the analysis of TF binding motifs above, we

investigated whether specific families of TFs were differentially

expressed at particular times during senescence. The groups of

genes identified as having the same initial timing of differential

expression by the GP gradient tool analysis were further ana-

lyzed to identify time periods when families were overrepre-

sented for genes with a positive or negative gradient (i.e.,

expression significantly increasing or decreasing). A heatmap,

mapped to the significance of each family’s activity, is shown in

Figure 8, with the numerical data shown in Supplemental Data

Set 6 online.

A number of TF families were significantly overrepresented for

upregulated genes (adjusted P < 0.01), indicating a large amount

of similar transcriptional activity and potential coregulation within

these families. Specific members of the bZIP family have been

shown to participate in defense against pathogens, develop-

ment, stress treatments such as cold and drought, ABA signal-

ing, and phenylpropanoid biosynthesis (Weisshaar and Jenkins,

1998; Jakoby et al., 2002). Another significantly overrepresented

upregulated family is the large C3H superfamily, of which little is

known of the function of many of its members. Several subfam-

ilies related to the CCAAT box binding factor family were also

significantly upregulated; factors in this family form the hetero-

trimeric NF-Y binding complex (consisting of NF-YA, NF-YB, and

NF-YC subunits) that has been shown to influence flowering time

and stress responses in plants (Wenkel et al., 2006; Liu and

Howell, 2010). Interestingly, it is the NF-YA subunits specifically

that are enriched in the senescence-enhanced gene lists, with

nine of the 10 genes in the genome showing increased expres-

sion during senescence. In comparison, few of the NF-YB and

NF-YC genes are altered in expression, with only three NF-YB

genes and one NF-YC gene being upregulated. This implies that

it may be the regulated expression of the NF-YA subunit that

controls the activity of the NF-Y complex during senescence.

The large NAC family also had a significant early overrepre-

sentation, with over 30 of the members of this family being

altered in expression at various times during senescence. Mem-

bers of this family are known to have a large number of regulatory

interactions with a diverse range of biological processes, includ-

ing senescence, defense, and abiotic stress (Olsen et al., 2005,

and references quoted above). Several other families show

upregulated transcription later in the time course. The WRKY

family shows an overrepresentation, with many members of this

family being upregulated from around 25 DAS. WRKY TFs have

been shown to be important for senescence (Robatzek and

Somssich, 2001; Miao et al., 2004); others are induced by

Figure 7. Over-Representation of Known TF Binding Motifs in Pro-

moters of Coexpressed Genes.

Logo representations of known TF binding motifs are on the horizontal

axis, and expression profile for each cluster (see Figure 3) is on the

vertical axis. Colored boxes represent pairs of motif and expression

cluster with a significant statistical link. Shown are a limited number of

representative motifs and clusters (see Supplemental Data Set 5 online

for full results).
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infection by viruses or bacteria (Eulgem et al., 2000) and are

downstream of defense-signaling mitogen-activated protein ki-

nase pathways and involved in the regulation of SA- and JA-

dependent defense signaling pathways (Ülker and Somssich,

2004; Eulgem and Somssich, 2007). The large AP2-EREBP

family becomes significantly overrepresented around 27 DAS;

members of this family are induced in several cases by hormones

such as JA, SA, and ethylene, along with other signals related to

pathogens, wounding, and abiotic stresses, and have influence

on other stress and disease resistance pathways (Kizis et al.,

2001; Gutterson and Reuber, 2004). Therefore, cascades of cel-

lular information flow during the progress of leaf senescence can

be predicted by this analysis, such as upregulation of NAC or

WRKY genes influencing various hormone responses, followed

by upregulation of AP2-EREBP TFs. This knowledge is key for

future modeling of senescence transcriptional networks.

ANAC092 Target Genes Are Highly Enriched in Clusters

Overrepresented for NAC Binding Motifs

The motif and TF analyses described above pinpoint NAC

domain genes as being of key importance in regulation of

senescence and we follow this observation up in more detail as

an example of the increased understanding that this data set

provides. A recent publication (Balazadeh et al., 2010) describes

an elegant experiment using inducible expression ofANAC092 to

identify likely target genes. Of the 170 genes identified in that

study as being upregulated after induced expression of

ANAC092, 102 of these are senescence enhanced in our time

course experiment; of these, 75%, including ANAC092 itself, are

to be found in the clusters enriched for NAC domain motifs

(clusters 41, 42, 44, and 45; see Supplemental Data Set 7 online).

This provides clear evidence that the detection of enriched

motifs within clusters is providing biologically relevant informa-

tion and also indicates that ANAC092, probably together with

other NAC domain proteins, has an influential role in regulating

the expression of many genes at this stage of senescence. This

information might be used in preliminary modeling experiments

to predict interactions that regulate gene expression in these

clusters.

DISCUSSION

In this article, we describe a high-resolution, highly replicated

time-course analysis of gene expression during Arabidopsis leaf

development from before complete expansion to full senes-

cence. Over this time, the leaf develops from a sink that is

importing nutrients for growth into an active source organ,

performing maximum photosynthesis and exporting fixed car-

bon for further growth of the plant. This is followed, relatively

rapidly in this short-lived plant, by the initiation of senescence

whereby the leaf is converted from a source of photosynthetic

carbon to a source of valuablemacromolecules such as nitrogen,

phosphorus. and minerals, as cellular components become

degraded and mobilized from the leaf. Thus, in this short time

period, the leaf undergoes enormous changes in metabolism

and transport of metabolites.

To obtain insight into the timing and potential coregulation of

the changes in genes and pathways in the complex process of

senescence, it is essential to sample highly controlled replicate

leaves and to measure at many time points. This is also essential

if these data are to be used for network inference analysis. In the

experiment reported here, we harvested the same leaf (leaf 7)

from individual plants at different times over 3 weeks. Previous

Figure 8. TF Families Significantly Over-Represented with Positive or Negative Gene Expression Gradients Highlighting Distinct Periods of Activity.

(A) A number of TF families significantly upregulated early, including the NAC and bZip families (19–21 DAS), remaining strongly upregulated throughout

the experiment, and a small number of families only upregulated toward the middle and end of the experiment (27+ DAS), such as WRKY, AP2, and

G2-like.

(B) A small number of weakly significant TF families downregulated early, and several families (C2C2-CO-like and TCP) significantly downregulated

toward the end of the experiment (33+ DAS).

Color bars indicate P value (after FDR correction), with a range of significance thresholds (0.01, 0.05, 0.1, 0.25, and 0.5). Numerical data used to derive

this figure are shown in Supplemental Data Set 6 online.
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transcript profiling studies on developmental leaf senescence in

Arabidopsis have analyzed a more limited number of time points

(e.g., Buchanan-Wollaston et al., 2005; van der Graaff et al.,

2006). Analysis of gene expression changes in field-grown

Populus leaves has been performed over several time points

during late summer and autumn (Andersson et al., 2004). In these

examples, pooled leaves were used as biological samples; and

replicates were limited; although these experiments gave a

picture of the overall changes in gene expression that occur

during senescence, they provide little information on the timing of

the changes during the process. Senescing leaves are, by their

nature, quite variable, particularly in mid or late senescence;

therefore, to accurately determine coregulation of genes through

senescence, it is essential to control and allow estimation of

other sources of variability, such as may be caused by plant-to-

plant differences and environmental factors by using a carefully

designed sampling strategy.

Methods Developed to Enable Large-Scale, Two-Color

Microarray Analysis and Identification of Differentially

Expressed Genes

This large-scale microarray experiment with both biological and

technical replication across multiple time points required the

development of a novel and complex design approach to take full

advantage of the two-color microarray system, providing effi-

cient estimation of the differences in response between adjacent

time points while still allowing effective comparison of all sam-

ples. The highly replicated experiment allowed the application of

stringent statistical analysis to identify and characterize genes

differentially expressed at different time points during senes-

cence, which has not been possible with data from previous

studies. The quantity of data generated necessitated the adap-

tation of existing analysis methods/algorithms, as well as the

development of some new analysis tools.

The Bioconductor package MAANOVA was adapted to meet

the specifications of the CATMA arrays, providing monitoring of

slide and data quality and using information from the four

technical replicates of each sample to remove the influence of

the occasional outliers. The mixed model-fitting algorithm then

enabled the estimation and testing of the differences caused by

the treatment factors (day, time of day, the interaction [combined

effect] of these factors, and the biological replicates), allowing for

the complex design structure and the sources of variability

(between slides and between dyes) imposed by using the two-

color microarray system. There are considerable advantages to

the experimental and analysis approaches used. The use of two-

color arrays allows direct comparisons of samples between key

time points and, through careful design of the pairs of samples

compared on each array, across all time points by indirect

association. By contrast, many applications of two-color arrays

compare experimental samples by calculating the ratio of ex-

pression responses of each with a control sample hybridized on

every slide, thus halving the amount of useful data obtained per

slide (or doubling the cost of obtaining the same data).

Identification of genes showing interesting differential expres-

sion patterns was achieved by first assessing the significance of

the variation due to different model terms (day, time of day, and

the interaction between them) relative to the between-biological

replicate variation using the MAANOVA analysis, and then

conducting a visual inspection of gene expression responses

over time for genes giving a less significant test result (0.0001 < P

< 0.05) for the effect of day. Of course, high levels of biological

(between-plant) variability can lead to large changes in gene

expression not being identified as statistically significant and,

hence, genes not identified as being differentially expressed.

Further exploration of approaches to control this biological

variation, through both the statistical design of future experi-

ments and the development of novel analysis methods, is im-

portant for future successful research.

The mixed model-fitting algorithm implemented in the MAA-

NOVA package allows separation of the variation due to different

sources within the treatment combinations (i.e., day, time of day,

the interaction between these factors, and biological replicates),

and hence the identification of genes showing different generic

patterns of differential expression (see Supplemental Figure

1 online). An advantage of this approach, over a simple compar-

ison of the responses across all 22 time points, is that genes

showing only diurnal (time of day) variation can be easily iden-

tified and ignored in subsequent modeling of potential senes-

cence-related gene networks, with those showing combined

effects of day and time of day also easily identified and included.

A disadvantage is that the analysis does not formally include any

allowance for the ordering of the samples through time (e.g., the

effect of day is essentially just an assessment of the average

variability between the 11 mean values, and reordering the days

would not change the test statistic and hence level of signifi-

cance). A further development of this approach, allowing both

separation of effects within a factorial treatment structure and

estimation of the underlying shape of response over time, pos-

sibly following the approach proposed by Eastwood et al. (2008),

should lead to a more reliable identification of genes showing

important patterns of differential expression, although issues with

high levels of biological variability would still result in some false-

negative test results. Better estimation of the shape of expression

profiles could also contribute to improved clustering of genes with

similar shapes of expression profiles. In the absence of such a

modelingapproach, the approachusedhere, combining the highly

significant results of the formal analysis with a visual inspection, is

likely to result in the identification of most of the important genes

showing differential expression related to senescence, while min-

imizing the number of false positives.

Analysis of Differentially Expressed Genes Revealed a

Chronology of Processes and Signals

Analysis of individual clusters identified in the SplineCluster

analysis, particularly those for downregulated genes, identified

groups of genes involved in a common process such as photo-

synthesis, chlorophyll metabolism, etc. It seems likely that genes

involved in the same process, with similar expression profiles,

are coregulated rather than simply coexpressed during senes-

cence, and this prediction is strengthened by the promoter motif

analysis.

The GP gradient analysis, developed to enable more effective

dissection of gene expression changes over time, identified
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groups of genes that showed their first significant change in ex-

pression between the same pair of adjacent time points. The

resulting clusters present a highly informative picture of the

timeline of senescence, showing when individual pathways are

upregulated or downregulated (Figure 6). Knowledge of such

timing will prove a powerful tool for separation of pathways into

groups to allow identification of upstreamgenes that control them.

Comparing the two approaches used to cluster the differen-

tially expressed genes, it is clear that they will generate different

sets of clusters. SplineCluster groups genes with overall profile

shapes that are similar based on the fitted regression coeffi-

cients, which should therefore mean that genes in the same

cluster will have similar changes in expression between every

pair of adjacent time points. However, the approach does not

take any account of the biological (between-plant) variability, so

that only the initial filter will determine the significance associated

with the overall differential expression, and so a gene with highly

significant variation in expression could be clustered with one

just breaking the significance threshold. By contrast, the GP

gradient analysis groups genes that have the first significant

changes in expression in the same direction at the same time.

However, unless the gradient information is also taken into

account, these may not always be showing the most dramatic

change in expression at the same time point. Therefore, both

approaches have value in identifying coregulated genes, but

both have the potential to inappropriately group genes.

The clustering results have been discussed in detail above and

have identified groupings of genes that had not been observed

previously with more limited time series data. For example, it is

clear that the extensive overall reduction in expression of genes

involved in chloroplast activities occurs via a timed process.

Chlorophyll biosynthesis genes are downregulated before car-

bon fixation genes, and these are downregulated well before the

majority of key genes encoding proteins involved in photosyn-

thesis, including chlorophyll binding proteins and components of

PSI and II. Autophagy genes are enhanced from the start, but the

level of the key geneATG7 starts to rise at 29DAS. This is also the

time at which chlorophyll degradation genes show a rapid induc-

tion of expression. Other metabolic pathways such as strigolac-

tone synthesis, hormone biosynthesis, cell wall degradation,

cytoskeleton, and microtubule activity, to name just a few, are

implicated at different times during the senescence process.

Microarray Data Analysis Tools Used to Develop and Test

Hypotheses for Transcriptional Control during Senescence

Analysis of the core promoters of coexpressed genes revealed

potential regulatory sequence motifs that are likely to contribute

to the coregulation of genes involved in the senescence process.

Known sequence motifs are enriched in the promoters of genes

that share similar expression profiles and correlate with the

biological processes associated with such genes. The impor-

tance of the NAC and, to a lesser extent, theWRKY TF families in

promoting senescence in Arabidopsis is illustrated through the

specific and highly significant enrichment for potential binding

sites for these regulators in the promoters of certain clusters of

upregulated genes. In addition, most of the genes implicated as

under the control of the senescence-enhanced ANAC092 TF

(Balazadeh et al., 2010) occur in these same clusters, showing

the importance of this TF and other NAC family members in

regulating gene expression during senescence. The identity of

specific TFs that target these known motifs is unknown, and

further bioinformatic analysis and modeling as well as laboratory

experiments is required to characterize them fully. Regulation via

known cis-regulatory elements is not sufficient to explain the

expression patterns of all genes, and unknown sequence motifs

likely contribute toward regulating specific groups of genes

within the senescence process.

In comparison with previous senescence gene expression

studies, the study reported here collected highly replicated gene

expression responses at a high temporal resolution across the

period during which the senescence response develops. Thus,

these data are more suitable than previously collected data sets

Figure 9. Network Model Inferred from Microarray Data.

Variational Bayesian state space modeling was used to generate a

network model using senescence-enhanced genes selected from Spline-

Clusters 41, 42, 44, or 45 in the microarray data. Genes showing induced

expression in an ANAC092 (yellow node) inducible overexpression

experiment (see Supplemental Data Set 6 online; Balazadeh et al.,

2010; orange nodes) were combined with selected TFs from the same

clusters (green nodes). Green edges represent positive interactions,

while red dashed edges predict negative effects. Genes are identified in

Supplemental Data Set 7 online.
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for applying statistical analyses aimed at predicting the gene

regulatory networks operating during senescence. This is of

immense value for the next step in the development of a model

for the regulation of leaf senescence. However, even this sub-

stantial microarray experiment still imposes data limitations that

make the application of network inference nontrivial; gene ex-

pression measurements of just 88 biological samples are insuf-

ficient to accurately model the regulation of thousands of genes.

As the number of possible networks grows superexponentially

with the number of genes involved, the correlations in the

patterns of response across these 88 samples are certainly

insufficient to accurately identify a unique network model de-

scribing the regulation of the 6326 genes identified as differen-

tially expressed. This is known as the “curse of dimensionality”

(Bellman, 1961). Therefore, the design of future studies needs to

consider the balance between experimental cost and informative

data for network inference, especially as a greater number of

samples brings diminishing returns with respect to the number of

additional genes it allows a researcher to model. It is also

important to balance the need for good information about the

biological (between-plant) variability, technical replicate varia-

bility, and temporal changes in gene expression during the

senescence process.

The data presented here can be used to produce constrained

network models for many small sets of genes. An example of the

type of network model that can be inferred from these data is

shown (Figure 9). A variational Bayesian state space modeling

method (Beal et al., 2005) was applied to a selection of genes

using the 11–time point data series (see Supplemental Table 2

online). Genes selected were present in clusters enriched for the

NACmotif (i.e., clusters 41–45) and also present in the ANAC092

overexpression data described above (Balazadeh et al., 2010;

see Supplemental Data Set 7 online) or were annotated as TFs.

The resulting model correctly predicts a positive influence of

ANAC092, either direct or indirect, on multiple known down-

stream target genes (Figure 9, orange nodes) The model also

makes several new hypotheses for experimental testing. For

example, it predicts the influence of a zinc finger protein (STZ) in

the expression ofANAC092 and its downstreamgenes. Although

no experimental evidence exists for this regulatory link, both STZ

and ANAC092 are induced in expression during salt stress, and

knock out mutants in both genes have enhanced tolerance to

stress inArabidopsis (Mittler, et al., 2006; Balazadeh et al., 2010).

Regulation by ANAC092 of several other TFs known to be stress

related is also predicted in this network model. ANAC019,

ANAC055, and RD26 (ANAC072) have all been shown to have

a role in drought stress (Tran et al., 2004); MYB2 has a role in ABA

signaling and salt stress (Abe et al., 2003; Yoo et al., 2005), and

PMZ, a zinc finger protein, has a role in stress-induced senes-

cence (Breeze et al., 2008). The gene regulatory network model

also predicts feedback and feed-forward connections between

ANAC092, STZ, and TBP1-1, which encodes a telomere binding

protein. These types of interactions are crucial for the robustness

of gene regulatory networks and would be almost impossible to

predict from biological data alone. Thus, this model, generated

with a small subset of the array data, correctly predicts known

gene-gene interactions and generates complex novel predic-

tions for experimental testing.

Many different models can be obtained with different collec-

tions of genes, and these transcriptional network models can be

expanded using information on coregulated pathways and pro-

moter motif analysis to identify likely downstream targets of key

TFs. This model development and experimental testing is un-

derway to generate validated gene regulatory network models

underlying senescence.

METHODS

Plant Growth

Arabidopsis thaliana plants were grown as described inBreeze et al. (2008).

Leaf 7was taggedwith thread 18DAS. Sampling of leaf 7 started at 19DAS

and continued every other day until full senescence was reached (39 DAS).

Leaveswereharvested twiceoneach samplingday, 7 and 14h into the light

period. This resulted in samples beingobtained at 22distinct timepoints. At

each time point, leaf 7 was sampled from 20 plants among the 720 being

grown in the controlled-environment growth room, the plants being ran-

domly selected to avoid any potential effects of position within the growth

room. Leaves were rapidly weighed and photographed with a size scale

before being frozen in individual tubes in liquid nitrogen. Leaf length was

estimated against this scale from the photographs.

Protein and Chlorophyll Measurements

Total protein was extracted from five individual leaf samples by grinding

the sample in liquid nitrogen before the addition of 500 mL of extraction

buffer (50 mM lithium phosphate [pH 7.2], 1 mM monoiodoacetic acid,

120 mM mercaptoethanol, 5% [v/v] glycerol, 1 mM PMSF, and 0.2%

lithium dodecyl sulfate). At this stage, a 100-mL aliquot of the extract was

taken for chlorophyll analysis. The protein extract was boiled for 45 s and

centrifuged for 20 min at 12,800g. Total protein was measured using the

RC DC protein assay (Bio-Rad) according to the manufacturer’s instruc-

tions. In addition, levels of the small and large subunits of Rubisco were

assessed by diluting the protein extracts to normalize for leaf weight and

then running an equal volume of each extract (equivalent to 0.5 mg of

fresh tissue) on polyacrylamide gels (Invitrogen Novex 4-12% Bis-Tris

gel), staining with Coomassie blue, and scanning the relevant protein

band. Protein levels were assessed densitometrically using image anal-

ysis software (GeneTools; Syngene) against a calibration curve of bovine

serum albumin (LSU) and lysozyme (SSU).

Chlorophyll was measured from five individual leaves using the total

protein extracts. The chlorophyll was extracted using 80% acetone,

vortexed, and then stored at2208C for 1 h in the dark. The samples were

then centrifuged for 3 min at 12,800g, and the absorbance of 1 mL was

measured at 663 and 646 nm. Chlorophyll concentrations were calcu-

lated using the equations: total chlorophyll (mg/L) = 20.2A646 + 8.02A663,

chlorophyll a (mg/L) = 13.19A663 2 2.57A646, and chlorophyll b (mg/L) =

22.1A646 2 5.26A663.

HormoneMeasurements

The hormones ABA, SA, and JA were measured in five individual leaves.

Each leaf was freeze dried and 10 mg of freeze dried tissue was used for

hormone extraction as described in Forcat et al. (2008). Analysis was

performed using an HPLC-ESI/MS-MS.

Statistical Treatment of Leaf Morphological and

Biochemical Measurements

Leaf morphology (weight and length) and biochemical assay (total pro-

tein, chlorophyll a+b, Rubisco LSU and SSU, and hormone) data were
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subjected to ANOVA to assess for differences in response over the time

course using GenStat (VSN International). Data from hormone assays

were subjected to a log10 transformation (including the addition of a small

constant to cope with zero observations) prior to analysis to satisfy the

assumption of homogeneity of variance. LSDs were calculated at a 5%

significance level to allow easy comparison of differences between

adjacent time points. Significant effects noted in the results relate to

either F tests for the overall variability over time or t tests for comparisons

between adjacent time points.

Microarray Analysis

RNA Preparation and Labeling

Total RNA was isolated from four individual leaves from each sampled

time point (arbitrarily labeled as biological replicates A, B, C, and D) using

TRIzol reagent (Invitrogen), purified with RNeasy columns (Qiagen), and

amplified using the MessageAmp II aRNA Amplification kit (Ambion) in

accordancewith the kit protocol with a single round of amplification. Cy3-

and Cy5-labeled cDNA probes were prepared by reverse transcribing

5 mg of aRNA with Cy3- or Cy5-dCTP (GE Healthcare) and a modified

dNTP mix (10 mM each dATP, dGTP, and dTTP; 2 mM dCTP) using

random primers (Invitrogen) and SuperScript II reverse transcriptase

(Invitrogen), with the inclusion of RNase inhibitor (RNaseOUT; Invitrogen)

and DTT. Labeled probes were purified using QiaQuick PCR Purification

columns (Qiagen), freeze-dried, and resuspended in 50 mL of hybridiza-

tion buffer (25% formamide, 53 SSC, 0.1% SDS, and 0.5mg/mL yeast

tRNA; Invitrogen).

Microarray Experiments

Themicroarray experiments were performed using theCATMA (version 3)

microarray (Allemeersch et al., 2005; http://www.catma.org). CATMA

probe annotations were updated using the TAIR9 release: oligo se-

quences of CATMA array probes were mapped to individual mRNA

sequences of transcripts from the TAIR9 genome assembly using

BLASTn (Altschul et al., 1997), with e-value cutoff of 0.01. Additionally,

results were filtered to exclude alignments shorter than 30 bp or with less

than 80% sequence identity. The best matching gene model (by e-value

of hit to transcript) was identified for each probe. In addition, probe

sequences were mapped to TAIR9 genomic DNA to clarify cases where a

probe had been designed to a region of an earlier genome assembly now

unannotated in TAIR9.

A novel experimental design strategy (A. Mead, unpublished data),

based on the principle of the “loop design” (Kerr andChurchill, 2001), was

developed to enable efficient extraction of information about key sample

comparisons using a two-color hybridization experimental system. With

88 distinct samples (four biological replicates at each of 22 time points) to

be compared, the experimental design included 176 two-color micro-

array slides, allowing four technical replicates of each sample to be

observed. The detailed structure of the design, indicating how pairs of

treatments were allocated to arrays, is described in Supplemental

Methods 1 online, with an illustrative diagram shown in Supplemental

Figure 6 online. According to a randomization of this experimental design,

pairs of labeled samples were hybridized to slides overnight at 428C.

Following hybridization, slides were washed and scanned using an

Affymetrix 428 array scanner at 532 nm (Cy3) and 635 nm (Cy5). Scanned

data were quantified using Imagene 7.5.0 software (BioDiscovery, Inc.).

MAANOVA Analysis

A local adaptation of the MAANOVA package (Wu et al., 2003) was used

to analyze the quantified microarray data, providing data quality assur-

ance, slide normalization through LOWESS data transformation, mixed

model fitting, and identification of genes showing significant differential

expression via F tests of fixed (treatment) terms included within the

model. MAANOVA was selected to analyze the data because it is able to

provide an accurate analysis of the effects on gene expression of multiple

sources of variation (both fixed, treatment, terms, and random sources of

background variation) in the experimental design, harnessing the power

of direct comparisons between pairs of samples obtained using two-

channel microarrays (Churchill, 2004). Full details of the data quality

checking procedures, of themixedmodel fitting approach to describe the

observed gene expression data, and of the construction of F tests for

fixed treatment terms are given in Supplemental Methods 1 online.

Having fitted the mixed model to each gene, predicted means were

calculated for each of the 88 samples, assuming the full treatment model

(effects of day, time of day, the interaction between them, and the nested

biological replicates) to produce a four-replicate 22–time point data set

for each gene, or assuming a reduced treatmentmodel (effects of day and

the nested biological replicates) to produce an eight-replicate 11–time

point data set for each gene. These data sets were then used in sub-

sequent analyses.

Selection of Differentially Expressed Genes

Themost significant differentially expressed geneswere identified initially

and this was followed by visual analysis of genes close to the borderline of

significance. First, CATMA probes with no corresponding gene model in

the TAIR9 annotation were ignored; also, replicate CATMA probes were

removed (the most gene-specific probe being identified in each case). In

total, 4989 genes had an adjusted daymain effect F test P-value < 0.0001

(after multiple testing correction via a step-down FDR-controlling proce-

dure (Westfall et al., 1998; Benjamini and Liu, 1999), equivalent to

responses showing a significant test result at an FDR of P < 0.0001),

and these were included in the initial list of differentially expressed genes.

The patterns of expression of all genes with an adjusted daymain effect F

test P-value between 0.0001 and 0.05 (further responses showing a

significant test result at an FDR of P < 0.05) were then screened visually

to remove any showing either a small or a very variable change in expres-

sion over time. The final list of 6323 differentially expressed genes, with

adjusted F test statistics, is shown in Supplemental Table 1 online.

Gene Expression Profile Clustering

Clustering of coregulated genes was performed by the application of

SplineCluster (Heard et al., 2006), a Bayesian model-based hierarchical

clustering algorithm for time series data, using the mean of the biological

replicates for each gene. Recent functionality added to SplineCluster,

(Heard, 2011) improves the gene allocation to clusters. Where a gene has

become an outlier for its allocated cluster, it is reallocated to alternative

clusters to maximize the log marginal likelihood once more. This option

was used on all SplineCluster analyses presented in this article. The 22–

time point data (averaged across the four biological replicates) was

clustered using a prior precision of 531024, while the other data set

composed of 11 time points was averaged across all eight morning and

afternoon biological replicates before being clustered using a prior

precision of 131024. These prior precisions were selected as they

produce ;50 clusters for each of the two data sets.

GP Gradient Analysis

To identify an ordering of events, the rate of change of gene expression

(gradient) was inferred using a GP regression approach (see Supplemen-

tal Methods 1 online), which has the notable advantage of incorporating

all biological replicates. Furthermore, since the marginal distribution of a
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GP is itself a Gaussian distribution, the probability that the gradient (at any

particular time) lies sufficiently far from zero may be calculated analyti-

cally. When data are sufficiently time resolved, the GP model may

therefore be used to identify timeswhen the gradient of a gene expression

profile is significantly positive (increased), negative (decreased), or not

statistically different from zero (steady), whereas for less time-resolved

data, it may identify times of significant change to the global trend.

GO Analysis

GOannotation analysis on gene clusters was performed using the BiNGO

2.3 plugin tool in Cytoscape version 2.6 with GO_full and GO_slim

categories, as described by Maere et al. (2005). Over-represented

GO_Full categories were identified using a hypergeometric test with a

significance threshold of 0.05 after a Benjamini and Hochberg FDR

correction (Benjamini and Hochberg, 1995).

Promoter Analysis

Plant position-specific scoring matrices (PSSMs) were collected from the

TRANSFACdatabase, version 2010.3, (Matys et al., 2006) and the PLACE

database (Higo et al., 1999). This set was supplementedwith PSSMs for a

heat shock element (TRANSFACmatrix record M00146) and two NAC TF

binding sites (Olsen et al., 2005) since these importantmotifs were absent

from the databases. PSSMs were clustered, and a representative of each

cluster was chosen for screening. Promoter regions corresponding to 500

bp upstream of the transcription start site were retrieved from the

Ensembl Plants sequence database (release 50).

For any given PSSM and promoter, we scanned the sequence and

computed a matrix similarity score (Kel et al., 2003) at each position on

both strands. P values for each score were computed from a score

distribution obtained by applying the PSSM to a random sequence of 100

million bases in length generated by a 3rd order Markov model learned

from the whole Arabidopsis genome. We took the top k nonoverlapping

hits and performed the binomial test for the occurrence of k sites with

observed n values within a sequence of length 500 bp. The parameter k is

optimized within the range 1 to 5 for minimum binomial P-value. This

allows detection of binding siteswithout a fixed threshold per binding site.

Using a threshold (P < 0.05), the presence or absence of a PSSM was

scored for each promoter based on the binomial probability.

For each PSSM, its frequency in promoters of each cluster was

compared with its occurrence in all promoters in the entire genome.

Motif enrichment was calculated using the hypergeometric distribution

(phyper function in the R stats package). Hypergeometric P-values were

corrected for the number of clusters tested using Bonferroni correction.

Corrected P-values# 0.05 were considered significant. Sequence logos

were generated using code modified from Lenhard and Wasserman

(2002). Sequence analysis was performed within the APPLES software

framework (S. Ott, unpublished data).

TF Family Analysis

Gene expression activity was analyzed for 1733 TFs, grouped into 50

families defined in the Arabidopsis thaliana Transcription Factor Data-

base, AtTFDB (Palaniswamy et al., 2006; 1843 TF, 50 families as of June

2010). Of these, 1733 were probes on the CATMA array using the GP

gradient model. Families overrepresented for genes with significantly

positive or negative gradients at each time point, using all geneswithin the

experiment as a reference, were identified using the hypergeometric

distribution (computed using the hypgeomdist function in MS Excel

12.2.3) with Benjamini and Hochberg FDR correction. A heatmap of

adjusted P-values, using five levels of significance (0.01, 0.05, 0.1, 0.25,

and 0.5) was then generated, using only those values that correspond to

overrepresented counts (e.g., the proportion of positive/negative gradient

TFs for a given family is larger than the proportion of positive/negative

gradient genes in the entire data set for each time point).

Variational Bayesian State Space Modeling

Data for eight biological replicates from the 11–time point data series

were used to generate a network model using the method published in

Beal et al., 2005. ANAC092 was used as the gene on which to base the

model and two groups of genes were selected to accompany it. First,

several genes were selected that showed rapidly increased expression

following induced expression ofANAC092 in green leaves (fromBalazadeh

et al., 2010),manyofwhichwere also in clusters enriched forNACdomains.

Therefore, these are likely to be direct or indirect targets of ANAC092

activation. Second, a group of TFs that show coexpression with ANAC092

selected from the clusters 41 through 45 was included. Ten models were

run from different random seeds and connections occurring in more than

50% of models at a confidence level of >95%were included in the network

shown in Figure 9.

Data Repository

The microarray data used in this article have been deposited in NCBI’s

Gene Expression Omnibus (Edgar et al., 2002) and have been given a

GEO Series accession number, GSE22982.

Accession Numbers

Arabidopsis gene names and identifiers referred to in this article are:

ANAC092 (At5g39610), WRKY53 (At4g23810), ANAC029 (At1g69490),

SAG12 (At5g45890), LHY (At1g01060), CCA1 (At2g46830), PRR7

(At5g02810), PHYA (At1g09570), CRY1 (At4g08920), PIF4 (At2g43010),

ELF4 (At2g40080), PCL1 (At3g46640), LUT1 (At3g53130), LUT2

(At5g57030), LUT5 (At1g31800), ARR4 (At1g10470), ARR6 (At5g62920),

ARR7 (At1g19050), sedoheptulose bisphosphatase (At3g55800),

HCF101 (At3g24430), HCF109 (At5g36170), HCF152 (At3g09650),

HCF173 (At1g16720), HCF208 (At5g52110), GLK2 (At5g44190), GLK1

(At2g20570), LHCB2.2 (At2g05070), LHCB4.2 (At3g08940), LHCB6

(At1g15820), ATG7 (At5g45900), ATG8H (At3g06420), ATG8A (At4g21980),

ATG8B (At4g04620), DREB2A (At5g05410), LSD1 (At4g20380), AtMPK7

(At2g18170), HSP70 (At3g12580), (AHK3 (At1g27320), ERD1 (At5g51070),

ERD14 (At1g76180), RAB18 (At5g66400), ABF2 (At1g45249), AOC1

(At3g25760), AOC4 (At1g13280), 12-oxophytodienoate reductase

(At2g06050), MYC2 (At1g32640), JAZ1 (At1g19180), JAZ6 (At1g72450),

JAZ8 (At1g30135), COI1 (At2g39940), LOX3 (At1g17420), ABI1

(At4g26080), AFP1 (At1g69260), RD20 (At2g33380), RD26 (At4g27410),

NF-YA4 (At2g34720), CCD7 (At2g44990), CCD8 (At4g32810), ORE9

(At2g42620), AtMC6 (At1g79320), AtMC9 (At5g04200), LACS6

(At3g05970), ACX1 (At4g16760), ETR1 (At1g66340), ACO2 (At1g62380),

TUA2 (At1g50010), TUA4 (At1g04820), TUA5 (At5g19780), ACT3

(At3g53750), ACT11 (At3g12110), AtAURORA1 (At4g32830), AtAUR-

ORA2 (At2g25880), SGR1/NYE1 (At4g22920), SGR2 (At4g11910), NYC1

(At4g13250), and PaO (At3g44880).
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